Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Emerg Infect Dis ; 30(5): 1055-1057, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38666739

RESUMEN

We report a clinical isolate of Burkholderia thailandensis 2022DZh obtained from a patient with an infected wound in southwest China. Genomic analysis indicates that this isolate clusters with B. thailandensis BPM, a human isolate from Chongqing, China. We recommend enhancing monitoring and surveillance for B. thailandensis infection in both humans and livestock.


Asunto(s)
Infecciones por Burkholderia , Burkholderia , Filogenia , Infección de Heridas , Humanos , Masculino , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/clasificación , Infecciones por Burkholderia/microbiología , Infecciones por Burkholderia/diagnóstico , China/epidemiología , Genoma Bacteriano , Infección de Heridas/microbiología , Persona de Mediana Edad
2.
Microbiol Spectr ; 9(3): e0125521, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34937163

RESUMEN

Fecal microbial community could not fully represent the intestinal microbial community. However, most studies analyzing diarrhea-dominant irritable bowel syndrome (IBS-D) were mainly based on fecal samples. We aimed to characterize the IBS-D microbial community patterns using samples at multiple intestinal sites. This study recruited 74 IBS-D patients and 20 healthy controls (HC). 22.34%, 8.51%, 14.89%, and 54.26% of them contributed to one, two, three, and four sites: duodenal mucosa (DM), duodenal lumen (DL), rectal mucosa (RM), and rectal lumen (RL) of intestinal samples, respectively. Then 16S rRNA gene analysis was performed on these 283 samples. The result showed that IBS-D microbial communities have specific patterns at each intestinal site differing from that of HC. Across hosts and sites, Bacillus, Burkholderia, and Faecalibacterium were the representative genera in duodenum of IBS-D, duodenum of HC, and rectum of HC, respectively. Samples from mucosa and lumen in rectum were highly distinguishable, regardless of IBS-D and HC. Additionally, IBS-D patients have lower microbial co-abundance network connectivity. Moreover, RM site-specific biomarker: Bacteroides used alone or together with Prevotella and Oscillospira in RM showed outstanding performance in IBS-D diagnosis. Furthermore, Bacteroides and Prevotella in RM were strongly related to the severity of abdominal pain, abdominal discomfort, and bloating in IBS-D patients. In summary, this study also confirmed fecal microbial community could not fully characterize intestinal microbial communities. Among these site-specific microbial communities, RM microbial community would be more applicable in the diagnosis of IBS-D. IMPORTANCE Microbial community varied from one site to another along the gastrointestinal tract, but current studies about intestinal microbial community in IBS-D were mainly based on fecal samples. Based on 283 intestinal samples collected from DM, DL, RM, and RL of HC and IBS-D, we found different intestinal sites had their site-specific microbial patterns in IBS-D. Notably, RM site-specific microbes Bacteroides, Prevotella, and Oscillospira could be used to discriminate IBS-D from HC accurately. Our findings could help clinicians realize the great potential of the intestinal microbial community in RM for better diagnosis of IBS-D patients.


Asunto(s)
Duodeno/microbiología , Microbioma Gastrointestinal/genética , Mucosa Intestinal/microbiología , Síndrome del Colon Irritable/microbiología , Recto/microbiología , Bacillus/clasificación , Bacillus/genética , Bacillus/aislamiento & purificación , Bacteroides/clasificación , Bacteroides/genética , Bacteroides/aislamiento & purificación , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , Diarrea/microbiología , Diarrea/patología , Disbiosis/microbiología , Faecalibacterium/clasificación , Faecalibacterium/genética , Faecalibacterium/aislamiento & purificación , Humanos , Mucosa Intestinal/patología , Síndrome del Colon Irritable/patología , Prevotella/clasificación , Prevotella/genética , Prevotella/aislamiento & purificación , ARN Ribosómico 16S/genética
3.
Molecules ; 26(16)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34443401

RESUMEN

The dinitrotoluene isomers 2,4 and 2,6-dinitrotoluene (DNT) represent highly toxic, mutagenic, and carcinogenic compounds used in explosive manufacturing and in commercial production of polyurethane foam. Bioremediation, the use of microbes to degrade residual DNT in industry wastewaters, represents a promising, low cost and environmentally friendly alternative technology to landfilling. In the present study, the effect of different bioremediation strategies on the degradation of DNT in a microcosm-based study was evaluated. Biostimulation of the indigenous microbial community with sulphur phosphate (2.3 g/kg sludge) enhanced DNT transformation (82% transformation, from 300 g/L at Day 0 to 55 g/L in week 6) compared to natural attenuation over the same period at 25 °C. The indigenous microbial activity was found to be capable of transforming the contaminant, with around 70% transformation of DNT occurring over the microcosm study. 16S rDNA sequence analysis revealed that while the original bacterial community was dominated by Gammaproteobacteria (30%), the addition of sulphur phosphate significantly increased the abundance of Betaproteobacteria by the end of the biostimulation treatment, with the bacterial community dominated by Burkholderia (46%) followed by Rhodanobacter, Acidovorax and Pseudomonas. In summary, the results suggest biostimulation as a treatment choice for the remediation of dinitrotoluenes and explosives waste.


Asunto(s)
Biodegradación Ambiental , Sustancias Explosivas/toxicidad , Microbiota/genética , Aguas del Alcantarillado/microbiología , Burkholderia/química , Burkholderia/genética , Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , Dinitrobencenos/química , Dinitrobencenos/toxicidad , Sustancias Explosivas/química , Humanos , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/aislamiento & purificación , Pseudomonas/metabolismo , ARN Ribosómico 16S/genética
4.
PLoS Negl Trop Dis ; 15(6): e0009541, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34185783

RESUMEN

BACKGROUND: Burkholderia sensu stricto is comprised mainly of opportunistic pathogens. This group is widely distributed in the environment but is especially important in clinical settings. In Mexico, few species have been correctly identified among patients, most often B. cepacia is described. METHODOLOGY/PRINCIPAL FINDINGS: In this study, approximately 90 strains identified as B. cepacia with the VITEK2 system were isolated from two medical centers in Mexico City and analyzed by MLSA, BOX-PCR and genome analysis. The initial identification of B. cepacia was confirmed for many strains, but B. contaminans, B. multivorans and B. vietnamiensis were also identified among clinical strains for the first time in hospitals in Mexico. Additionally, the presence of B. pseudomallei was confirmed, and a novel species within the B. cepacia complex was documented. Several strains misidentified as B. cepacia actually belong to the genera Pseudomonas, Stenotrophomonas and Providencia. CONCLUSIONS/SIGNIFICANCE: The presence of different Burkholderia species in Mexico was confirmed. Correct identification of Burkholderia species is important to provide accurate treatment for immunosuppressed patients.


Asunto(s)
Infecciones por Burkholderia/epidemiología , Burkholderia/clasificación , Burkholderia/genética , Burkholderia/aislamiento & purificación , Infecciones por Burkholderia/microbiología , ADN Bacteriano/análisis , Genoma Bacteriano , Humanos , México , Tipificación de Secuencias Multilocus , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética
5.
Microb Genom ; 7(4)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33891536

RESUMEN

The Burkholderia cepacia complex (Bcc) is a closely related group of bacteria, composed of at least 20 different species, the accurate identification of which is essential in the context of infectious diseases. In industry, they can contaminate non-food products, including home and personal care products and cosmetics. The Bcc are problematic contaminants due to their ubiquitous presence and intrinsic antimicrobial resistance, which enables them to occasionally overcome preservation systems in non-sterile products. Burkholderia lata and Burkholderia contaminans are amongst the Bcc bacteria encountered most frequently as industrial contaminants, but their identification is not straightforward. Both species were historically established as a part of a group known collectively as taxon K, based upon analysis of the recA gene and multilocus sequence typing (MLST). Here, we deploy a straightforward genomics-based workflow for accurate Bcc classification using average nucleotide identity (ANI) and core-gene analysis. The workflow was used to examine a panel of 23 Burkholderia taxon K industrial strains, which, based on MLST, comprised 13 B. lata, 4 B. contaminans and 6 unclassified Bcc strains. Our genomic identification showed that the B. contaminans strains retained their classification, whilst the remaining strains were reclassified as Burkholderia aenigmatica sp. nov. Incorrect taxonomic identification of industrial contaminants is a problematic issue. Application and testing of our genomic workflow allowed the correct classification of 23 Bcc industrial strains, and also indicated that B. aenigmatica sp. nov. may have greater importance than B. lata as a contaminant species. Our study illustrates how the non-food manufacturing industry can harness whole-genome sequencing to better understand antimicrobial-resistant bacteria affecting their products.


Asunto(s)
Burkholderia/aislamiento & purificación , Genoma Bacteriano , Microbiología Industrial , Burkholderia/clasificación , Burkholderia/genética , Genómica , Tipificación de Secuencias Multilocus , Filogenia
6.
Arch Microbiol ; 203(5): 2279-2290, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33644819

RESUMEN

Plant growth-promoting rhizobacteria that produce 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase can promote plant growth and enhance abiotic stress tolerance. In this study, Burkholderia pyrrocinia strain P10, with an ACC deaminase activity of 33.01-µmol/h/mg protein, was isolated from the tea rhizosphere and identified based on morphological, biochemical, and molecular characteristics. In addition to its ACC deaminase activity at pH 5.0-9.0 and in response to 5% NaCl and 20% polyethylene glycol, strain P10 can also solubilize phosphorus compounds, produce indole-3-acetic acid, and secrete siderophores. Pot experiments revealed that strain P10 can significantly enhance peanut seedling growth under saline conditions (100- and 170-mmol/L NaCl). Specifically, it increased the fresh weight and root length of plants by 90.12% and 79.22%, respectively, compared with high-salt stress. These results provide new insights into the biological characteristics of Burkholderia pyrrocinia, which may be useful as a bio-fertilizer.


Asunto(s)
Burkholderia/enzimología , Burkholderia/metabolismo , Liasas de Carbono-Carbono/metabolismo , Raíces de Plantas/microbiología , Té/microbiología , Aminoácidos Cíclicos/metabolismo , Burkholderia/aislamiento & purificación , Ácidos Indolacéticos/metabolismo , Desarrollo de la Planta , Rizosfera , Plantas Tolerantes a la Sal/metabolismo , Plantones/microbiología , Sideróforos/metabolismo
7.
World J Microbiol Biotechnol ; 37(3): 39, 2021 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-33544268

RESUMEN

In this study, experiments were conducted to isolate, characterize, and evaluate rice rhizosphere bacteria for their arsenic (As) tolerance ability and zinc (Zn) solubilization potential in culture media and soil. Among 20 bacterial isolates recovered, six were found to solubilize inorganic Zn salt(s) efficiently under in vitro culture conditions. 16S rRNA gene sequence-based phylogenetic analysis indicated the affiliation of efficient Zn solubilizing bacteria (ZSB) to Burkholderia vietnamiensis and Burkholderia seminalis. Zinc solubilizing efficiency (ZSE) of the bacteria varied with the concentrations and types of Zn salts used in the experiments. Increasing trend in ZSE of the bacteria was noticed when the percentage of ZnO increased from 0.1 to 0.5 but the same decreased at 1.0%. Increased Zn solubilization was noticed when bacteria were incubated with lower concentration of Zn3(PO4)2 and ZnCO3. In general, Zn solubilization increased with increasing incubation time in lower volume medium, while some isolates failed to solubilize one or more tested Zn salts. However, enriched concentrated cells of the ZSB in glucose amended medium with 0.5% ZnO showed an increasing trend of Zn solubilization with time and were able to solubilize more than 300 mg/L Zn. This increased rate of Zn release by the ZSB was attributed to marked decline in pH that might be due to the enhanced gluconic acid production from glucose. As evident from the decreased ZSE of the bacteria in the presence of As(V) in particular, it seems arsenic imparts a negative effect on Zn solubilization. The ZSB were also able to increase the rate of Zn release in soil. A microcosm-based soil incubation study amending the enriched bacteria and 0.5% ZnO in soil showed an elevated level of both water-soluble and available Zn compared to un-inoculated control. During Zn solubilization in microcosms, viable cells in terms of colony-forming unit (CFU) declined by the same order of magnitude both in the presence and absence of ZnO that might be due to the nutrients limiting condition aroused during the incubation period rather than Zn toxicity. The bacteria in this study also exhibited plant growth promoting traits, such as growth in nitrogen-free medium, production of indole acetic acid (IAA), and solubilization of potassium and phosphate. Our findings suggested that Burkholderia spp. could be the potential candidates for enhancing Zn dissolution in the soil that might reduce the rate of inorganic Zn fertilization in agricultural soil.


Asunto(s)
Burkholderia/clasificación , Oryza/microbiología , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN/métodos , Zinc/química , Arsénico/farmacología , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , ADN Bacteriano/genética , ADN Ribosómico/genética , Farmacorresistencia Bacteriana , Oryza/crecimiento & desarrollo , Filogenia , Rizosfera , Microbiología del Suelo , Solubilidad
8.
PLoS One ; 16(1): e0245175, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33411797

RESUMEN

The Burkholderia pseudomallei phylogenetic cluster includes B. pseudomallei, B. mallei, B. thailandensis, B. oklahomensis, B. humptydooensis and B. singularis. Regarded as the only pathogenic members of this group, B. pseudomallei and B. mallei cause the diseases melioidosis and glanders, respectively. Additionally, variant strains of B. pseudomallei and B. thailandensis exist that include the geographically restricted B. pseudomallei that express a B. mallei-like BimA protein (BPBM), and B. thailandensis that express a B. pseudomallei-like capsular polysaccharide (BTCV). To establish a PCR-based assay for the detection of pathogenic Burkholderia species or their variants, five PCR primers were designed to amplify species-specific sequences within the bimA (Burkholderia intracellular motility A) gene. Our multiplex PCR assay could distinguish pathogenic B. pseudomallei and BPBM from the non-pathogenic B. thailandensis and the BTCV strains. A second singleplex PCR successfully discriminated the BTCV from B. thailandensis. Apart from B. humptydooensis, specificity testing against other Burkholderia spp., as well as other Gram-negative and Gram-positive bacteria produced a negative result. The detection limit of the multiplex PCR in soil samples artificially spiked with known quantities of B. pseudomallei and B. thailandensis were 5 and 6 CFU/g soil, respectively. Furthermore, comparison between standard bacterial culture and the multiplex PCR to detect B. pseudomallei from 34 soil samples, collected from an endemic area of melioidosis, showed high sensitivity and specificity. This robust, sensitive, and specific PCR assay will be a useful tool for epidemiological study of B. pseudomallei and closely related members with pathogenic potential in soil.


Asunto(s)
Burkholderia/aislamiento & purificación , Código de Barras del ADN Taxonómico/métodos , Microbiología del Suelo , Burkholderia/genética , Burkholderia/patogenicidad , Microbiota , Reacción en Cadena de la Polimerasa/métodos
9.
J Microbiol Methods ; 181: 106130, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33383044

RESUMEN

BACKGROUND: Molecular genetics has risen in both output and affordability to become the gold standard in diagnosis, however it is not yet available for most routine clinical microbiology due to cost and the level of skill it requires. Matrix assisted laser desorption/ionisation - time of flight mass spectrometry (MALDI-TOF MS) approaches may be useful in bridging the gap between low-resolution phenotypic methods and bulky genotypic methods in the goal of epidemiological source-typing of microbes. Burkholderia has been shown to be identifiable at the subspecies level using MALDI-TOF MS. There have not yet been studies assessing the ability of MALDI-TOF MS to source-type Burkholderia contaminans isolates into epidemiologically relevant outbreak clusters. METHODS: 55 well-characterised B. contaminans isolates were used to create a panel for analysis of MALDI-TOF MS biomarker peaks and their relation to outbreak strains, location, source, patient, diagnosis and isolate genetics. Unsupervised clustering was performed and classification models were generated using biostatistical analysis software. RESULTS: B. contaminans spectra derived from MALDI-TOF MS were of sufficiently high resolution to identify 100% of isolates. Unsupervised clustering methods showed poor evidence of spectra clustering by all characteristics measured. Classification algorithms were discriminatory, with Genetic Algorithm models showing 100% recognition capability for all outbreaks, the pulsed-field gel electrophoresis (PFGE) typeability model, and 96.63% recognition for the location model. A consistent peak at m/z of approximately 6943 was identified in all non-typeable strains but in none of the typeable strains. CONCLUSIONS: MALDI-TOF MS successfully discriminates B. contaminans isolates into clonal, epidemiological clusters, and can recognise isolates non-typeable by PFGE. Further work should investigate this capability, and include peptide studies and genomic sequencing to identify individual proteins or genes responsible for this non-typeablity, particularly at the peak weight identified.


Asunto(s)
Infecciones por Burkholderia/diagnóstico , Burkholderia/aislamiento & purificación , Brotes de Enfermedades/prevención & control , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Diagnóstico Precoz , Humanos
10.
Indian J Med Microbiol ; 38(3 & 4): 496-499, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33154274

RESUMEN

Burkholderia cepacia complex is a Gram-negative opportunistic pathogen usually found in people with an immunocompromised condition such as cystic fibrosis (CF). In a tropical country like India, this organism has been associated with a number of hospital-acquired infections including sepsis. We present here a report of a case of Burkholderia vietnamiensis causing a non-lactational breast abscess in a non-CF patient. The pathogen was identified as B. cepacia using Vitek system and matrix-assisted laser desorption ionisation-time of flight. This was confirmed by polymerase chain reaction (PCR) using recA genus-specific gene and sequencing of the PCR amplicons. recA-restriction fragment length polymorphism and recA gene sequencing revealed that the isolate is B. vietnamiensis. This is the first description of B. vietnamiensis isolated from a clinical case from India.


Asunto(s)
Absceso/microbiología , Enfermedades de la Mama/microbiología , Infecciones por Burkholderia/microbiología , Burkholderia/aislamiento & purificación , Absceso/tratamiento farmacológico , Adulto , Antibacterianos/uso terapéutico , Secuencia de Bases , Enfermedades de la Mama/tratamiento farmacológico , Burkholderia/clasificación , Burkholderia/genética , Infecciones por Burkholderia/tratamiento farmacológico , ADN Ribosómico/química , Femenino , Humanos , India , Levofloxacino/uso terapéutico , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética , Rec A Recombinasas/química , Rec A Recombinasas/genética
11.
PLoS Negl Trop Dis ; 14(4): e0008200, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32271750

RESUMEN

BACKGROUND: Burkholderia cepacia complex (Bcc) is a group of serious pathogens in cystic fibrosis patients and causes life threatening infections in immunocompromised patients. Species within the Bcc are widely distributed within the environment, can survive in the presence of disinfectants and antiseptics, and are inherently multidrug resistant (MDR). METHODS: Dhaka Medical College Hospital (DMCH) patients with a B. cepacia positive blood culture between 20 October 2016 to 23rd September 2017 were considered as outbreak cases. Blood stream infections (BSIs) were detected using BacT/ALERT 3D at DMCH. B. cepacia was isolated on chromogenic UTI media followed by MALDI-TOF. Minimum inhibitory concentration (MIC) of clinically relevant antibiotics was determined by agar dilution. Whole genome sequencing was performed on an Illumina MiSeq platform. Patients' demographic and clinical data were collected. Patients' clinical history and genomic data of the outbreak strains were merged to investigate possible outbreaks. Ninety-one B. cepacia genomes were downloaded from 'Burkholderia Genome Database' and the genomic background of the global strains were compared with our outbreak strains. RESULTS: Among 236 BSIs, 6.35% (15/236) were B. cepacia. Outbreak cases were confined to the burn critical care unit and, to a lesser extent, the paediatrics department. There was a continuum of overlapping cases at DMCH between 23 October 2016 to 30 August 2017. Core genome SNPs showed that the outbreak strains were confined to a single clade, corresponded to a common clone (ST1578). The strains were shown to be MDR and associated with a mortality of 31% excluding discharge against medical advice. MIC profiles of the strains suggested that antibiotics deployed as empirical therapy were invariably inappropriate. The genetic background of the outbreak strains was very similar; however, a few variations were found regarding the presence of virulence genes. Compared to global strains from the Burkholderia Genome Database, the Bangladeshi strains were genetically distinct. CONCLUSIONS: Environmental surveillance is required to investigate the aetiology and mode of transmission of the B. cepacia outbreak. Systematic management of nosocomial outbreaks, particularly in resource limited regions, will mitigate transmission and will improve patients' outcomes.


Asunto(s)
Infecciones por Burkholderia/epidemiología , Burkholderia/aislamiento & purificación , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Adolescente , Adulto , Bacteriemia/epidemiología , Bangladesh , Burkholderia/genética , Infecciones por Burkholderia/prevención & control , Niño , Preescolar , Infección Hospitalaria/prevención & control , Infección Hospitalaria/transmisión , Electroforesis en Gel de Campo Pulsado , Femenino , Genotipo , Humanos , Lactante , Control de Infecciones/métodos , Unidades de Cuidados Intensivos , Masculino , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Aislamiento de Pacientes , Centros de Atención Terciaria , Adulto Joven
12.
Int J Antimicrob Agents ; 56(1): 105994, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32335276

RESUMEN

Antibiotic collateral sensitivity (CS) occurs when a bacterium that acquires resistance to a treatment drug exhibits decreased resistance to a different drug. Here we identify reciprocal CS networks and candidate genes in Burkholderia multivorans. Burkholderia multivorans was evolved to become resistant to each of six antibiotics. The antibiogram of the evolved strain was compared with the immediate parental strain to determine CS and cross-resistance. The evolution process was continued for each resistant strain. CS interactions were observed in 170 of 279 evolved strains. CS patterns grouped into two clusters based on the treatment drug being a ß-lactam antibiotic or not. Reciprocal pairs of CS antibiotics arose in ≥25% of all evolved strains. A total of 68 evolved strains were subjected to whole-genome sequencing and the resulting mutation patterns were correlated with antibiograms. Analysis revealed there was no single gene responsible for CS and that CS seen in B. multivorans is likely due to a combination of specific and non-specific mutations. The frequency of reciprocal CS, and the degree to which resistance changed, suggests a long-term treatment strategy; when resistance to one drug occurs, switch to use of the other member of the reciprocal pair. This switching could theoretically be continued indefinitely, allowing life-long treatment of chronic infections with just two antibiotics.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia/efectos de los fármacos , Burkholderia/genética , Sensibilidad Colateral al uso de Fármacos/genética , Farmacorresistencia Bacteriana/genética , Burkholderia/aislamiento & purificación , Fibrosis Quística/patología , Sensibilidad Colateral al uso de Fármacos/efectos de los fármacos , Genoma Bacteriano/genética , Humanos , Pulmón/microbiología , Pulmón/patología , Pruebas de Sensibilidad Microbiana , Secuenciación Completa del Genoma , beta-Lactamas/farmacología
13.
PLoS One ; 15(4): e0232115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32339192

RESUMEN

Crop diseases are responsible for considerable yield losses worldwide and particularly in sub-Saharan Africa. To implement efficient disease control measures, detection of the pathogens and understanding pathogen spatio-temporal dynamics is crucial and requires the use of molecular detection tools, especially to distinguish different pathogens causing more or less similar symptoms. We report here the design a new molecular diagnostic tool able to simultaneously detect five bacterial taxa causing important diseases on rice in Africa: (1) Pseudomonas fuscovaginae, (2) Xanthomonas oryzae, (3) Burkholderia glumae and Burkholderia gladioli, (4) Sphingomonas and (5) Pantoea species. This new detection tool consists of a multiplex PCR, which is cost effective and easily applicable. Validation of the method is presented through its application on a global collection of bacterial strains. Moreover, sensitivity assessment for the detection of all five bacteria is reported to be at 0.5 ng DNA by µl. As a proof of concept, we applied the new molecular detection method to a set of 256 rice leaves collected from 16 fields in two irrigated areas in western Burkina Faso. Our results show high levels of Sphingomonas spp. (up to 100% of tested samples in one field), with significant variation in the incidence between the two sampled sites. Xanthomonas oryzae incidence levels were mostly congruent with bacterial leaf streak (BLS) and bacterial leaf blight (BLB) symptom observations in the field. Low levels of Pantoea spp. were found while none of the 256 analysed samples was positive for Burkholderia or Pseudomonas fuscovaginae. Finally, many samples (up to 37.5% in one studied field) were positive for more than one bacterium (co-infection). Documenting co-infection levels are important because of their drastic consequences on epidemiology, evolution of pathogen populations and yield losses. The newly designed multiplex PCR for multiple bacterial pathogens of rice is a significant improvement for disease monitoring in the field, thus contributing to efficient disease control and food safety.


Asunto(s)
Burkholderia/genética , Coinfección/diagnóstico , ADN Bacteriano/análisis , Reacción en Cadena de la Polimerasa Multiplex/métodos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Pseudomonas/genética , Xanthomonas/genética , Burkholderia/aislamiento & purificación , Burkholderia/patogenicidad , Burkina Faso/epidemiología , Coinfección/epidemiología , Coinfección/genética , ADN Bacteriano/genética , Incidencia , Pseudomonas/aislamiento & purificación , Pseudomonas/patogenicidad , Xanthomonas/aislamiento & purificación , Xanthomonas/patogenicidad
14.
Eur Urol Oncol ; 3(6): 784-788, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32345542

RESUMEN

Comprehensive characterization of the urinary and urothelium-bound microbiomes in bladder cancer (BCa) and healthy state is essential to understand how these local microbiomes may play a role in BCa tumorigenesis and response to therapy, as well as to explain sex-based differences in BCa pathobiology. Performing 16 s rDNA microbiome analysis on 166 samples (urine and paired bladder tissues) from therapy-naïve BCa patients undergoing radical cystectomy and healthy controls, we defined (1) sex-specific microbiome differences in the urine and bladder tissue, and (2) representativeness of the tissue microenvironment by the voided urinary microbiome. The genus Klebsiella was more common in the urine of female BCa patients versus healthy controls, while no clinically relevant bacteria were found differently enriched in men. In tissues, the genus Burkholderia was more abundant in the neoplastic versus the non-neoplastic tissue in both sexes, suggesting a potential role in BCa pathobiology. Lastly, we found that the urinary microbiome shares >80% of the bacterial families present in the paired bladder tissue, making the urinary microbiome a fair proxy of the tissue bacterial environment. PATIENT SUMMARY: We identified specific bacteria present in the urine and tissues of male and female bladder cancer patients. These novel data represent a first step toward understanding the influence of the bladder microbiome on the development of bladder cancer and on the response to intravesical and systemic therapies.


Asunto(s)
Carcinoma de Células Transicionales/microbiología , Microbiota , Neoplasias de la Vejiga Urinaria/microbiología , Vejiga Urinaria/microbiología , Orina/microbiología , Anciano , Burkholderia/genética , Burkholderia/aislamiento & purificación , Carcinoma de Células Transicionales/patología , Carcinoma de Células Transicionales/cirugía , Carcinoma de Células Transicionales/orina , Estudios de Casos y Controles , Cistectomía , ADN Bacteriano/aislamiento & purificación , Femenino , Voluntarios Sanos , Humanos , Klebsiella/genética , Klebsiella/aislamiento & purificación , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética , Factores Sexuales , Vejiga Urinaria/patología , Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/cirugía , Neoplasias de la Vejiga Urinaria/orina
15.
Appl Environ Microbiol ; 86(11)2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32245762

RESUMEN

Success of discovery programs for microbial natural products is dependent on quick and concise discrimination between isolates from diverse environments. However, laboratory isolation and identification of priority genera using current 16S rRNA PCR-based methods are both challenging and time-consuming. An emerging strategy for rapid isolate discrimination is protein fingerprinting via matrix-assisted laser desorption ionization (MALDI) mass spectrometry. Using our in-house environmental isolate repository, we have created a main spectral (MSP) library for the Bruker Biotyper MALDI mass spectrometer that contains 95 entries, including Burkholderia, Caballeronia, Paraburkholderia, and other environmentally related genera. The library creation required the acquisition of over 2,250 mass spectra, which were manually reviewed for quality control and consolidated into a single reference library using a commercial software platform. We tested the effectiveness of the reference library by analyzing 49 environmental isolate strains using two different sample preparation methods. Overall, this approach correctly identified all strains to the genus level provided that suitable reference spectra were present in the MSP library. In this study, we present a fast, accurate method for taxonomic assignment of environmentally derived bacteria from the order Burkholderiales, providing a valuable alternative to traditional PCR-based methods. The MSP library described in the manuscript is available for use.IMPORTANCE The Gram-negative proteobacterial order Burkholderiales has emerged as a promising source of novel natural products in recent years. This order includes the genus Burkholderia and the newly defined genera Caballeronia and Paraburkholderia However, development of this resource has been hampered by difficulties with rapid and selective isolation of Burkholderiales strains from the environment. Environmental metagenome sequencing has revealed that the potential for natural products is not evenly distributed throughout the microbial world. Thus, large but targeted microbial isolate libraries are needed to effectively explore the chemical potential of natural products. To study these organisms efficiently, methods to quickly identify isolates to the genus level are required. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is already used in clinical settings to reliably identify unknown bacterial pathogens. We have adapted similar methodology using the MALDI Biotyper instrument to rapidly identify environmental isolates of Burkholderia, Caballeronia, and Paraburkholderia for downstream natural product discovery.


Asunto(s)
Técnicas Bacteriológicas/métodos , Burkholderia/aislamiento & purificación , Microbiología del Suelo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Colombia Británica , ARN Bacteriano/análisis , ARN Ribosómico 16S/análisis , Manejo de Especímenes
16.
Microbiol Res ; 236: 126451, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32146294

RESUMEN

Burkholderia species have different lifestyles establishing mutualist or pathogenic associations with plants and animals. Changes in the ecological behavior of these bacteria may depend on genetic variations in response to niche adaptation. Here, we studied 15 Burkholderia strains isolated from different environments with respect to genetic and phenotypic traits. By Multilocus Sequence Analysis (MLSA) these isolates fell into 6 distinct groups. MLSA clusters did not correlate with strain antibiotic sensitivity, but with the bacterial ability to produce antimicrobial compounds and control orchid necrosis. Further, the B. seminalis strain TC3.4.2R3, a mutualistic bacterium, was inoculated into orchid plants and the interaction with the host was evaluated by analyzing the plant response and the bacterial oxidative stress response in planta. TC3.4.2R3 responded to plant colonization by increasing its own growth rate and by differential gene regulation upon oxidative stress caused by the plant, while reducing the plant's membrane lipid peroxidation. The bacterial responses to oxidative stress were recapitulated by bacterial exposure to the herbicide paraquat. We suggest that the ability of Burkholderia species to successfully establish in the rhizosphere correlates with genetic variation, whereas traits associated with antibiotic resistance are more likely to be categorized as strain specific.


Asunto(s)
Adaptación Biológica/genética , Infecciones por Burkholderia , Burkholderia , Interacciones Microbiota-Huesped , Orchidaceae/microbiología , Aclimatación/genética , Antiinfecciosos/farmacología , Agentes de Control Biológico/farmacología , Burkholderia/genética , Burkholderia/crecimiento & desarrollo , Burkholderia/aislamiento & purificación , Burkholderia/metabolismo , Farmacorresistencia Microbiana/genética , Endófitos/genética , Endófitos/crecimiento & desarrollo , Endófitos/aislamiento & purificación , Endófitos/metabolismo , Genes Bacterianos , Islas Genómicas , Genotipo , Peroxidación de Lípido , Tipificación de Secuencias Multilocus , Orchidaceae/fisiología , Estrés Oxidativo/genética , Fenotipo , Filogenia , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/terapia , ARN Ribosómico 16S/genética , Simbiosis , Transcriptoma
17.
PLoS One ; 15(2): e0227152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32074104

RESUMEN

The opportunistic pathogens Burkholderia cepacia and Burkholderia contaminans, both genomovars of the Burkholderia cepacia complex (BCC), are frequently cultured from the potable water dispenser (PWD) of the International Space Station (ISS). Here, we sequenced the genomes and conducted phenotypic assays to characterize these Burkholderia isolates. All recovered isolates of the two species fall within monophyletic clades based on phylogenomic trees of conserved single-copy core genes. Within species, the ISS-derived isolates all demonstrate greater than 99% average nucleotide identity (with 95-99% of genomes aligning) and share around 90% of the identified gene clusters from a pangenomic analysis-suggesting that the two groups are each composed of highly similar genomic lineages and their members may have all stemmed from the same two founding populations. The differences that can be observed between the recovered isolates at the pangenomic level are primarily located within putative plasmids. Phenotypically, macrophage intracellularization and lysis occurred at generally similar rates between all ISS-derived isolates, as well as with their respective type-terrestrial strain references. All ISS-derived isolates exhibited antibiotic sensitivity similar to that of the terrestrial reference strains, and minimal differences between isolates were observed. With a few exceptions, biofilm formation rates were generally consistent across each species. And lastly, though isolation date does not necessarily provide any insight into how long a given isolate had been aboard the ISS, none of the assayed physiology correlated with either date of isolation or distances based on nucleotide variation. Overall, we find that while the populations of Burkholderia present in the ISS PWS each maintain virulence, they are likely are not more virulent than those that might be encountered on planet and remain susceptible to clinically used antibiotics.


Asunto(s)
Infecciones por Burkholderia/microbiología , Burkholderia cepacia , Burkholderia , Agua Potable/microbiología , Filogenia , Nave Espacial , Burkholderia/clasificación , Burkholderia/aislamiento & purificación , Burkholderia/patogenicidad , Burkholderia cepacia/clasificación , Burkholderia cepacia/aislamiento & purificación , Burkholderia cepacia/patogenicidad , Virulencia
18.
Microb Drug Resist ; 26(1): 1-8, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31393205

RESUMEN

Burkholderia multivorans is a member of the Burkholderia cepacia complex whose members are inherently resistant to many antibiotics and can cause chronic lung infections in patients with cystic fibrosis. A possible treatment for chronic infections arises from the existence of collateral sensitivity (CS)-acquired resistance to a treatment antibiotic results in a decreased resistance to a nontreatment antibiotic. Determining CS patterns for bacteria involved in chronic infections may lead to sustainable treatment regimens that reduce development of multidrug-resistant bacterial strains. CS has been found to occur in Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus. Here, we report that B. multivorans exhibits antibiotic CS, as well as cross-resistance (CR), describe CS and CR networks for six antibiotics (ceftazidime, chloramphenicol, levofloxacin, meropenem, minocycline, and trimethoprim-sulfamethoxazole), and identify candidate genes involved in CS. Characterization of CS and CR patterns allows antibiotics to be separated into two clusters based on the treatment drug to which the evolved strain developed primary resistance, suggesting an antibiotic therapy strategy of switching between members of these two clusters.


Asunto(s)
Antibacterianos/farmacología , Infecciones por Burkholderia/tratamiento farmacológico , Burkholderia/efectos de los fármacos , Burkholderia/aislamiento & purificación , Infecciones por Burkholderia/microbiología , Sensibilidad Colateral al uso de Fármacos , Farmacorresistencia Bacteriana Múltiple , Humanos
19.
J Glob Antimicrob Resist ; 20: 28-30, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31809939

RESUMEN

OBJECTIVES: Members of the Burkholderia cepacia complex (Bcc) have been isolated from various environmental and clinical samples and reportedly pose a threat to human health. Here we examine the draft genome sequence of Burkholderia sp. LS-044, an antibiotic-resistant endophytic strain affiliated to the Bcc (ST895) inhabiting rice (Oryza sativa ssp. japonica cv. Tainung 71) root. METHODS: Antimicrobial susceptibility of LS-044 was evaluated comparatively with other Burkholderia sp. (CC-Al74 and CC-3XP9) using commercial ATB PSE 5 test strips. The genome of LS-044 was sequenced using an Illumina MiSeq platform. Plant probiotic and antimicrobial resistance genes were screened by Rapid Annotation using Subsystem Technology (RAST), CARD 2017, NCBI and/or UniProt. RESULTS: Plant-associated members of Bcc (LS-044 and CC-Al74) exhibited greater resistance to the majority of antibiotics tested. The draft genome sequence of LS-044 contained 8.78 Mbp in 62 contigs having a G + C content of 66.5%, 8868 coding sequences and 75 RNAs. The genome harboured genes coding for LysR-type ß-lactamase transcription regulator, classes A, C and D ß-lactamases, several metal-dependent ß-lactamases, antibiotic efflux proteins, and proteins conferring resistance to colistin, streptothricin, colicin and fluoroquinolones. Similarly, it also possessed genes for copper homeostasis, copper-cobalt-zinc-cadmium-chromium resistance and reduction of mercury. Genes involved in flagellar motility, hydrolysis of murein and chitin, production of siderophore and auxin, and metabolism of aromatic compounds were also found. CONCLUSION: Genome sequence data revealed an interlinked occurrence of plant probiotic traits and antimicrobial resistance in the rice root endophyte LS-044.


Asunto(s)
Burkholderia/clasificación , Farmacorresistencia Bacteriana Múltiple , Oryza/microbiología , Secuenciación Completa del Genoma/métodos , Composición de Base , Burkholderia/genética , Burkholderia/aislamiento & purificación , Tamaño del Genoma , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Anotación de Secuencia Molecular , Raíces de Plantas/microbiología , Probióticos
20.
Int J Med Microbiol ; 310(1): 151376, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31784214

RESUMEN

To improve the preparedness against exposure to highly pathogenic bacteria and to anticipate the wide variety of bacteria that can cause bloodstream infections (BSIs), a safe, unbiased and highly accurate identification method was developed. Our liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method can identify highly pathogenic bacteria, their near-neighbors and bacteria that are common causes of BSIs directly from positive blood culture flasks. The developed Peptide-Based Microbe Detection Engine (http://proteome2pathogen.com) relies on a two-step workflow: a genus-level search followed by a species-level search. This strategy enables the rapid identification of microorganisms based on the analyzed proteome. This method was successfully used to identify strains of Bacillus anthracis, Brucella abortus, Brucella melitensis, Brucella suis, Burkholderia pseudomallei, Burkholderia mallei, Francisella tularensis, Yersinia pestis and closely related species from simulated blood culture flasks. This newly developed LC-MS/MS method is a safe and rapid method for accurately identifying bacteria directly from positive blood culture flasks.


Asunto(s)
Bacterias/aislamiento & purificación , Técnicas Bacteriológicas , Cultivo de Sangre/métodos , Animales , Bacillus/aislamiento & purificación , Brucella/aislamiento & purificación , Burkholderia/aislamiento & purificación , Cromatografía Liquida , Francisella/aislamiento & purificación , Proteómica , Ovinos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem , Yersinia/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...