Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 174
Filtrar
1.
BMC Plant Biol ; 24(1): 827, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227801

RESUMEN

Global warming is a leading environmental stress that reduces plant productivity worldwide. Several beneficial microorganisms reduce stress; however, the mechanism by which plant-microbe interactions occur and reduce stress remains to be fully elucidated. The aim of the present study was to elucidate the mutualistic interaction between the plant growth-promoting rhizobacterial strain SH-19 and soybeans of the Pungsannamul variety. The results showed that SH-19 possessed several plant growth-promoting traits, such as the production of indole-3-acetic acid, siderophore, and exopolysaccharide, and had the capacity for phosphate solubilisation. The heat tolerance assay showed that SH-19 could withstand temperatures up to 45 °C. The strain SH-19 was identified as P. megaterium using the 16S ribosomal DNA gene sequence technique. Inoculation of soybeans with SH-19 improved seedling characteristics under high-temperature stress. This may be due to an increase in the endogenous salicylic acid level and a decrease in the abscisic acid level compared with the negative control group. The strain of SH-19 increased the activity of the endogenous antioxidant defense system, resulting in the upregulation of GSH (44.8%), SOD (23.1%), APX (11%), and CAT (52.6%). Furthermore, this study involved the transcription factors GmHSP, GmbZIP1, and GmNCED3. The findings showed upregulation of the two transcription factors GmbZIP1 (17%), GmNCED3 (15%) involved in ABA biosynthesis and induced stomatal regulation, similarly, a downregulation of the expression pattern of GmHSP by 25% was observed. Overall, the results of this study indicate that the strain SH-19 promotes plant growth, reduces high-temperature stress, and improves physiological parameters by regulating endogenous phytohormones, the antioxidant defense system, and genetic expression. The isolated strain (SH-19) could be commercialized as a biofertilizer.


Asunto(s)
Glycine max , Glycine max/microbiología , Glycine max/genética , Glycine max/metabolismo , Glycine max/fisiología , Respuesta al Choque Térmico , Transducción de Señal , Burkholderiales/genética , Burkholderiales/fisiología , Burkholderiales/metabolismo , Metabolismo Secundario , Reguladores del Crecimiento de las Plantas/metabolismo , Simbiosis , Ácido Salicílico/metabolismo
2.
BMC Plant Biol ; 24(1): 832, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39232682

RESUMEN

BACKGROUND: Oxidative stress mediated by reactive oxygen species (ROS) is a common denominator in arsenic toxicity. Arsenic stress in soil affects the water absorption, decrease stomatal conductance, reduction in osmotic, and leaf water potential, which restrict water uptake and osmotic stress in plants. Arsenic-induced osmotic stress triggers the overproduction of ROS, which causes a number of germination, physiological, biochemical, and antioxidant alterations. Antioxidants with potential to reduce ROS levels ameliorate the arsenic-induced lesions. Plant growth promoting rhizobacteria (PGPR) increase the total soluble sugars and proline, which scavenging OH radicals thereby prevent the oxidative damages cause by ROS. The main objective of this study was to evaluate the potential role of Arsenic resistant PGPR in growth of maize by mitigating arsenic stress. METHODOLOGY: Arsenic tolerant PGPR strain MD3 (Pseudochrobactrum asaccharolyticum) was used to dismiss the 'As' induced oxidative stress in maize grown at concentrations of 50 and 100 mg/kg. Previously isolated arsenic tolerant bacterial strain MD3 "Pseudochrobactrum asaccharolyticum was used for this experiment. Further, growth promoting potential of MD3 was done by germination and physio-biochemical analysis of maize seeds. Experimental units were arranged in Completely Randomized Design (CRD). A total of 6 sets of treatments viz., control, arsenic treated (50 & 100 mg/kg), bacterial inoculated (MD3), and arsenic stress plus bacterial inoculated with three replicates were used for Petri plates and pot experiments. After treating with this MD3 strain, seeds of corn were grown in pots filled with or without 50 mg/kg and 100 mg/kg sodium arsenate. RESULTS: The plants under arsenic stress (100 mg/kg) decreased the osmotic potential (0.8 MPa) as compared to control indicated the osmotic stress, which caused the reduction in growth, physiological parameters, proline accumulation, alteration in antioxidant enzymes (Superoxide dismutase-SOD, catalase-CAT, peroxidase-POD), increased MDA content, and H2O2 in maize plants. As-tolerant Pseudochrobactrum asaccharolyticum improved the plant growth by reducing the oxidation stress and antioxidant enzymes by proline accumulation. PCA analysis revealed that all six treatments scattered differently across the PC1 and PC2, having 85.51% and 9.72% data variance, respectively. This indicating the efficiency of As-tolerant strains. The heatmap supported the As-tolerant strains were positively correlated with growth parameters and physiological activities of the maize plants. CONCLUSION: This study concluded that Pseudochrobactrum asaccharolyticum reduced the 'As' toxicity in maize plant through the augmentation of the antioxidant defense system. Thus, MD3 (Pseudochrobactrum asaccharolyticum) strain can be considered as bio-fertilizer.


Asunto(s)
Antioxidantes , Arsénico , Estrés Oxidativo , Agua , Zea mays , Zea mays/microbiología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo , Estrés Oxidativo/efectos de los fármacos , Arsénico/toxicidad , Antioxidantes/metabolismo , Agua/metabolismo , Burkholderiales/metabolismo , Burkholderiales/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
3.
J Hazard Mater ; 479: 135628, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39208624

RESUMEN

Sb(III) oxidation by microorganisms plays a key role in the geochemical cycling of antimony and is effective for bioremediation. A previously discovered novel Sb(III)-oxidizing bacteria, Phytobacter sp. X4, was used to elucidate the response patterns of extracellular polypeptides (EPS), antioxidant system, electron transfer and functional genes to Sb(III) under anaerobic conditions. The toxicity of Sb(III) was mitigated by increasing Sb(III) oxidation capacity, and the EPS regulated the content of each component by sensing the concentration of Sb(III). High Sb(III) concentrations induced significant secretion of proteins and polysaccharides of EPS, and polysaccharides were more important. Functional groups including hydroxyl, carboxyl and amino groups on the cell surface adsorbed Sb(III) to block its entry. Hydroxyl radicals and hydrogen peroxide were involved in anaerobic Sb(III) oxidation, as revealed by changes in the antioxidant system and electron spin resonance (EPR) techniques. qPCR confirmed that proteins concerning nitrate and antimony transfer, antimony resistance and antioxidant system were regulated by Sb(III) concentration, and the synergistic cooperation of multiple proteins conferred high antimony resistance to X4. The adaptive antimony resistance mechanism of Phytobacter sp. X4 under anaerobic conditions was revealed, which also provides a reference value for bioremediation method of antimony contamination in anaerobic environment.


Asunto(s)
Antimonio , Antimonio/toxicidad , Antimonio/metabolismo , Anaerobiosis , Oxidación-Reducción , Biodegradación Ambiental , Adaptación Fisiológica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antioxidantes/metabolismo , Burkholderiales/metabolismo , Burkholderiales/efectos de los fármacos , Burkholderiales/genética
4.
J Microbiol Biotechnol ; 34(9): 1836-1847, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39187447

RESUMEN

Polyethylene terephthalate (PET), one of the most widely used plastics in the world, causes serious environmental problems. Recently, scientists have been focused on the enzymatic degradation of PET, an environmentally friendly method that offers an attractive approach to the degradation and recycling of PET. In this work, PET hydrolase from Streptomyces sp. W2061 was biochemically characterized, and the biodegradation of PET was performed using the PET model substrate bis (2-hydroxyethyl terephthalate) (BHET). PET hydrolase has an isoelectric point of 5.84, and a molecular mass of about 50.31 kDa. The optimum pH and temperature were 7.0 and 40°C, respectively. LC-MS analysis of the enzymatic products showed that the PET hydrolase successfully degraded a single ester bond of BHET, leading to the formation of MHET. Furthermore, in silico characterization of the PET hydrolase protein sequence and its predicted three-dimensional structure was designed and compared with the well-characterized IsPETase from Ideonella sakaiensis. The structural analysis showed that the (Gly-x1-Ser-x2-Gly) serine hydrolase motif and the catalytic triad (Ser, Asp, and His) were conserved in all sequences. In addition, we integrated molecular dynamics (MD) simulations to analyze the variation in the structural stability of the PET hydrolase in the absence and presence of BHET. These simulations showed the formation of a stable complex between the PET hydrolase and BHET. To the best of our knowledge, this is the first study on Streptomyces sp. W2061 to investigate the BHET degradation activity of PET hydrolase, which has potential application in the biodegradation of plastics in the environment.


Asunto(s)
Biodegradación Ambiental , Hidrolasas , Tereftalatos Polietilenos , Streptomyces , Temperatura , Streptomyces/enzimología , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Hidrolasas/metabolismo , Hidrolasas/química , Concentración de Iones de Hidrógeno , Especificidad por Sustrato , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Burkholderiales/enzimología , Burkholderiales/metabolismo , Secuencia de Aminoácidos , Peso Molecular , Simulación por Computador , Cinética , Punto Isoeléctrico , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química
5.
Biotechnol J ; 19(7): e2400021, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987219

RESUMEN

Enzyme-mediated polyethylene terephthalate (PET) depolymerization has recently emerged as a sustainable solution for PET recycling. Towards an industrial-scale implementation of this technology, various strategies are being explored to enhance PET depolymerization (PETase) activity and improve enzyme stability, expression, and purification processes. Recently, rational engineering of a known PET hydrolase (LCC-leaf compost cutinase) has resulted in the isolation of a variant harboring four-point mutations (LCC-ICCG), presenting increased PETase activity and thermal stability. Here, we revealed the enzyme's natural extracellular expression and used it to efficiently screen error-prone genetic libraries based on LCC-ICCG for enhanced activity toward consumer-grade PET. Following multiple rounds of mutagenesis and screening, we successfully isolated variants that exhibited up to a 60% increase in PETase activity. Among other mutations, the improved variants showed a histidine to tyrosine substitution at position 218, a residue known to be involved in substrate binding and stabilization. Introducing H218Y mutation on the background of LCC-ICCG (named here LCC-ICCG/H218Y) resulted in a similar level of activity improvement. Analysis of the solved structure of LCC-ICCG/H218Y compared to other known PETases featuring different amino acids at the equivalent position suggests that H218Y substitution promotes enhanced PETase activity. The expression and screening processes developed in this study can be further used to optimize additional enzymatic parameters crucial for efficient enzymatic degradation of consumer-grade PET.


Asunto(s)
Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Estabilidad de Enzimas , Biblioteca de Genes , Burkholderiales
6.
J Phys Chem B ; 128(31): 7486-7499, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39072475

RESUMEN

The enzyme PETase fromIdeonella sakaiensis (IsPETase) strain 201-F6 can catalyze the hydrolysis of polyethylene terephthalate (PET), mainly converting it into mono(2-hydroxyethyl) terephthalic acid (MHET). In this study, we used quantum mechanics/molecular mechanics (QM/MM) simulations to explore the molecular details of the catalytic reaction mechanism of IsPETase in the formation of MHET. The QM region was described with AM1d/PhoT and M06-2X/6-31+G(d,p) potential. QM/MM simulations unveil the complete enzymatic PET hydrolysis mechanism and identify two possible reaction pathways for acylation and deacylation steps. The barrier obtained at M06-2X/6-31+G(d,p)/MM potential for the deacylation step corresponds to 20.4 kcal/mol, aligning with the experimental value of 18 kcal/mol. Our findings indicate that deacylation is the rate-limiting step of the process. Furthermore, per-residue interaction energy contributions revealed unfavorable contributions to the transition state of amino acids located at positions 200-230, suggesting potential sites for targeted mutations. These results can contribute to the development of more active and selective enzymes for PET depolymerization.


Asunto(s)
Tereftalatos Polietilenos , Teoría Cuántica , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Simulación de Dinámica Molecular , Burkholderiales/enzimología , Burkholderiales/metabolismo , Hidrólisis , Biodegradación Ambiental , Biocatálisis , Acilación
7.
Ecotoxicol Environ Saf ; 280: 116540, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38833982

RESUMEN

The widespread utilization of polyethylene terephthalate (PET) has caused a variety of environmental and health problems. Compared with traditional thermomechanical or chemical PET cycling, the biodegradation of PET may offer a more feasible solution. Though the PETase from Ideonalla sakaiensis (IsPETase) displays interesting PET degrading performance under mild conditions; the relatively low thermal stability of IsPETase limits its practical application. In this study, enzyme-catalysed PET degradation was investigated with the promising IsPETase mutant HotPETase (HP). On this basis, a carbohydrate-binding module from Bacillus anthracis (BaCBM) was fused to the C-terminus of HP to construct the PETase mutant (HLCB) for increased PET degradation. Furthermore, to effectively improve PET accessibility and PET-degrading activity, the truncated outer membrane hybrid protein (FadL) was used to expose PETase and BaCBM on the surface of E. coli (BL21with) to develop regenerable whole-cell biocatalysts (D-HLCB). Results showed that, among the tested small-molecular weight ester compounds (p-nitrophenyl phosphate (pNPP), p-Nitrophenyl acetate (pNPA), 4-Nitrophenyl butyrate (pNPB)), PETase displayed the highest hydrolysing activity against pNPP. HP displayed the highest catalytic activity (1.94 µM(p-NP)/min) at 50 °C and increased longevity at 40 °C. The fused BaCBM could clearly improve the catalytic performance of PETase by increasing the optimal reaction temperature and improving the thermostability. When HLCB was used for PET degradation, the yield of monomeric products (255.7 µM) was ∼25.5 % greater than that obtained after 50 h of HP-catalysed PET degradation. Moreover, the highest yield of monomeric products from the D-HLCB-mediated system reached 1.03 mM. The whole-cell catalyst D-HLCB displayed good reusability and stability and could maintain more than 54.6 % of its initial activity for nine cycles. Finally, molecular docking simulations were utilized to investigate the binding mechanism and the reaction mechanism of HLCB, which may provide theoretical evidence to further increase the PET-degrading activities of PETases through rational design. The proposed strategy and developed variants show potential for achieving complete biodegradation of PET under mild conditions.


Asunto(s)
Biodegradación Ambiental , Burkholderiales , Escherichia coli , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Burkholderiales/enzimología , Escherichia coli/genética , Bacillus anthracis/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Ingeniería de Proteínas
8.
Biochemistry ; 63(13): 1663-1673, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38885634

RESUMEN

The mono(2-hydroxyethyl) terephthalate hydrolase (MHETase) from Ideonella sakaiensis carries out the second step in the enzymatic depolymerization of poly(ethylene terephthalate) (PET) plastic into the monomers terephthalic acid (TPA) and ethylene glycol (EG). Despite its potential industrial and environmental applications, poor recombinant expression of MHETase has been an obstacle to its industrial application. To overcome this barrier, we developed an assay allowing for the medium-throughput quantification of MHETase activity in cell lysates and whole-cell suspensions, which allowed us to screen a library of engineered variants. Using consensus design, we generated several improved variants that exhibit over 10-fold greater whole-cell activity than wild-type (WT) MHETase. This is revealed to be largely due to increased soluble expression, which biochemical and structural analysis indicates is due to improved protein folding.


Asunto(s)
Burkholderiales , Burkholderiales/enzimología , Burkholderiales/genética , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Hidrolasas/metabolismo , Hidrolasas/genética , Hidrolasas/química , Solubilidad , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/química , Ingeniería de Proteínas/métodos , Pliegue de Proteína , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Modelos Moleculares
9.
Biochemistry ; 63(13): 1599-1607, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38907702

RESUMEN

Small-scale bioreactors that are affordable and accessible would be of major benefit to the research community. In previous work, an open-source, automated bioreactor system was designed to operate up to the 30 mL scale with online optical monitoring, stirring, and temperature control, and this system, dubbed Chi.Bio, is now commercially available at a cost that is typically 1-2 orders of magnitude less than commercial bioreactors. In this work, we further expand the capabilities of the Chi.Bio system by enabling continuous pH monitoring and control through hardware and software modifications. For hardware modifications, we sourced low-cost, commercial pH circuits and made straightforward modifications to the Chi.Bio head plate to enable continuous pH monitoring. For software integration, we introduced closed-loop feedback control of the pH measured inside the Chi.Bio reactors and integrated a pH-control module into the existing Chi.Bio user interface. We demonstrated the utility of pH control through the small-scale depolymerization of the synthetic polyester, poly(ethylene terephthalate) (PET), using a benchmark cutinase enzyme, and compared this to 250 mL bioreactor hydrolysis reactions. The results in terms of PET conversion and rate, measured both by base addition and product release profiles, are statistically equivalent, with the Chi.Bio system allowing for a 20-fold reduction of purified enzyme required relative to the 250 mL bioreactor setup. Through inexpensive modifications, the ability to conduct pH control in Chi.Bio reactors widens the potential slate of biochemical reactions and biological cultivations for study in this system, and may also be adapted for use in other bioreactor platforms.


Asunto(s)
Reactores Biológicos , Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Concentración de Iones de Hidrógeno , Hidrólisis , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Burkholderiales/enzimología , Burkholderiales/metabolismo , Programas Informáticos
10.
Enzyme Microb Technol ; 179: 110476, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38944965

RESUMEN

Enzymatic depolymerization of PET waste emerges as a crucial and sustainable solution for combating environmental pollution. Over the past decade, PET hydrolytic enzymes, such as PETase from Ideonella sakaiensis (IsPETases), leaf compost cutinases (LCC), and lipases, have been subjected to rational mutation to enhance their enzymatic properties. ICCM, one of the best LCC mutants, was selected for overexpression in Escherichia coli BL21(DE3) for in vitro PET degradation. However, overexpressing ICCM presents challenges due to its low productivity. A new stress-inducible T7RNA polymerase-regulating E. coli strain, ASIAhsp, which significantly enhances ICCM production by 72.8 % and achieves higher enzyme solubility than other strains. The optimal cultural condition at 30 °C with high agitation, corresponding to high dissolved oxygen levels, has brought the maximum productivity of ICCM and high PET-hydrolytic activity. The most effective PET biodegradation using crude or pure ICCM occurred at pH 10 and 60 °C. Moreover, ICCM exhibited remarkable thermostability, retaining 60 % activity after a 5-day reaction at 60 °C. Notably, crude ICCM eliminates the need for purification and efficiently degrades PET films.


Asunto(s)
Biodegradación Ambiental , Hidrolasas de Éster Carboxílico , Escherichia coli , Tereftalatos Polietilenos , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/enzimología , Tereftalatos Polietilenos/metabolismo , Hidrólisis , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Estabilidad de Enzimas , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Burkholderiales/enzimología , Burkholderiales/genética , Burkholderiales/metabolismo , Concentración de Iones de Hidrógeno
11.
Faraday Discuss ; 252(0): 387-402, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38864456

RESUMEN

More than 8 billion tons of plastic waste has been generated, posing severe environmental consequences and health risks. Due to prolonged exposure, microplastic particles are found in human blood and other bodily fluids. Despite a lack of toxicity studies regarding microplastics, harmful effects for humans seem plausible and cannot be excluded. As small plastic particles readily translocate from the gut to body fluids, enzyme-based treatment of serum could constitute a promising future avenue to clear synthetic polymers and their corresponding oligomers via their degradation into monomers of lower toxicity than the material they originate from. Still, whereas it is known that the enzymatic depolymerization rate of synthetic polymers varies by orders of magnitude depending on the buffer and media composition, the activity of plastic-degrading enzymes in serum was unknown. Here, we report how an engineered PETase, which we show to be generally trans-selective via induced fit docking, can depolymerize two different microplastic-like substrates of the commodity polymer polyethylene terephthalate (PET) into its non-toxic monomer terephthalic acid (TPA) alongside mono(2-hydroxyethyl)terephthalate (MHET) in human serum at 37 °C. We show that the application of PETase does not influence cell viability in vitro. Our work highlights the potential of applying biocatalysis in biomedicine and represents a first step towards finding a future solution to the problem that microplastics in the bloodstream may pose.


Asunto(s)
Microplásticos , Tereftalatos Polietilenos , Humanos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Microplásticos/química , Burkholderiales/química , Burkholderiales/metabolismo , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo
12.
J Hazard Mater ; 472: 134532, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38749251

RESUMEN

Polyethylene terephthalate (PET) is widely used for various industrial applications. However, owing to its extremely slow breakdown rate, PET accumulates as plastic trash, which negatively affects the environment and human health. Here, we report two novel PET hydrolases: PpPETase from Pseudomonas paralcaligenes MRCP1333, identified in human feces, and ScPETase from Streptomyces calvus DSM 41452. These two enzymes can decompose various PET materials, including semicrystalline PET powders (Cry-PET) and low-crystallinity PET films (gf-PET). By structure-guided engineering, two variants, PpPETaseY239R/F244G/Y250G and ScPETaseA212C/T249C/N195H/N243K were obtained that decompose Cry-PET 3.1- and 1.9-fold faster than their wild-type enzymes, respectively. The co-expression of ScPETase and mono-(2-hydroxyethyl) terephthalate hydrolase from Ideonella sakaiensis (IsMHETase) resulted in 1.4-fold more degradation than the single enzyme system. This engineered strain degraded Cry-PET and gf-PET by more than 40% and 6%, respectively, after 30 d. The concentrations of terephthalic acid (TPA) in the Cry-PET and gf-PET degradation products were 37.7% and 25.6%, respectively. The discovery of these two novel PET hydrolases provides opportunities to create more powerful biocatalysts for PET biodegradation.


Asunto(s)
Heces , Hidrolasas , Tereftalatos Polietilenos , Streptomyces , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Streptomyces/enzimología , Streptomyces/genética , Hidrolasas/metabolismo , Hidrolasas/genética , Hidrolasas/química , Humanos , Heces/microbiología , Pseudomonas/enzimología , Pseudomonas/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Burkholderiales
13.
J Hazard Mater ; 472: 134493, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38696960

RESUMEN

Environmental pollution caused by plastic waste has become global problem that needs to be considered urgently. In the pursuit of a circular plastic economy, biodegradation provides an attractive strategy for managing plastic wastes, whereas effective plastic-degrading microbes and enzymes are required. In this study, we report that Blastobotrys sp. G-9 isolated from discarded plastic in landfills is capable of depolymerizing polyurethanes (PU) and poly (butylene adipate-co-terephthalate) (PBAT). Strain G-9 degrades up to 60% of PU foam after 21 days of incubation at 28 â„ƒ by breaking down carbonyl groups via secretory hydrolase as confirmed by structural characterization of plastics and degradation products identification. Within the supernatant of strain G-9, we identify a novel cutinase BaCut1, belonging to the esterase family, that can reproduce the same effect. BaCut1 demonstrates efficient degradation toward commercial polyester plastics PU foam (0.5 mg enzyme/25 mg plastic) and agricultural film PBAT (0.5 mg enzyme/10 mg plastic) with 50% and 18% weight loss at 37 â„ƒ for 48 h, respectively. BaCut1 hydrolyzes PU into adipic acid as a major end-product with 42.9% recovery via ester bond cleavage, and visible biodegradation is also identified from PBAT, which is a beneficial feature for future recycling economy. Molecular docking, along with products distribution, elucidates a special substrate-binding modes of BaCut1 with plastic substrate analogue. BaCut1-mediated polyester plastic degradation offers an alternative approach for managing PU plastic wastes through possible bio-recycling.


Asunto(s)
Biodegradación Ambiental , Hidrolasas de Éster Carboxílico , Poliuretanos , Reciclaje , Poliuretanos/química , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas de Éster Carboxílico/química , Burkholderiales/enzimología , Burkholderiales/metabolismo , Ácidos Ftálicos/metabolismo , Ácidos Ftálicos/química , Plásticos/química , Plásticos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Poliésteres
14.
Environ Microbiol ; 26(4): e16618, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561820

RESUMEN

Microplastics (MPs) have the potential to modify aquatic microbial communities and distribute microorganisms, including pathogens. This poses a potential risk to aquatic life and human health. Despite this, the fate of 'hitchhiking' microbes on MPs that traverse different aquatic habitats remains largely unknown. To address this, we conducted a 50-day microcosm experiment, manipulating estuarine conditions to study the exchange of bacteria and microeukaryotes between river, sea and plastisphere using a long-read metabarcoding approach. Our findings revealed a significant increase in bacteria on the plastisphere, including Pseudomonas, Sphingomonas, Hyphomonas, Brevundimonas, Aquabacterium and Thalassolituus, all of which are known for their pollutant degradation capabilities, specifically polycyclic aromatic hydrocarbons. We also observed a strong association of plastic-degrading fungi (i.e., Cladosporium and Plectosphaerella) and early-diverging fungi (Cryptomycota, also known as Rozellomycota) with the plastisphere. Sea MPs were primarily colonised by fungi (70%), with a small proportion of river-transported microbes (1%-4%). The mere presence of MPs in seawater increased the relative abundance of planktonic fungi from 2% to 25%, suggesting significant exchanges between planktonic and plastisphere communities. Using microbial source tracking, we discovered that MPs only dispersed 3.5% and 5.5% of river bacterial and microeukaryotic communities into the sea, respectively. Hence, although MPs select and facilitate the dispersal of ecologically significant microorganisms, drastic compositional changes across distinct aquatic habitats are unlikely.


Asunto(s)
Alphaproteobacteria , Burkholderiales , Humanos , Microplásticos , Plásticos , Transporte Biológico
15.
Chembiochem ; 25(10): e202400084, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38584134

RESUMEN

Plastic waste has become a substantial environmental issue. A potential strategy to mitigate this problem is to use enzymatic hydrolysis of plastics to depolymerize post-consumer waste and allow it to be reused. Over the last few decades, the use of enzymatic PET-degrading enzymes has shown promise as a great solution for creating a circular plastic waste economy. PsPETase from Piscinibacter sakaiensis has been identified as an enzyme with tremendous potential for such applications. But to improve its efficiency, enzyme engineering has been applied aiming at enhancing its thermal stability, enzymatic activity, and ease of production. Here, we combine different strategies such as structure-based rational design, ancestral sequence reconstruction and machine learning to engineer a more highly active Combi-PETase variant with a melting temperature of 70 °C and optimal performance at 60 °C. Furthermore, this study demonstrates that these approaches, commonly used in other works of enzyme engineering, are most effective when utilized in combination, enabling the improvement of enzymes for industrial applications.


Asunto(s)
Ingeniería de Proteínas , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Estabilidad de Enzimas , Burkholderiales
16.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474230

RESUMEN

Sulfonation, primarily facilitated by sulfotransferases, plays a crucial role in the detoxification pathways of endogenous substances and xenobiotics, promoting metabolism and elimination. Traditionally, this bioconversion has been attributed to a family of human cytosolic sulfotransferases (hSULTs) known for their high sequence similarity and dependence on 3'-phosphoadenosine 5'-phosphosulfate (PAPS) as a sulfo donor. However, recent studies have revealed the presence of PAPS-dependent sulfotransferases within gut commensals, indicating that the gut microbiome may harbor a diverse array of sulfotransferase enzymes and contribute to detoxification processes via sulfation. In this study, we investigated the prevalence of sulfotransferases in members of the human gut microbiome. Interestingly, we stumbled upon PAPS-independent sulfotransferases, known as aryl-sulfate sulfotransferases (ASSTs). Our bioinformatics analyses revealed that members of the gut microbial genus Sutterella harbor multiple asst genes, possibly encoding multiple ASST enzymes within its members. Fluctuations in the microbes of the genus Sutterella have been associated with various health conditions. For this reason, we characterized 17 different ASSTs from Sutterella wadsworthensis 3_1_45B. Our findings reveal that SwASSTs share similarities with E. coli ASST but also exhibit significant structural variations and sequence diversity. These differences might drive potential functional diversification and likely reflect an evolutionary divergence from their PAPS-dependent counterparts.


Asunto(s)
Burkholderiales , Microbioma Gastrointestinal , Humanos , Escherichia coli/metabolismo , Sulfotransferasas/metabolismo
17.
Int J Biol Macromol ; 263(Pt 1): 130284, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382786

RESUMEN

Polyethylene terephthalate (PET) is one of the most produced plastics globally and its accumulation in the environment causes harm to the ecosystem. Polyethylene terephthalate hydrolyse (PETase) is an enzyme that can degrade PET into its monomers. However, free PETase lacks operational stabilities and is not reusable. In this study, development of cross-linked enzyme aggregate (CLEA) of PETase using amylopectin (Amy) as cross-linker was introduced to solve the limitations of free PETase. PETase-Amy-CLEA exhibited activity recovery of 81.9 % at its best immobilization condition. Furthermore, PETase-Amy-CLEA exhibited 1.37-, 2.75-, 2.28- and 1.36-fold higher half-lives than free PETase at 50 °C, 45 °C, 40 °C and 35 °C respectively. Moreover, PETase-Amy-CLEA showed broader pH stability from pH 5 to 10 and could be reused up to 5 cycles. PETase-Amy-CLEA retained >70 % of initial activity after 40 days of storage at 4 °C. In addition, lower Km of PETase-Amy-CLEA indicated better substrate affinity than free enzyme. PETase-Amy-CLEA corroded PET better and products yielded was 66.7 % higher than free PETase after 32 h of treatment. Hence, the enhanced operational stabilities, storage stability, reusability and plastic degradation ability are believed to make PETase-Amy-CLEA a promising biocatalyst in plastic degradation.


Asunto(s)
Burkholderiales , Tereftalatos Polietilenos , Tereftalatos Polietilenos/metabolismo , Ecosistema , Hidrolasas/metabolismo
18.
J Biol Chem ; 300(3): 105783, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38395309

RESUMEN

Poly(ethylene terephthalate) (PET) is a major plastic polymer utilized in the single-use and textile industries. The discovery of PET-degrading enzymes (PETases) has led to an increased interest in the biological recycling of PET in addition to mechanical recycling. IsPETase from Ideonella sakaiensis is a candidate catalyst, but little is understood about its structure-function relationships with regards to PET degradation. To understand the effects of mutations on IsPETase productivity, we develop a directed evolution assay to identify mutations beneficial to PET film degradation at 30 °C. IsPETase also displays enzyme concentration-dependent inhibition effects, and surface crowding has been proposed as a causal phenomenon. Based on total internal reflectance fluorescence microscopy and adsorption experiments, IsPETase is likely experiencing crowded conditions on PET films. Molecular dynamics simulations of IsPETase variants reveal a decrease in active site flexibility in free enzymes and reduced probability of productive active site formation in substrate-bound enzymes under crowding. Hence, we develop a surface crowding model to analyze the biochemical effects of three hit mutations (T116P, S238N, S290P) that enhanced ambient temperature activity and/or thermostability. We find that T116P decreases susceptibility to crowding, resulting in higher PET degradation product accumulation despite no change in intrinsic catalytic rate. In conclusion, we show that a macromolecular crowding-based biochemical model can be used to analyze the effects of mutations on properties of PETases and that crowding behavior is a major property to be targeted for enzyme engineering for improved PET degradation.


Asunto(s)
Burkholderiales , Hidrolasas , Tereftalatos Polietilenos , Hidrolasas/química , Hidrolasas/genética , Hidrolasas/metabolismo , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Reciclaje , Cinética , Burkholderiales/enzimología , Modelos Químicos
19.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38366029

RESUMEN

Wildfires affect soils in multiple ways, leading to numerous challenges for colonizing microorganisms. Although it is thought that fire-adapted microorganisms lie at the forefront of postfire ecosystem recovery, the specific strategies that these organisms use to thrive in burned soils remain largely unknown. Through bioactivity screening of bacterial isolates from burned soils, we discovered that several Paraburkholderia spp. isolates produced a set of unusual rhamnolipid surfactants with a natural methyl ester modification. These rhamnolipid methyl esters (RLMEs) exhibited enhanced antimicrobial activity against other postfire microbial isolates, including pyrophilous Pyronema fungi and Amycolatopsis bacteria, compared to the typical rhamnolipids made by organisms such as Pseudomonas spp. RLMEs also showed enhanced surfactant properties and facilitated bacterial motility on agar surfaces. In vitro assays further demonstrated that RLMEs improved aqueous solubilization of polycyclic aromatic hydrocarbons, which are potential carbon sources found in char. Identification of the rhamnolipid biosynthesis genes in the postfire isolate, Paraburkholderia kirstenboschensis str. F3, led to the discovery of rhlM, whose gene product is responsible for the unique methylation of rhamnolipid substrates. RhlM is the first characterized bacterial representative of a large class of integral membrane methyltransferases that are widespread in bacteria. These results indicate multiple roles for RLMEs in the postfire lifestyle of Paraburkholderia isolates, including enhanced dispersal, solubilization of potential nutrients, and inhibition of competitors. Our findings shed new light on the chemical adaptations that bacteria employ to navigate, grow, and outcompete other soil community members in postfire environments.


Asunto(s)
Antibacterianos , Incendios , Glucolípidos , Microbiología del Suelo , Tensoactivos , Tensoactivos/metabolismo , Glucolípidos/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Burkholderiales/metabolismo , Burkholderiales/genética , Adaptación Fisiológica , Hidrocarburos Policíclicos Aromáticos/metabolismo
20.
ChemSusChem ; 17(10): e202301752, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38252197

RESUMEN

Biocatalytic degradation of plastic waste is anticipated to play an important role in future recycling systems. However, enzymatic degradation of crystalline poly (ethylene terephthalate) (PET) remains consistently poor. Herein, we employed functional assays to elucidate the molecular underpinnings of this limitation. This included utilizing complementary activity assays to monitor the degradation of PET disks with varying crystallinity (XC), as well as determining enzymatic kinetic parameters for soluble PET fragments. The results indicate that an efficient PET-hydrolase, LCCICCG, operates through an endolytic mode of action, and that its activity is limited by conformational constraints in the PET polymer. Such constraints become more pronounced at high XC values, and this limits the density of productive sites on the PET surface. Endolytic chain-scissions are the dominant reaction type in the initial stage, and this means that little or no soluble organic product are released. However, endolytic cuts gradually and locally promote chain mobility and hence the density of attack sites on the surface. This leads to an upward concave progress curve; a behavior sometimes termed lag-phase kinetics.


Asunto(s)
Tereftalatos Polietilenos , Tereftalatos Polietilenos/química , Tereftalatos Polietilenos/metabolismo , Cinética , Cristalización , Hidrolasas/metabolismo , Hidrolasas/química , Biocatálisis , Burkholderiales/enzimología , Hidrólisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA