Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 263
Filtrar
1.
J Mater Chem B ; 12(18): 4467-4477, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38629894

RESUMEN

Skin aging, a complex and inevitable biological process, results in wrinkles, dermal laxity, and skin cancer, profoundly influencing appearance and overall health. Collagen serves as the fundamental element of the dermal matrix; nevertheless, collagen is susceptible to enzymatic degradation within the body. Crosslinking is employed to enhance the physicochemical properties of collagen. However, conventional crosslinking agents may harbor potential issues such as cytotoxicity and calcification risks, constraining their application in the biomedical field. Therefore, we have for the first time developed a highly biocompatible CE-crosslinked collagen implant with exceptional anti-calcification and collagen regeneration capabilities for aging skin rejuvenation. A novel collagen crosslinking agent (CE) was synthesized through a reaction involving chitosan quaternary ammonium salt with 1,4-butanediol diglycidyl ether. Compared to collagen crosslinked with glutaraldehyde (GA), the CE-crosslinked collagen implant exhibited notable stability and durability. The implant demonstrated excellent injectability and viscosity, resisting displacement after implantation. Additionally, the CE-crosslinked collagen implant displayed superior biocompatibility, effectively promoting the proliferation and adhesion of HFF-1 cells compared with the GA-crosslinked collagen. The CE-crosslinked collagen represented a safer and more biologically active implant material. In vivo experiments further substantiated that the implant significantly facilitated collagen regeneration without inducing calcification. The innovative collagen implant has made substantial strides in enhancing aesthetics and reducing wrinkles, presenting the potential for revolutionary progress in the fields of skin rejuvenation and collagen regeneration.


Asunto(s)
Materiales Biocompatibles , Colágeno , Rejuvenecimiento , Envejecimiento de la Piel , Animales , Humanos , Ratones , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Butileno Glicoles/química , Butileno Glicoles/farmacología , Proliferación Celular/efectos de los fármacos , Quitosano/química , Colágeno/química , Reactivos de Enlaces Cruzados/química , Reactivos de Enlaces Cruzados/farmacología , Regeneración/efectos de los fármacos , Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de los fármacos
2.
Int J Cosmet Sci ; 46(1): 85-95, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37699769

RESUMEN

OBJECTIVE: This study aimed to assess the effect of 1,3-propanediol at different concentrations (5%, 10%, or 15%), either applied alone or in combination with butylene glycol (BG) (5%) and/or glycerol (5%), on skin hydration and skin barrier function. The measurements were conducted using capacitance to determine skin hydration and trans epidermal water loss (TEWL) rates to evaluate skin barrier function. METHODS: A total of 30 healthy female subjects participated in the study. Capacitance and TEWL measurements were conducted at multiple time points, including before application and at 15 min, 2 and 8 h after the humectants were applied to the forearms of the subjects. All the subjects provided written informed consent. RESULTS: The 1,3-propanediol in all concentrations and in all combinations (with BG and/or glycerol) increased skin hydration and improved skin barrier function 15 min, 2 and 8 h after application. Glycerol increased the hydration performance of 1,3-propanediol. The application of 1,3-propanediol at a concentration of 15%, either alone or in combination with other humectants, reduced the TEWL to a greater extent than lower concentrations of 1,3-propanediol. Furthermore, the addition of glycerol to 1,3-propanediol 15% improved the skin barrier and reduced TEWL when compared with 1,3-propanediol alone and with the combination of 1,3-propanediol + BG. CONCLUSION: The humectants significantly improved skin hydration and reduced TEWL throughout the 8-h time course. The increase in 1,3-propanediol concentration, as well as its combination with glycerol, provided a greater benefit to the skin, improving both hydration and the skin barrier function.


OBJECTIF: Cette étude visait à évaluer l'effet sur l'hydratation de la peau et la fonction de barrière cutanée du 1,3-propanediol à différentes concentrations (5 %, 10 % ou 15 %), appliqué seul ou en association avec du butylène glycol (5 %) et/ou du glycérol (5 %). Les mesures ont été effectuées à l'aide de la capacitance pour déterminer l'hydratation de la peau et les taux de perte d'eau transépidermique (Trans Epidermal Water Loss, TEWL) pour évaluer la fonction de barrière cutanée. MÉTHODES: Au total, 30 sujets de sexe féminin en bonne santé ont participé à l'étude. Les mesures de la capacitance et de la TEWL ont été effectuées à plusieurs moments, y compris avant l'application, 15 minutes, 2 heures et 8 heures après l'application des produits humectant sur les avant-bras des sujets. Tous les sujets ont fourni un consentement éclairé écrit. RÉSULTATS: Le 1,3-propanediol, à toutes les concentrations et dans toutes les associations (avec le butylène glycol et/ou le glycérol), a augmenté l'hydratation de la peau et amélioré la fonction de barrière cutanée à 15 minutes, 2 heures et 8 heures après l'application. Le glycérol a augmenté les performances d'hydratation du 1,3-propanediol. L'application de 1,3-propanediol à une concentration de 15 %, seul ou en association avec d'autres produits humectant, a réduit la TEWL dans une plus grande mesure que des concentrations inférieures de 1,3-propanediol. En outre, l'ajout de glycérol au 1,3-propanediol 15 % a amélioré la barrière cutanée et réduit la TEWL par rapport au 1,3-propanediol seul et à l'association 1,3-propanediol + butylène glycol. CONCLUSION: Les produits humectant ont significativement amélioré l'hydratation de la peau et réduit la TEWL tout au long des 8 heures. L'augmentation de la concentration de 1,3-propanediol, ainsi que son association avec le glycérol, ont apporté un plus grand bénéfice à la peau, améliorant à la fois l'hydratation et la fonction de barrière cutanée.


Asunto(s)
Glicerol , Higroscópicos , Glicoles de Propileno , Femenino , Humanos , Glicerol/farmacología , Glicerol/metabolismo , Higroscópicos/farmacología , Piel , Agua/metabolismo , Propilenglicol/farmacología , Propilenglicol/metabolismo , Butileno Glicoles/metabolismo , Butileno Glicoles/farmacología , Pérdida Insensible de Agua
3.
J Food Sci ; 88(12): 5278-5290, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37889085

RESUMEN

Secoisolariciresinol diglucoside (SDG) and tracheloside (TCL) are the main lignan components of flaxseed cake and safflower seed cake, which are by-products of oil extraction. Both SDG and TCL are metabolized into mammalian lignan enterolactone (EL) with the involvement of intestinal bacteria. In this research, we evaluated the anti-osteoporosis effects of SDG and the in vivo metabolites EL and enterodiol (ED) prepared in our previous work, as well as the newly isolated chemical constituents from safflower seed, including TCL, the lactone ring opening product of TCL (OTCL) and two alkaloids on the alloxan-induced zebrafish model. All the compounds showed significant anti-osteoporosis effects at 80 µM, with p < 0.05 for EL and p < 0.001 for other compounds compared with the model. SDG and TCL showed the most significant and concentration-dependent effects, with p < 0.001 compared with model at 20 µM. The alkaloids, N-coumaroylserotonin glucoside and N-feruloylserotonin glucoside, also showed anti-osteoporosis at 20 µM with p < 0.01, whereas EL, ED, and OTCL showed no significant effects. Quantitative real-time polymerase chain reaction revealed that SDG and TCL upregulated the expression of osteogenic genes Runx2, SP7, OPG, Col1a1a, Alp, ON, OPN, and OCN in alloxan-treated zebrafish. The in vivo metabolite of lignans, EL, showed significant anti-inflammatory effect (p < 0.01) at 20 µM, which might also help to combat osteoporosis and other complications caused by excessive immune response in the body. The results provided scientific data for using the oil extraction by-products as sources of anti-osteoporosis compounds. PRACTICAL APPLICATION: This study found that lignans in flaxseed cake and safflower seed cake exhibited anti-osteoporosis effects by upregulating the expression of osteogenic genes, making the oil extraction by-products sources of anti-osteoporosis compounds.


Asunto(s)
Alcaloides , Carthamus tinctorius , Lino , Lignanos , Animales , Lino/química , Pez Cebra , Aloxano/análisis , Aloxano/metabolismo , Glucósidos/análisis , Mamíferos , Lignanos/farmacología , Semillas/química , 4-Butirolactona , Butileno Glicoles/farmacología , Butileno Glicoles/análisis , Alcaloides/análisis
4.
Molecules ; 28(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37570714

RESUMEN

Secoisolariciresinol (SECO) is one of the major lignans occurring in various grains, seeds, fruits, and vegetables. The gut microbiota plays an important role in the biotransformation of dietary lignans into enterolignans, which might exhibit more potent bioactivities than the precursor lignans. This study aimed to identify, synthesize, and evaluate the microbial metabolites of SECO and to develop efficient lead compounds from the metabolites for the treatment of osteoporosis. SECO was fermented with human gut microbiota in anaerobic or micro-aerobic environments at different time points. Samples derived from microbial transformation were analyzed using an untargeted metabolomics approach for metabolite identification. Nine metabolites were identified and synthesized. Their effects on cell viability, osteoblastic differentiation, and gene expression were examined. The results showed that five of the microbial metabolites exerted potential osteogenic effects similar to those of SECO or better. The results suggested that the enterolignans might account for the osteoporotic effects of SECO in vivo. Thus, the presence of the gut microbiota could offer a good way to form diverse enterolignans with bone-protective effects. The current study improves our understanding of the microbial transformation products of SECO and provides new approaches for new candidate identification in the treatment of osteoporosis.


Asunto(s)
4-Butirolactona , Lignanos , Humanos , Dieta , Lignanos/farmacología , Lignanos/metabolismo , Butileno Glicoles/farmacología , Butileno Glicoles/metabolismo
5.
Mar Drugs ; 20(9)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36135760

RESUMEN

Pelagia noctiluca stings are common in Mediterranean coastal areas and, although the venom is non-lethal, they are painful. Due to its high toxicity and abundance, P. noctiluca is considered a target species for the focus of research on active ingredients to reduce the symptoms of its sting. To determine the effect of 31 substances and formulations on nematocyst discharge, we performed three tests: (1) screening of per se discharge activator solutions, (2) inhibitory test with nematocyst chemical stimulation (5% acetic acid) and (3) inhibitory test quantifying the hemolytic area. Ammonia, barium chloride, bleach, scented ammonia, carbonated cola, lemon juice, sodium chloride and papain triggered nematocyst discharge. All of them were ruled out as potential inhibitors. Butylene glycol showed a reduction in nematocyst discharge, while the formulations of 10% lidocaine in ethanol, 1.5% hydroxyacetophenone in distilled water + butylene glycol, and 3% Symsitive® in butylene glycol inhibited nematocyst discharge. These last results were subsequently correlated with a significant decrease in hemolytic area in the venom assays versus seawater, a neutral solution. The presented data represent a first step in research to develop preventive products for jellyfish stings while at the same time attempting to clarify some uncertainties about the role of various topical solutions in P. noctiluca first-aid protocols.


Asunto(s)
Mordeduras y Picaduras , Cnidarios , Venenos de Cnidarios , Escifozoos , Amoníaco/análisis , Amoníaco/farmacología , Animales , Mordeduras y Picaduras/prevención & control , Butileno Glicoles/análisis , Butileno Glicoles/farmacología , Venenos de Cnidarios/análisis , Venenos de Cnidarios/farmacología , Etanol/farmacología , Hemólisis , Lidocaína/farmacología , Nematocisto/química , Papaína/farmacología , Escifozoos/química , Cloruro de Sodio/farmacología , Agua
6.
Food Funct ; 13(5): 3009-3022, 2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35195134

RESUMEN

Secoisolariciresinol diglucoside (SDG) has a strong anti-inflammatory effect, which depends partly on the participation of gut microbiota. We studied the effect of SDG on colonic inflammation caused by a common poor diet, high-fat diet (HFD), and the regulation of gut microbiota as well as its metabolites. Considering the difference of sources, prices, and possible bioactivity, we compared the effects of a single compound and the extract of SDG on colon inflammation. The results displayed that both the single compound and the extract ameliorated morphologic damage of the colon and improved intestinal barrier integrity. In addition, SDG suppressed the mRNA expressions of inflammatory cytokines in the colon, and the inhibitory effect of a single compound was stronger than that of the extract. The results of 16S rRNA sequencing showed that SDG altered the diversity and composition of gut microbiota, particularly the abundance of inflammation-related bacteria, and the effect of the extract was greater than that of a single compound. The analysis of short-chain fatty acids (SCFAs) manifested the improved concentration with the intervention of SDG. These results confirmed that SDG, including a single compound and extract, exerted protective effects against colon inflammation, which might be partly explained by the gut microbiome. Our research could provide a positive nutritional intervention for chronic intestinal inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Butileno Glicoles/farmacología , Glucósidos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Butileno Glicoles/química , Butileno Glicoles/uso terapéutico , Colitis/prevención & control , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos/química , Glucósidos/uso terapéutico , Inflamación , Masculino , Ratones , Ratones Endogámicos C57BL
7.
Food Chem Toxicol ; 159: 112733, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34856318

RESUMEN

Benzo[a]pyrene (BaP) can cause hepatorenal toxicity. Secoisolariciresinol diglucoside (SDG), a polyphenolic compound present in flaxseed, has shown a variety of biological activities including antioxidant, anti-inflammatory, anti-apoptotic effects. This study aimed to investigate the protective effects and working mechanisms of SDG against BaP-induced hepatorenal injury. Forty male mice were administrated daily (via gastric gavage; 4 weeks) with 0.9% saline (control), BaP (75 mg/kg body weight (b.w.)), SDG (100 mg/kg b.w.), SDG (100 mg/kg b.w.)+BaP (75 mg/kg b.w.). Results showed that the mice treated with SDG + BaP had significantly (P < 0.05) higher body weight, lower organ-to-body weight ratio, alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP) activities, and less levels of serum creatinine (CRE) and blood urea nitrogen (BUN) than those treated with BaP alone. SDG administration alleviated BaP-induced oxidative damages, inflammation and apoptosis. Furthermore, it significantly (P < 0.05) downregulated phosphor-p38 (p-p38) and phosphor-extracellular regulated protein kinases (p-ERK) levels, upregulated mitogen-activated protein kinase phosphatase-1 (MKP-1) level, and suppressed miR-101a expression compared with BaP alone group. Taken together, these results showed for the first time that SDG has protective effects against BaP-induced liver and kidney toxicity in mice through regulating oxidative stress, inflammation and apoptosis via miR-101a/MKP-1-mediated p38 and ERK pathway.


Asunto(s)
Lesión Renal Aguda/metabolismo , Benzo(a)pireno/toxicidad , Butileno Glicoles/farmacología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Glucósidos/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sustancias Protectoras/farmacología , Animales , Fosfatasa 1 de Especificidad Dual/genética , Fosfatasa 1 de Especificidad Dual/metabolismo , Masculino , Ratones , MicroARNs/genética , MicroARNs/metabolismo
8.
Int J Mol Sci ; 22(20)2021 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-34681644

RESUMEN

Exposure to Libby amphibole (LA) asbestos-like fibers is associated with increased risk of asbestosis, mesothelioma, pulmonary disease, and systemic autoimmune disease. LGM2605 is a small molecule antioxidant and free radical scavenger, with anti-inflammatory effects in various disease models. The current study aimed to determine whether the protective effects of LGM2605 persist during the late inflammatory phase post-LA exposure. Male and female C57BL/6 mice were administered daily LGM2605 (100 mg/kg) via gel cups for 3 days before and 14 days after a 200 µg LA given via intraperitoneal (i.p.) injection. Control mice were given unsupplemented gel cups and an equivalent dose of i.p. saline. On day 14 post-LA treatment, peritoneal lavage was assessed for immune cell influx, cytokine concentrations, oxidative stress biomarkers, and immunoglobulins. During the late inflammatory phase post-LA exposure, we noted an alteration in trafficking of both innate and adaptive immune cells, increased pro-inflammatory cytokine concentrations, induction of immunoglobulin isotype switching, and increased oxidized guanine species. LGM2605 countered these changes similarly among male and female mice, ameliorating late inflammation and altering immune responses in late post-LA exposure. These data support possible efficacy of LGM2605 in the prolonged treatment of LA-associated disease and other inflammatory conditions.


Asunto(s)
Asbestos Anfíboles/toxicidad , Butileno Glicoles/uso terapéutico , Glucósidos/uso terapéutico , Inflamación/prevención & control , Inmunidad Adaptativa/efectos de los fármacos , Animales , Linfocitos B/citología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Butileno Glicoles/farmacología , Quimiocina CCL2/metabolismo , Femenino , Glucósidos/farmacología , Inmunidad Innata/efectos de los fármacos , Isotipos de Inmunoglobulinas/metabolismo , Inmunoglobulinas/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Interleucina-6 , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/genética , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
9.
J Nat Prod ; 84(11): 2845-2850, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34699206

RESUMEN

Hypercholesterolemia is a risk factor for cardiovascular disease. Conventional treatment methods include lifestyle changes and pharmaceutical interventions, but recently Health Canada approved a health claim for whole ground flaxseed as an alternative treatment for hypercholesterolemia. The literature suggests flaxseed lignans are responsible for the cholesterol-reducing effects of flaxseed. In this study, 96.1% secoisolariciresinol diglucoside (SDG) and a 50% SDG enriched polymer (SDG polymer) were investigated as treatments for hypercholesterolemia in rats. Wistar female rats were fed a 1% high-cholesterol diet for a one-week acclimatization prior to a 23-day intervention with enriched SDG or SDG polymer. A reduction in body weight normalized liver weight was observed in rats treated with enriched SDG when compared to the controls. Both enriched SDG (96.1%) and SDG polymer reduced serum triacylglycerol (19% and 15%, respectively) and increased high-density lipoprotein cholesterol (15% and 24%, respectively). Histopathologic analyses revealed lipid-lowering effects of either enriched SDG or SDG polymer along with lower steatosis scores and nonalcoholic fatty liver disease activity. Furthermore, the lack of statistical significance between SDG and SDG polymer treatment groups suggests that SDG polymer may be a potential alternative to enriched SDG for hypercholesterolemia with similar efficacy but lower cost.


Asunto(s)
Anticolesterolemiantes/farmacología , Butileno Glicoles/farmacología , Glucósidos/farmacología , Animales , Peso Corporal/efectos de los fármacos , Femenino , Lípidos/sangre , Hígado/patología , Tamaño de los Órganos/efectos de los fármacos , Polímeros/farmacología , Ratas , Ratas Wistar
10.
Sci Rep ; 11(1): 17691, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34489483

RESUMEN

Leptin is an adipocyte-derived hormone that regulates appetite and energy expenditure via the hypothalamus. Since the majority of obese subjects are leptin resistant, leptin sensitizers, rather than leptin itself, are expected to be anti-obesity drugs. Endoplasmic reticulum (ER) stress in the hypothalamus plays a key role in the pathogenesis of leptin resistance. ATP-deficient cells are vulnerable to ER stress and ATP treatment protects cells against ER stress. Thus, we investigated the therapeutic effects of oral 1,3-butanediol (BD) administration, which increases plasma ß-hydroxybutyrate and hypothalamic ATP concentrations, in diet induced obese (DIO) mice with leptin resistance. BD treatment effectively decreased food intake and body weight in DIO mice. In contrast, BD treatment had no effect in leptin deficient ob/ob mice. Co-administration experiment demonstrated that BD treatment sensitizes leptin action in both DIO and ob/ob mice. We also demonstrated that BD treatment attenuates ER stress and leptin resistance at the hypothalamus level. This is the first report to confirm the leptin sensitizing effect of BD treatment in leptin resistant DIO mice. The present study provides collateral evidence suggesting that the effect of BD treatment is mediated by the elevation of hypothalamic ATP concentration. Ketone bodies and hypothalamic ATP are the potential target for the treatment of obesity and its complications.


Asunto(s)
Peso Corporal/efectos de los fármacos , Butileno Glicoles/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hipotálamo/efectos de los fármacos , Leptina/farmacología , Obesidad/tratamiento farmacológico , Ácido 3-Hidroxibutírico/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Butileno Glicoles/uso terapéutico , Metabolismo Energético/efectos de los fármacos , Hipotálamo/metabolismo , Masculino , Ratones , Ratones Obesos , Obesidad/metabolismo
11.
Int J Mol Sci ; 22(17)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34502389

RESUMEN

Metal-oxide nanoparticles (MO-NPs), such as the highly bioreactive copper-based nanoparticles (CuO-NPs), are widely used in manufacturing of hundreds of commercial products. Epidemiological studies correlated levels of nanoparticles in ambient air with a significant increase in lung disease. CuO-NPs, specifically, were among the most potent in a set of metal-oxides and carbons studied in parallel regarding DNA damage and cytotoxicity. Despite advances in nanotoxicology research and the characterization of their toxicity, the exact mechanism(s) of toxicity are yet to be defined. We identified chlorination toxicity as a damaging consequence of inflammation and myeloperoxidase (MPO) activation, resulting in macromolecular damage and cell damage/death. We hypothesized that the inhalation of CuO-NPs elicits an inflammatory response resulting in chlorination damage in cells and lung tissues. We further tested the protective action of LGM2605, a synthetic small molecule with known scavenging properties for reactive oxygen species (ROS), but most importantly, for active chlorine species (ACS) and an inhibitor of MPO. CuO-NPs (15 µg/bolus) were instilled intranasally in mice and the kinetics of the inflammatory response in lungs was evaluated 1, 3, and 7 days later. Evaluation of the protective action of LGM2605 was performed at 24 h post-challenge, which was selected as the peak acute inflammatory response to CuO-NP. LGM2605 was given daily via gavage to mice starting 2 days prior to the time of the insult (100 mg/kg). CuO-NPs induced a significant inflammatory influx, inflammasome-relevant cytokine release, and chlorination damage in mouse lungs, which was mitigated by the action of LGM2605. Preventive action of LGM2605 ameliorated the adverse effects of CuO-NP in lung.


Asunto(s)
Butileno Glicoles/farmacología , Glucósidos/farmacología , Inflamación/tratamiento farmacológico , Animales , Líquido del Lavado Bronquioalveolar/citología , Butileno Glicoles/metabolismo , Cloro/metabolismo , Cobre/metabolismo , Cobre/toxicidad , Daño del ADN/efectos de los fármacos , Femenino , Glucósidos/metabolismo , Inflamasomas/efectos de los fármacos , Pulmón/efectos de los fármacos , Nanopartículas del Metal/efectos adversos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Óxidos/farmacología , Peroxidasa/farmacología , Especies Reactivas de Oxígeno/farmacología
12.
J Pharmacol Exp Ther ; 379(3): 245-252, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34521698

RESUMEN

Ketone bodies are essential energy substrates in the absence of exogenous nutrients, and more recently, they have been suggested to prevent disease and improve longevity. ß-hydroxybutyrate (ßHB) is the most abundant ketone body. The secondary alcohol, 1,3-butanediol (1,3-BD), is commonly administered to raise ßHB bioavailability in vivo and in the absence of nutrient deprivation. However, the concentration of 1,3-BD that yields a systemic concentration of ßHB similar to that observed after a 24-hour fast has yet to be determined. To evaluate this knowledge gap, we administered 5%, 10%, or 20% 1,3-BD via the drinking water to adult, male Wistar-Kyoto rats for four weeks. In addition to systemic and excreted ßHB concentration, physiologic, metabolic, and toxicologic parameters were measured. We report that only 20% 1,3-BD significantly elevates the systemic and urinary concentrations of ßHB. Rats treated with 20% 1,3-BD had a rapid and sustained reduction in body mass. All concentrations of 1,3-BD decreased food consumption, but only the 20% concentration decreased fluid consumption. Urine volume, red blood cell count, and hematocrit suggested dehydration in the 10% and 20% 1,3-BD-treated rats. Finally, 20% 1,3-BD-treated rats presented with indicators of metabolic acidosis and sinusoidal dilation, but no evidence of fatty liver or hepatotoxicity. In summary, we report that 20% 1,3-BD, but not 5% or 10%, produces a systemic concentration of ßHB similar to that observed after a 24-hour fast. However, this concentration is associated with deleterious side effects such as body mass loss, dehydration, metabolic acidosis, and sinusoidal dilation. SIGNIFICANCE STATEMENT: 1,3-Butanediol (1,3-BD) is often administered to stimulate the biosynthesis of the most abundant ketone body, ß-hydroxybutyrate (ßHB), and its purported salubrious effects. This article reports that suprapharmacological concentrations of 1,3-BD are necessary to yield a systemic concentration of ßHB similar to that observed after a 24-hour fast, and this is associated with undesirable side effects. On the other hand, low concentrations of 1,3-BD were better tolerated and may improve health independent of its conversion into ßHB.


Asunto(s)
Ácido 3-Hidroxibutírico/sangre , Ácido 3-Hidroxibutírico/orina , Butileno Glicoles/metabolismo , Butileno Glicoles/toxicidad , Animales , Butileno Glicoles/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/fisiología , Masculino , Ratas , Ratas Endogámicas WKY
13.
J Nutr Biochem ; 98: 108818, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34271098

RESUMEN

Gut microbial processing of dietary flaxseed (FS) contributes to its health benefits, but the relative effects of its bioactive components (lignans, omega-3 fatty acids, fiber) on the microbiota are unclear. We investigated the gut microbial compositional and functional responses to whole FS and its isolated components, FS oil (FSO) and secoisolariciresinol diglucoside (SDG) (precursor to microbial-derived enterolignans) to help understand their contribution to whole FS benefits. Cecum content and fecal samples were collected from C57BL/6 female mice fed a basal diet (AIN93G) or isocaloric diets containing 10% FS or 10% FS-equivalent amounts of FSO or SDG for 21 days. Cecal and fecal microbiota composition and predicted genomic functions, and their relationship with serum enterolignans were evaluated. Only FS modified the community structure. Shared- and diet-specific enriched taxa and functions were identified. Carbohydrate and protein processing functions were enriched in FS mice, and there was a positive correlation between select enriched taxa, encompassing fiber degraders and SDG metabolizers, and serum enterolignans. This was not observed in mice receiving isolated FSO and SDG, suggesting that FS fiber supports SDG microbial metabolism. In conclusion, the cooperative activities of a diverse microbiota are necessary to process FS components and, when administered at the amount present in FS, these components may act together to affect SDG-derived enterolignans production. This has implications for the use of FS, FSO and SDG in clinical practice.


Asunto(s)
Lino/química , Microbioma Gastrointestinal/efectos de los fármacos , Lignanos/farmacología , Aceite de Linaza/farmacología , Animales , Butileno Glicoles/farmacología , Ciego/metabolismo , Ciego/microbiología , Dieta/métodos , Fibras de la Dieta/farmacología , Ácidos Grasos Omega-3/farmacología , Heces/microbiología , Femenino , Glucósidos/farmacología , Ratones , Ratones Endogámicos C57BL
14.
Nutrients ; 13(6)2021 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-34208742

RESUMEN

Nutritional ketosis is a state of mildly elevated blood ketone concentrations resulting from dietary changes (e.g., fasting or reduced carbohydrate intake) or exogenous ketone consumption. In this study, we determined the tolerability and safety of a novel exogenous ketone diester, bis-hexanoyl-(R)-1,3-butanediol (BH-BD), in a 28-day, randomized, double-blind, placebo-controlled, parallel trial (NCT04707989). Healthy adults (n = 59, mean (SD), age: 42.8 (13.4) y, body mass index: 27.8 (3.9) kg/m2) were randomized to consume a beverage containing 12.5 g (Days 0-7) and 25 g (Days 7-28) of BH-BD or a taste-matched placebo daily with breakfast. Tolerability, stimulation, and sedation were assessed daily by standardized questionnaires, and blood and urine samples were collected at Days 0, 7, 14, and 28 for safety assessment. There were no differences in at-home composite systemic and gastrointestinal tolerability scores between BH-BD and placebo at any time in the study, or in acute tolerability measured 1-h post-consumption in-clinic. Weekly at-home composite tolerability scores did not change when BH-BD servings were doubled. At-home scores for stimulation and sedation did not differ between groups. BH-BD significantly increased blood ketone concentrations 1-h post-consumption. No clinically meaningful changes in safety measures including vital signs and clinical laboratory measurements were detected within or between groups. These results support the overall tolerability and safety of consumption of up to 25 g/day BH-BD.


Asunto(s)
Butileno Glicoles/farmacología , Cetosis/inducido químicamente , Adulto , Bebidas , Glucemia/análisis , Butileno Glicoles/administración & dosificación , Butileno Glicoles/efectos adversos , Butileno Glicoles/sangre , Método Doble Ciego , Femenino , Humanos , Cuerpos Cetónicos/sangre , Masculino , Encuestas y Cuestionarios
15.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071220

RESUMEN

Visual function depends on the intimate structural, functional and metabolic interactions between the retinal pigment epithelium (RPE) and the neural retina. The daily phagocytosis of the photoreceptor outer segment tips by the overlaying RPE provides essential nutrients for the RPE itself and photoreceptors through intricate metabolic synergy. Age-related retinal changes are often characterized by metabolic dysregulation contributing to increased lipid accumulation and peroxidation as well as the release of proinflammatory cytokines. LGM2605 is a synthetic lignan secoisolariciresinol diglucoside (SDG) with free radical scavenging, antioxidant and anti-inflammatory properties demonstrated in diverse in vitro and in vivo inflammatory disease models. In these studies, we tested the hypothesis that LGM2605 may be an attractive small-scale therapeutic that protects RPE against inflammation and restores its metabolic capacity under lipid overload. Using an in vitro model in which loss of the autophagy protein, LC3B, results in defective phagosome degradation and metabolic dysregulation, we show that lipid overload results in increased gasdermin cleavage, IL-1 ß release, lipid accumulation and decreased oxidative capacity. The addition of LGM2605 resulted in enhanced mitochondrial capacity, decreased lipid accumulation and amelioration of IL-1 ß release in a model of defective lipid homeostasis. Collectively, these studies suggest that lipid overload decreases mitochondrial function and increases the inflammatory response, with LGM2605 acting as a protective agent.


Asunto(s)
Lignanos/metabolismo , Metabolismo de los Lípidos , Estrés Oxidativo/efectos de los fármacos , Epitelio Pigmentado de la Retina/metabolismo , Pigmentos Retinianos/metabolismo , Antioxidantes/metabolismo , Autofagia , Butileno Glicoles/farmacología , Línea Celular , Citocinas , Expresión Génica , Glucósidos/farmacología , Humanos , Inflamación/metabolismo , Lignanos/química , Lípidos , Mitocondrias/metabolismo , Oxidación-Reducción , Fagocitosis , Fagosomas/metabolismo , Pigmentos Retinianos/genética
16.
Microbiologyopen ; 10(2): e1185, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33970540

RESUMEN

LGM2605 is a synthetic version of the naturally occurring flaxseed lignan secoisolariciresinol diglucoside (SDG), with known anti-inflammatory and antioxidant properties; however, its effects on gut microbial composition have not previously been evaluated. In the present study, we sought to determine how the 10-day oral administration of LGM2605 alters the gut microbiota of mice. Eight-week-old female C57BL/6 mice were treated with either LGM2605 or saline, administered daily via oral gavage over a 10-day treatment period. Upon termination of treatment, mouse cecums (n = 31) were collected, and cecal DNA was isolated. 16S rRNA genes were sequenced and analyzed in Mothur to identify changes in gut microbial composition induced by LGM2605 treatment (v. saline control). We then assessed community composition, performed indicator taxa analysis, and measured alpha and beta diversity. Overall, LGM2605 significantly altered the gut microbiota of mice; we reported alterations in 3 bacterial phyla and 22 genera as a result of treatment. The study here identifies for the first time significant alterations in the gut microbiota of mice following oral administration of LGM2605, in general shifting toward a more anti-inflammatory composition. These findings lay the foundation for future investigations utilizing LGM2605 to control gut dysbiosis and, by extension, systemic inflammation.


Asunto(s)
Antiinfecciosos/farmacología , Butileno Glicoles/farmacología , Lino/química , Microbioma Gastrointestinal/efectos de los fármacos , Glucósidos/farmacología , Administración Oral , Animales , Antiinfecciosos/administración & dosificación , Biodiversidad , Butileno Glicoles/administración & dosificación , Ciego/microbiología , Biología Computacional/métodos , Disbiosis/microbiología , Femenino , Glucósidos/administración & dosificación , Lignanos/administración & dosificación , Lignanos/farmacología , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S , Semillas/química
17.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G564-G572, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33501889

RESUMEN

Nutritional ketosis as a therapeutic tool has been extended to the treatment of metabolic diseases, including obesity, type 2 diabetes, and nonalcoholic fatty liver disease (NAFLD). The purpose of this study was to determine whether dietary administration of the ketone ester (KE) R,S-1,3-butanediol diacetoacetate (BD-AcAc2) attenuates markers of hepatic stellate cell (HSC) activation and hepatic fibrosis in the context of high-fat diet (HFD)-induced obesity. Six-week-old male C57BL/6J mice were placed on a 10-wk ad libitum HFD (45% fat, 32% carbohydrates, 23% proteins). Mice were then randomized to one of three groups (n = 10 per group) for an additional 12 wk: 1) control (CON), continuous HFD; 2) pair-fed (PF) to KE, and 3) KE (HFD + 30% energy from BD-AcAc2, KE). KE feeding significantly reduced histological steatosis, inflammation, and total NAFLD activity score versus CON, beyond improvements observed for calorie restriction alone (PF). Dietary KE supplementation also reduced the protein content and gene expression of profibrotic markers (α-SMA, COL1A1, PDGF-ß, MMP9) versus CON (P < 0.05), beyond reductions observed for PF versus CON. Furthermore, KE feeding increased hepatic markers of anti-inflammatory M2 macrophages (CD163) and also reduced proinflammatory markers [tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and cellular communication network factor 1 (CCN1)] versus CON and PF (P ≤ 0.05), in the absence of changes in markers of total hepatic macrophage content (F4/80 and CD68; P > 0.05). These data highlight that the dietary ketone ester BD-AcAc2 ameliorates histological NAFLD and inflammation and reduces profibrotic and proinflammatory markers. Future studies to further explore potential mechanisms are warranted.NEW & NOTEWORTHY To our knowledge, this is the first study focusing on hepatic outcomes in response to dietary ketone ester feeding in male mice with HFD-induced NAFLD. Novel findings include that dietary ketone ester feeding ameliorates NAFLD outcomes via reductions in histological steatosis and inflammation. These improvements were beyond those observed for caloric restriction alone. Furthermore, dietary ketone ester feeding was associated with greater reductions in markers of hepatic fibrogenesis and inflammation compared with control and calorie-restricted mice.


Asunto(s)
Acetoacetatos/farmacología , Butileno Glicoles/farmacología , Dieta Alta en Grasa , Cirrosis Hepática Experimental/prevención & control , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Animales , Biomarcadores/metabolismo , Restricción Calórica , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/metabolismo , Mediadores de Inflamación/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática Experimental/genética , Cirrosis Hepática Experimental/metabolismo , Cirrosis Hepática Experimental/patología , Activación de Macrófagos/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Fenotipo
18.
Nat Prod Res ; 35(6): 1019-1023, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31238722

RESUMEN

Chemical investigation of the twigs of Cryptocarya impressinervia yielded 23 known compounds including 8 lignans, 3 phenylpropionates, 1 xanthone, 3 flavonoids, 1 phenylpropanoid, 1 substitued phenol, 1 triterpenoid, 3 sterols and 2 aliphatic compounds. All the compounds was isolated from C. impressinervia for the first time. 9,9'-O-Di-feruloyl-(-)-secoisolariciresinol (1) displayed significant cytotoxic activities on five human cancer cell lines (HL-60, SMMC-7721, A-549, MCF-7 and SW-480), with IC50 values of 3.58, 4.55, 6.39, 5.09 and 4.80 µM, respectively. Rhusemialin A (2) showed significant activity against HL-60 with IC50 of 3.69 µM. Dihydrosinapyl ferulate (3) displayed moderate cytotoxic activities against five tested human cancer cell lines. To the best of our knowledge, this is the first report on the constituents of C. impressinervia and cytotoxic activities of compounds 1-3 on the tested cancer cell lines.


Asunto(s)
Cryptocarya/química , Lignanos/farmacología , Antineoplásicos/farmacología , Antineoplásicos Fitogénicos/química , Butileno Glicoles/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Flavonoides/química , Humanos , Concentración 50 Inhibidora , Lignanos/química , Triterpenos/química , Triterpenos/farmacología
19.
J Biosci Bioeng ; 131(3): 283-289, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33277188

RESUMEN

Although the yeast Saccharomyces cerevisiae has been used to produce various bio-based chemicals, including solvents and organic acids, most of these products inhibit yeast growth at high concentrations. In general, it is difficult to rationally improve stress tolerance in yeast by modifying specific genes, because many of the genes involved in stress response remain unidentified. Previous studies have reported that various forms of stress tolerance in yeast were improved by introducing random mutations, such as DNA point mutations and DNA structural mutations. In this study, we developed a novel mutagenesis strategy that allows for the simultaneous performance of these two types of mutagenesis to construct a yeast variant with high 2,3-butanediol (2,3-BDO) tolerance. The mutations were simultaneously introduced into S. cerevisiae YPH499, accompanied by a stepwise increase in the concentration of 2,3-BDO. The resulting mutant YPH499/pol3δ/BD_392 showed 4.9-fold higher cell concentrations than the parental strain after 96 h cultivation in medium containing 175 g/L 2,3-BDO. Afterwards, we carried out transcriptome analysis to characterize the 2,3-BDO-tolerant strain. Gene ontology enrichment analysis with RNA sequence data revealed an increase in expression levels of genes related to amino acid metabolic processes. Therefore, we hypothesize that the yeast acquired high 2,3-BDO tolerance by amino acid function. Our research provides a novel mutagenesis strategy that achieves efficient modification of the genome for improving tolerance to various types of stressors.


Asunto(s)
Butileno Glicoles/farmacología , Mutagénesis , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Edición Génica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
20.
Nat Prod Res ; 35(24): 6099-6105, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33025821

RESUMEN

Secoisolariciresinol diglucoside (SDG) is isolated from Linum usitatissimum seeds. The antiproliferative effects of SDG (1) and its derivatives secoisolariciresinol (2) and secoisolariciresinol-4', 4″-diacetate (3) have been evaluated on MCF-7 breast cancer cells and normal breast epithelial line MCF-10A. Lignan 1 has not shown cytotoxic effects on MCF-7 cells, while derivatives 2 and 3 have inhibited cell growth with IC50 values of 25 and 11 µM, respectively. Estrogen receptor alpha is a key growth driver in MCF-7 cells. Compound 1 did not affect the activity of ERα, while derivatives 2 and 3 showed significant antiestrogenic effects. Compounds 2 and 3 caused apoptosis in the MCF-7 line, determined by the cleavage of PARP. SDG derivative 3 enhanced the effect of doxorubicin. SDG derivatives can be considered as promising agents that exhibit a combined antiestrogen and proapoptotic effect in hormone-dependent breast cancer cells.


Asunto(s)
Neoplasias de la Mama , Lino , Lignanos , Neoplasias de la Mama/tratamiento farmacológico , Butileno Glicoles/farmacología , Femenino , Glucósidos/farmacología , Humanos , Lignanos/farmacología , Células MCF-7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...