Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Tree Physiol ; 44(7)2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38959855

RESUMEN

Water transport, mechanical support and storage are the vital functions provided by the xylem. These functions are carried out by different cells, exhibiting significant anatomical variation not only within species but also within individual trees. In this study, we used a comprehensive dataset to investigate the consistency of predicted hydraulic vessel diameter widening values in relation to the distance from the tree apex, represented by the relationship Dh ∝ Lß (where Dh is the hydraulic vessel diameter, L the distance from the stem apex and ß the scaling exponent). Our analysis involved 10 Fagus sylvatica L. trees sampled at two distinct sites in the Italian Apennines. Our results strongly emphasize that vessel diameter follows a predictable pattern with the distance from the stem apex and ß ~ 0.20 remains consistent across cambial age and climates. This finding supports the hypothesis that trees do not alter their axial configuration represented by scaling of vessel diameter to compensate for hydraulic limitations imposed by tree height during growth. The study further indicates that within-tree variability significantly contributes to the overall variance of the vessel diameter-stem length exponent. Understanding the factors that contribute to the intraindividual variability in the widening exponent is essential, particularly in relation to interspecific responses and adaptations to drought stress.


Asunto(s)
Cámbium , Clima , Fagus , Tallos de la Planta , Xilema , Fagus/crecimiento & desarrollo , Fagus/fisiología , Fagus/anatomía & histología , Xilema/crecimiento & desarrollo , Xilema/anatomía & histología , Xilema/fisiología , Cámbium/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Tallos de la Planta/fisiología , Agua/metabolismo , Árboles/crecimiento & desarrollo , Árboles/fisiología , Árboles/anatomía & histología , Italia
2.
New Phytol ; 243(5): 1681-1697, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39014537

RESUMEN

Vascular bundles transport water and photosynthate to all organs, and increased bundle number contributes to crop lodging resistance. However, the regulation of vascular bundle formation is poorly understood in the Arabidopsis stem. We report a novel semi-dominant mutant with high vascular activity, hva-d, showing increased vascular bundle number and enhanced cambium proliferation in the stem. The activation of a C2H2 zinc finger transcription factor, AT5G27880/HVA, is responsible for the hva-d phenotype. Genetic, biochemical, and fluorescent microscopic analyses were used to dissect the functions of HVA. HVA functions as a repressor and interacts with TOPLESS via the conserved Ethylene-responsive element binding factor-associated Amphiphilic Repression motif. In contrast to the HVA activation line, knockout of HVA function with a CRISPR-Cas9 approach or expression of HVA fused with an activation domain VP16 (HVA-VP16) resulted in fewer vascular bundles. Further, HVA directly regulates the expression of the auxin transport efflux facilitator PIN1, as a result affecting auxin accumulation. Genetics analysis demonstrated that PIN1 is epistatic to HVA in controlling bundle number. This research identifies HVA as a positive regulator of vascular initiation through negatively modulating auxin transport and sheds new light on the mechanism of bundle formation in the stem.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Tallos de la Planta , Haz Vascular de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Transporte Biológico , Haz Vascular de Plantas/metabolismo , Tallos de la Planta/metabolismo , Mutación/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Fenotipo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Unión Proteica , Cámbium/metabolismo , Cámbium/genética , Epistasis Genética
3.
New Phytol ; 243(3): 851-865, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38890801

RESUMEN

Secondary xylem and phloem originate from a lateral meristem called the vascular cambium that consists of one to several layers of meristematic cells. Recent lineage tracing studies have shown that only one of the cambial cells in each radial cell file functions as the stem cell, capable of producing both secondary xylem and phloem. Here, we first review how phytohormones and signalling peptides regulate vascular cambium formation and activity. We then propose how the stem cell concept, familiar from apical meristems, could be applied to cambium studies. Finally, we discuss how this concept could set the basis for future research.


Asunto(s)
Cámbium , Células Madre , Xilema , Cámbium/citología , Cámbium/crecimiento & desarrollo , Cámbium/fisiología , Células Madre/citología , Xilema/citología , Floema/citología , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Haz Vascular de Plantas/crecimiento & desarrollo , Haz Vascular de Plantas/citología , Meristema/citología , Meristema/crecimiento & desarrollo
4.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1223-1232, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886420

RESUMEN

The radial growth of trees plays a crucial role in determining forest carbon sequestration capacity. Understanding the growth dynamics of trees and their response to environmental factors is essential for predicting forest's carbon sink potential under future climate change. Coniferous forest trees are particularly sensitive to climate change, with growth dynamics responding rapidly to environmental shifts. We collected and analyzed data from 99 papers published between 1975 and 2023, and examined the effects of exogenous factors (such as temperature, water, and photoperiod) and endogenous factors (including tree age and species) on cambial activity and radial growth in conifers. We further explored the mechanisms underlying these effects. The results showed that climate warming had the potential to advance the onset while delayed the end of xylem differentiation stages in conifers in temperate and boreal regions. Water availability played a crucial role in regulating the timing of cambial phenology and wood formation by influencing water potential and cell turgor. Additionally, the photoperiod not only participated in regulating the start and end times of growth, but also influenced the timing of maximum growth rate occurrence. Future climate warming was expected to extend the growing season, leading to increase in growth of conifers in boreal regions and expanding forests to higher altitudes or latitudes. However, changes in precipitation patterns and increased evapotranspiration resulting from temperature increases might advance the end of growing season and reduce growth rate in arid areas. To gain a more comprehensive understanding of the relationship between radial growth and climatic factors, it is necessary to develop process-based models to elucidate the physiological mechanisms underlying wood formation and the response of trees to climatic factors.


Asunto(s)
Cámbium , Cambio Climático , Tracheophyta , Cámbium/crecimiento & desarrollo , Tracheophyta/crecimiento & desarrollo , Tracheophyta/fisiología , Ecosistema , Secuestro de Carbono
5.
New Phytol ; 243(4): 1455-1471, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874377

RESUMEN

Wood is resulted from the radial growth paced by the division and differentiation of vascular cambium cells in woody plants, and phytohormones play important roles in cambium activity. Here, we identified that PagJAZ5, a key negative regulator of jasmonate (JA) signaling, plays important roles in enhancing cambium cell division and differentiation by mediating cytokinin signaling in poplar 84K (Populus alba × Populus glandulosa). PagJAZ5 is preferentially expressed in developing phloem and cambium, weakly in developing xylem cells. Overexpression (OE) of PagJAZ5m (insensitive to JA) increased cambium activity and xylem differentiation, while jaz mutants showed opposite results. Transcriptome analyses revealed that cytokinin oxidase/dehydrogenase (CKXs) and type-A response regulators (RRs) were downregulated in PagJAZ5m OE plants. The bioactive cytokinins were significantly increased in PagJAZ5m overexpressing plants and decreased in jaz5 mutants, compared with that in 84K plants. The PagJAZ5 directly interact with PagMYC2a/b and PagWOX4b. Further, we found that the PagRR5 is regulated by PagMYC2a and PagWOX4b and involved in the regulation of xylem development. Our results showed that PagJAZ5 can increase cambium activity and promote xylem differentiation through modulating cytokinin level and type-A RR during wood formation in poplar.


Asunto(s)
Cámbium , Ciclopentanos , Citocininas , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Populus , Transducción de Señal , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Citocininas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Xilema/metabolismo , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacología , Mutación/genética , Unión Proteica/efectos de los fármacos , Diferenciación Celular
6.
Plant Sci ; 346: 112138, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825043

RESUMEN

Vascular cambium in tree species is a cylindrical domain of meristematic cells that are responsible for producing secondary xylem (also called wood) inward and secondary phloem outward. The poplar (Populus trichocarpa) WUSCHEL (WUS)-RELATED HOMEOBOX (WOX) family members, PtrWUSa and PtrWOX13b, were previously shown to be expressed in vascular cambium and differentiating xylem cells in poplar stems, but their functions remain unknown. Here, we investigated roles of PtrWUSa, PtrWOX13b and their close homologs in vascular organization and wood formation. Expression analysis showed that like PtrWUSa and PtrWOX13b, their close homologs, PtrWUSb, PtrWUS4a/b and PtrWOX13a/c, were also expressed in vascular cambium and differentiating xylem cells in poplar stems. PtrWUSa also exhibited a high level of expression in developing phloem fibers. Expression of PtrWUSa fused with the dominant EAR repression domain (PtrWUSa-DR) in transgenic poplar caused retarded growth of plants with twisted stems and curled leaves and a severe disruption of vascular organization. In PtrWUSa-DR stems, a drastic proliferation of cells occurred in the phloem region between vascular cambium and phloem fibers and they formed islands of ectopic vascular tissues or phloem fiber-like sclerenchyma cells. A similar proliferation of cells was also observed in PtrWUSa-DR leaf petioles and midveins. On the other hand, overexpression of PtrWOX4a-DR caused ectopic formation of vascular bundles in the cortical region, and overexpression of PtrWOX13a-DR and PtrWOX13b-DR led to a reduction in wood formation without affecting vascular organization in transgenic poplar plants. Together, these findings indicate crucial roles of PtrWUSa and PtrWOX13a/b in regulating vascular organization and wood formation, which furthers our understanding of the functions of WOX genes in regulating vascular cambium activity in tree species.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Madera , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Madera/crecimiento & desarrollo , Madera/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/genética , Cámbium/genética , Cámbium/crecimiento & desarrollo , Plantas Modificadas Genéticamente/genética , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Genes Homeobox , Floema/genética , Floema/crecimiento & desarrollo , Floema/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo
7.
Plant Sci ; 344: 112106, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38663480

RESUMEN

PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.


Asunto(s)
Cámbium , Sequías , Proteínas de Plantas , Populus , Especies Reactivas de Oxígeno , Populus/genética , Populus/fisiología , Populus/metabolismo , Populus/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/fisiología , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Modificadas Genéticamente/genética , Homeostasis , Regulación de la Expresión Génica de las Plantas , Xilema/metabolismo , Xilema/fisiología , Xilema/genética , Estrés Fisiológico , Resistencia a la Sequía
8.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38612390

RESUMEN

Dormancy release and reactivation in temperate trees are mainly controlled by temperature and are affected by age, but the underlying molecular mechanisms are still unclear. In this study, we explored the effects of low temperatures in winter and warm temperatures in spring on dormancy release and reactivation in Larix kaempferi. Further, we established the relationships between cell-cycle genes and cambium cell division. The results showed that chilling accelerated L. kaempferi bud break overall, and the longer the duration of chilling is, the shorter the bud break time is. After dormancy release, warm temperatures induced cell-cycle gene expression; when the configuration value of the cell-cycle genes reached 4.97, the cambium cells divided and L. kaempferi reactivated. This study helps to predict the impact of climate change on wood production and provides technical support for seedling cultivation in greenhouses.


Asunto(s)
Larix , Larix/genética , Cámbium , Genes cdc , División Celular , Cambio Climático
9.
Curr Opin Plant Biol ; 78: 102526, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38479078

RESUMEN

Vascular cells form a highly complex and heterogeneous tissue. Its composition, function, shape, and arrangement vary with the developmental stage and between organs and species. Understanding the transcriptional regulation underpinning this complexity thus requires a high-resolution technique that is capable of capturing rapid events during vascular cell formation. Single-cell and single-nucleus RNA sequencing (sc/snRNA-seq) approaches provide powerful tools to extract transcriptional information from these lowly abundant and dynamically changing cell types, which allows the reconstruction of developmental trajectories. Here, we summarize and reflect on recent studies using single-cell transcriptomics to study vascular cell types and discuss current and future implementations of sc/snRNA-seq approaches in the field of vascular development.


Asunto(s)
Cámbium , Xilema , Cámbium/genética , Cámbium/metabolismo , Xilema/metabolismo , Floema/metabolismo , Plantas/genética , ARN Nuclear Pequeño/metabolismo
10.
Plant Cell ; 36(5): 1806-1828, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339982

RESUMEN

Wood formation involves consecutive developmental steps, including cell division of vascular cambium, xylem cell expansion, secondary cell wall (SCW) deposition, and programmed cell death. In this study, we identified PagMYB31 as a coordinator regulating these processes in Populus alba × Populus glandulosa and built a PagMYB31-mediated transcriptional regulatory network. PagMYB31 mutation caused fewer layers of cambial cells, larger fusiform initials, ray initials, vessels, fiber and ray cells, and enhanced xylem cell SCW thickening, showing that PagMYB31 positively regulates cambial cell proliferation and negatively regulates xylem cell expansion and SCW biosynthesis. PagMYB31 repressed xylem cell expansion and SCW thickening through directly inhibiting wall-modifying enzyme genes and the transcription factor genes that activate the whole SCW biosynthetic program, respectively. In cambium, PagMYB31 could promote cambial activity through TRACHEARY ELEMENT DIFFERENTIATION INHIBITORY FACTOR (TDIF)/PHLOEM INTERCALATED WITH XYLEM (PXY) signaling by directly regulating CLAVATA3/ESR-RELATED (CLE) genes, and it could also directly activate WUSCHEL HOMEOBOX RELATED4 (PagWOX4), forming a feedforward regulation. We also observed that PagMYB31 could either promote cell proliferation through the MYB31-MYB72-WOX4 module or inhibit cambial activity through the MYB31-MYB72-VASCULAR CAMBIUM-RELATED MADS2 (VCM2)/PIN-FORMED5 (PIN5) modules, suggesting its role in maintaining the homeostasis of vascular cambium. PagMYB31 could be a potential target to manipulate different developmental stages of wood formation.


Asunto(s)
Cámbium , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Populus , Factores de Transcripción , Xilema , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , Xilema/metabolismo , Xilema/genética , Xilema/crecimiento & desarrollo , Cámbium/genética , Cámbium/crecimiento & desarrollo , Cámbium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Proliferación Celular , Madera/crecimiento & desarrollo , Madera/metabolismo , Madera/genética
11.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38256092

RESUMEN

Secondary development is a key biological characteristic of woody plants and the basis of wood formation. Exogenous nitrogen can affect the secondary growth of poplar, and some regulatory mechanisms have been found in the secondary xylem. However, the effect of nitrogen on cambium has not been reported. Herein, we investigated the effects of different nitrogen concentrations on cambium development using combined transcriptome and metabolome analysis. The results show that, compared with 1 mM NH4NO3 (M), the layers of hybrid poplar cambium cells decreased under the 0.15 mM NH4NO3 (L) and 0.3 mM NH4NO3 (LM) treatments. However, there was no difference in the layers of hybrid poplar cambium cells under the 3 mM NH4NO3 (HM) and 5 mM NH4NO3 (H) treatments. Totals of 2365, 824, 649 and 398 DEGs were identified in the M versus (vs.) L, M vs. LM, M vs. HM and M vs. H groups, respectively. Expression profile analysis of the DEGs showed that exogenous nitrogen affected the gene expression involved in plant hormone signal transduction, phenylpropanoid biosynthesis, the starch and sucrose metabolism pathway and the ubiquitin-mediated proteolysis pathway. In M vs. L, M vs. LM, M vs. HM and M vs. H, differential metabolites were enriched in flavonoids, lignans, coumarins and saccharides. The combined analysis of the transcriptome and metabolome showed that some genes and metabolites in plant hormone signal transduction, phenylpropanoid biosynthesis and starch and sucrose metabolism pathways may be involved in nitrogen regulation in cambium development, whose functions need to be verified. In this study, from the point of view that nitrogen influences cambium development to regulate wood formation, the network analysis of the transcriptome and metabolomics of cambium under different nitrogen supply levels was studied for the first time, revealing the potential regulatory and metabolic mechanisms involved in this process and providing new insights into the effects of nitrogen on wood development.


Asunto(s)
Cámbium , Populus , Cámbium/genética , Reguladores del Crecimiento de las Plantas , Transcriptoma , Metaboloma , Nitrógeno , Populus/genética , Almidón , Sacarosa
12.
J Integr Plant Biol ; 66(1): 86-102, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38051026

RESUMEN

Secondary vascular tissue (SVT) development and regeneration are regulated by phytohormones. In this study, we used an in vitro SVT regeneration system to demonstrate that gibberellin (GA) treatment significantly promotes auxin-induced cambium reestablishment. Altering GA content by overexpressing or knocking down ent-kaurene synthase (KS) affected secondary growth and SVT regeneration in poplar. The poplar DELLA gene GIBBERELLIC ACID INSENSITIVE (PtoGAI) is expressed in a specific pattern during secondary growth and cambium regeneration after girdling. Overexpression of PtoGAI disrupted poplar growth and inhibited cambium regeneration, and the inhibition of cambium regeneration could be partially restored by GA application. Further analysis of the PtaDR5:GUS transgenic plants, the localization of PIN-FORMED 1 (PIN1) and the expression of auxin-related genes found that an additional GA treatment could enhance the auxin response as well as the expression of PIN1, which mediates auxin transport during SVT regeneration. Taken together, these findings suggest that GA promotes cambium regeneration by stimulating auxin signal transduction.


Asunto(s)
Ácidos Indolacéticos , Populus , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Giberelinas/farmacología , Cámbium/genética , Regulación de la Expresión Génica de las Plantas
13.
Evolution ; 78(3): 480-496, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38150399

RESUMEN

Greater diversity in functional morphology should be associated with the evolution of greater ontogenetic diversity, an expectation difficult to test in most long-lived wild organisms. In the cells derived from the wood meristem (vascular cambium), plants provide extraordinary systems for reconstructing ontogenies in often long-lived organisms. The vascular cambium produces files of cells from the stem center to the periphery, with each cambial derivative "deciding" which of four cell types it differentiates into. Wood cell files remain in place, allowing tracing of the ontogenetic "decisions" taken throughout the life of a stem. We compared cell files from the Pedilanthus clade (genus Euphorbia), which span a range of growth forms from small trees and shrubs of tropical habitats to desert succulents. Using language theory, we represented wood cell types as "letters" and combinations of cell types in cell files as "words," allowing us to measure the diversity of decisions based on word frequency matrices. We also used information content metrics to compare levels of predictability in "decision-making." Our analyses identified a wider array of developmental decisions in woody trees as compared to succulent shrubs, illustrating ways that woody plants provide unparalleled systems for studying the evolution of ontogeny in long-lived, non-model species.


Asunto(s)
Plantas , Madera , Cámbium/anatomía & histología , Árboles/anatomía & histología , Ecosistema
14.
BMC Plant Biol ; 23(1): 500, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37848837

RESUMEN

BACKGROUND: Wood is a secondary xylem generated by vascular cambium. Vascular cambium activities mainly include cambium proliferation and vascular tissue formation through secondary growth, thereby producing new secondary phloem inward and secondary xylem outward and leading to continuous tree thickening and wood formation. Wood formation is a complex biological process, which is strictly regulated by multiple genes. Therefore, molecular level research on the vascular cambium of different tree ages can lead to the identification of both key and related genes involved in wood formation and further explain the molecular regulation mechanism of wood formation. RESULTS: In the present study, RNA-Seq and Pac-Bio Iso-Seq were used for profiling gene expression changes in Eucalyptus urophylla × Eucalyptus grandis (E. urograndis) vascular cambium at four different ages. A total of 59,770 non-redundant transcripts and 1892 differentially expressed genes (DEGs) were identified. The expression trends of the DEGs related to cell division and differentiation, cell wall biosynthesis, phytohormone, and transcription factors were analyzed. The DEGs encoding expansin, kinesin, cycline, PAL, GRP9, KNOX, C2C2-dof, REV, etc., were highly expressed in E. urograndis at three years old, leading to positive effects on growth and development. Moreover, some gene family members, such as NAC, MYB, HD-ZIP III, RPK, and RAP, play different regulatory roles in wood formation because of their sophisticated transcriptional network and function redundantly. CONCLUSIONS: These candidate genes are a potential resource to further study wood formation, especially in fast-growing and adaptable eucalyptus. The results may also serve as a basis for further research to unravel the molecular mechanism underlying wood formation.


Asunto(s)
Eucalyptus , Eucalyptus/genética , Eucalyptus/metabolismo , Cámbium/genética , Transcriptoma , Madera/genética , Xilema , Árboles/genética , Regulación de la Expresión Génica de las Plantas
16.
J Plant Res ; 136(6): 865-877, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37707645

RESUMEN

Plants are exposed to a variety of biotic and abiotic stresses, including wounding at the stem. The healing process (tissue reunion) begins immediately after stem wounding. The plant hormone auxin plays an important role during tissue reunion. In decapitated stems, auxin transport from the shoot apex is reduced and tissue reunion does not occur but is restored by application of indole-3-acetic acid (IAA). In this study, we found that plasmodesmata callose binding protein 2 (PDCB2) affects the expansion of the cambium/phloem region via changes in auxin response during the process of tissue reunion. PDCB2 was expressed in the cortex and endodermis on the incised side of stems 1-3 days after incision. PDCB2-knockout plants showed reduced callose deposition at plasmodesmata and DR5::GUS activity in the endodermis/cortex in the upper region of the incision accompanied by an increase in size of the cambium/phloem region during tissue reunion. In addition, PIN(PIN-FORMED)3, which is involved in lateral auxin transport, was induced by auxin in the cambium/phloem and endodermis/cortex in the upper part of the incision in wild type, but its expression of PIN3 was decreased in pdcb2 mutant. Our results suggest that PDCB2 contributes to the regulation of cambium/phloem development via auxin response.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Floema , Cámbium , Proteínas de Arabidopsis/genética , Proteínas Portadoras/metabolismo , Plasmodesmos/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
Int J Mol Sci ; 24(17)2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37685908

RESUMEN

PEAR proteins are a type of plant-specific DNA binding with one finger (Dof) transcription factors that play a key role in the regulation of plant growth, especially during phloem cell growth and seed germination in Arabidopsis. However, the identification, characteristics and function of PEAR proteins, particularly in woody plants, need to be further studied. In the present study, 43 candidate PEAR proteins harboring the conserved Zf-Dof domain were obtained in Populus yunnanensis. Based on phylogenetic and structural analysis, 10 representative PEAR candidates were selected, belonging to different phylogenetic groups. The functions of PEAR proteins in the stress response, signal transduction, and growth regulation of stem cambium and roots undergoing vigorous cell division in Arabidopsis were revealed based on their expression patterns as characterized by qRT-PCR analysis, in accordance with the results of cis-element analysis. In vitro experiments showed that the interaction of transcription factor (E2F) and cyclin indirectly reflects the growth regulation function of PEAR through light signaling and cell-cycle regulation. Therefore, our results provide new insight into the identity of PEAR proteins and their function in stress resistance and vigorous cell division regulation of tissues in P. yunnanensis, which may serve as a basis for further investigation of the functions and characteristics of PEAR proteins in other plants.


Asunto(s)
Arabidopsis , Populus , Populus/genética , Filogenia , Cámbium , Ciclo Celular , ADN de Plantas , Factores de Transcripción E2F
18.
Methods Mol Biol ; 2698: 13-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37682466

RESUMEN

Inducible, tissue-specific gene expression is a potent tool to study gene regulatory networks as it allows spatially and temporally controlled genetic perturbations. To this end, we generated a toolkit that covers many cell types in the three main meristems: the root apical meristem, the shoot apical meristem, and the vascular cambium. The system is based on an extensive set of driver lines expressing a synthetic transcription factor under cell type-specific promoters. Induction leads to nuclear translocation of the transcription factor and expression of response elements under control of a cognate synthetic promoter. In addition, a fluorescent reporter incorporated in driver lines allows to monitor induction. All previously generated driver lines are available from the Nottingham Arabidopsis Stock Center. This protocol describes how users can create their own constructs compatible with the existing set of lines and as well as induction and imaging procedures.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Cámbium , Colorantes , Factores de Transcripción/genética , Expresión Génica
19.
Genome Biol ; 24(1): 194, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626404

RESUMEN

BACKGROUND: Somatic embryogenesis is a major process for plant regeneration. However, cell communication and the gene regulatory network responsible for cell reprogramming during somatic embryogenesis are still largely unclear. Recent advances in single-cell technologies enable us to explore the mechanism of plant regeneration at single-cell resolution. RESULTS: We generate a high-resolution single-cell transcriptomic landscape of hypocotyl tissue from the highly regenerable cotton genotype Jin668 and the recalcitrant TM-1. We identify nine putative cell clusters and 23 cluster-specific marker genes for both cultivars. We find that the primary vascular cell is the major cell type that undergoes cell fate transition in response to external stimulation. Further developmental trajectory and gene regulatory network analysis of these cell clusters reveals that a total of 41 hormone response-related genes, including LAX2, LAX1, and LOX3, exhibit different expression patterns in the primary xylem and cambium region of Jin668 and TM-1. We also identify novel genes, including CSEF, PIS1, AFB2, ATHB2, PLC2, and PLT3, that are involved in regeneration. We demonstrate that LAX2, LAX1 and LOX3 play important roles in callus proliferation and plant regeneration by CRISPR/Cas9 editing and overexpression assay. CONCLUSIONS: This study provides novel insights on the role of the regulatory network in cell fate transition and reprogramming during plant regeneration driven by somatic embryogenesis.


Asunto(s)
Meristema , Nicho de Células Madre , Meristema/genética , Gossypium/genética , Cámbium , Bioensayo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA