Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2775: 225-237, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758321

RESUMEN

The polysaccharide capsule of Cryptococcus neoformans is the primary virulence factor and one of the most commonly studied aspects of this pathogenic yeast. Capsule size varies widely between strains, has the ability to grow rapidly when introduced to stressful or low-nutrient conditions, and has been positively correlated with strain virulence. For these reasons, the size of the capsule is of great interest to C. neoformans researchers. Inducing the growth of the C. neoformans capsule is used during phenotypic testing to help understand the effects of different treatments on the yeast or size differences between strains. Here, we describe one of the standard methods of capsule induction and detail two accepted methods of staining: (i) India ink, a negative stain, used in conjunction with conventional light microscopy and (ii) co-staining with fluorescent dyes of both the cell wall and capsule followed by confocal microscopy. Finally, we outline how to measure capsule diameter manually and offer a protocol for automated diameter measurement of India ink-stained samples using computational image analysis.


Asunto(s)
Cryptococcus neoformans , Coloración y Etiquetado , Cryptococcus neoformans/citología , Coloración y Etiquetado/métodos , Microscopía Confocal/métodos , Pared Celular/metabolismo , Pared Celular/ultraestructura , Cápsulas Fúngicas/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos , Colorantes Fluorescentes/química , Carbono
2.
Methods Mol Biol ; 2775: 367-373, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38758330

RESUMEN

Glucuronoxylomannan (GXM) is the principal capsular component in the Cryptococcus genus. This complex polysaccharide participates in numerous events related to the physiology and pathogenesis of Cryptococcus, which highlights the importance of establishing methods for its isolation and analysis. Conventional methods for GXM isolation have been extensively discussed in the literature. In this chapter, we describe two fast methods for obtaining extracellular fractions enriched with cryptococcal GXM.


Asunto(s)
Cryptococcus , Polisacáridos , Polisacáridos/química , Antígenos Fúngicos/inmunología , Cryptococcus neoformans , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/química , Humanos
3.
Front Cell Infect Microbiol ; 14: 1369301, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774630

RESUMEN

Dual-specificity LAMMER kinases are highly evolutionarily conserved in eukaryotes and play pivotal roles in diverse physiological processes, such as growth, differentiation, and stress responses. Although the functions of LAMMER kinase in fungal pathogens in pathogenicity and stress responses have been characterized, its role in Cryptococcus neoformans, a human fungal pathogen and a model yeast of basidiomycetes, remains elusive. In this study, we identified a LKH1 homologous gene and constructed a strain with a deleted LKH1 and a complemented strain. Similar to other fungi, the lkh1Δ mutant showed intrinsic growth defects. We observed that C. neoformans Lkh1 was involved in diverse stress responses, including oxidative stress and cell wall stress. Particularly, Lkh1 regulates DNA damage responses in Rad53-dependent and -independent manners. Furthermore, the absence of LKH1 reduced basidiospore formation. Our observations indicate that Lkh1 becomes hyperphosphorylated upon treatment with rapamycin, a TOR protein inhibitor. Notably, LKH1 deletion led to defects in melanin synthesis and capsule formation. Furthermore, we found that the deletion of LKH1 led to the avirulence of C. neoformans in a systemic cryptococcosis murine model. Taken together, Lkh1 is required for the stress response, sexual differentiation, and virulence of C. neoformans.


Asunto(s)
Criptococosis , Cryptococcus neoformans , Melaninas , Estrés Oxidativo , Estrés Fisiológico , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/genética , Cryptococcus neoformans/enzimología , Virulencia , Animales , Criptococosis/microbiología , Ratones , Melaninas/metabolismo , Modelos Animales de Enfermedad , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Fosforilación , Daño del ADN , Pared Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/genética , Sirolimus/farmacología , Ratones Endogámicos BALB C , Femenino , Esporas Fúngicas/crecimiento & desarrollo
4.
J Biol Chem ; 298(4): 101769, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218774

RESUMEN

The polysaccharide capsule of fungal pathogen Cryptococcus neoformans is a critical virulence factor that has historically evaded complete characterization. Cryptococcal polysaccharides are known to either remain attached to the cell as capsular polysaccharides (CPSs) or to be shed into the extracellular space as exopolysaccharides (EPSs). While many studies have examined the properties of EPS, far less is known about CPS. In this work, we detail the development of new physical and enzymatic methods for the isolation of CPS which can be used to explore the architecture of the capsule and isolated capsular material. We show that sonication or Glucanex enzyme cocktail digestion yields soluble CPS preparations, while use of a French pressure cell press or Glucanex digestion followed by cell disruption removed the capsule and produced cell wall-associated polysaccharide aggregates that we call "capsule ghosts", implying an inherent organization that allows the CPS to exist independent of the cell wall surface. Since sonication and Glucanex digestion were noncytotoxic, it was also possible to observe the cryptococcal cells rebuilding their capsule, revealing the presence of reducing end glycans throughout the capsule. Finally, analysis of dimethyl sulfoxide-extracted and sonicated CPS preparations revealed the conservation of previously identified glucuronoxylomannan motifs only in the sonicated CPS. Together, these observations provide new insights into capsule architecture and synthesis, consistent with a model in which the capsule is assembled from the cell wall outward using smaller polymers, which are then compiled into larger ones.


Asunto(s)
Cryptococcus neoformans , Cápsulas Fúngicas , Polisacáridos , Pared Celular/química , Pared Celular/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/química , Cápsulas Fúngicas/metabolismo , Polisacáridos/metabolismo , Factores de Virulencia/metabolismo
5.
BMC Microbiol ; 21(1): 341, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903172

RESUMEN

BACKGROUND: Fungal infections impact over 25% of the global population. For the opportunistic fungal pathogen, Cryptococcus neoformans, infection leads to cryptococcosis. In the presence of the host, disease is enabled by elaboration of sophisticated virulence determinants, including polysaccharide capsule, melanin, thermotolerance, and extracellular enzymes. Conversely, the host protects itself from fungal invasion by regulating and sequestering transition metals (e.g., iron, zinc, copper) important for microbial growth and survival. RESULTS: Here, we explore the intricate relationship between zinc availability and fungal virulence via mass spectrometry-based quantitative proteomics. We observe a core proteome along with a distinct zinc-regulated protein-level signature demonstrating a shift away from transport and ion binding under zinc-replete conditions towards transcription and metal acquisition under zinc-limited conditions. In addition, we revealed a novel connection among zinc availability, thermotolerance, as well as capsule and melanin production through the detection of a Wos2 ortholog in the secretome under replete conditions. CONCLUSIONS: Overall, we provide new biological insight into cellular remodeling at the protein level of C. neoformans under regulated zinc conditions and uncover a novel connection between zinc homeostasis and fungal virulence determinants.


Asunto(s)
Cryptococcus neoformans/patogenicidad , Chaperonas Moleculares/metabolismo , Proteoma/metabolismo , Secretoma/metabolismo , Zinc/metabolismo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Melaninas/metabolismo , Chaperonas Moleculares/genética , Mutación , Proteómica , Termotolerancia , Virulencia/genética
6.
mBio ; 12(6): e0279021, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724824

RESUMEN

The environmental yeast Cryptococcus neoformans is the most common cause of deadly fungal meningitis in primarily immunocompromised populations. A number of factors contribute to cryptococcal pathogenesis. Among them, inositol utilization has been shown to promote C. neoformans development in nature and invasion of central nervous system during dissemination. The mechanisms of the inositol regulation of fungal virulence remain incompletely understood. In this study, we analyzed inositol-induced capsule growth and the contribution of a unique inositol catabolic pathway in fungal development and virulence. We found that genes involved in the inositol catabolic pathway are highly induced by inositol, and they are also highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. This pathway in C. neoformans contains three genes encoding myo-inositol oxygenases that convert myo-inositol into d-glucuronic acid, a substrate of the pentose phosphate cycle and a component of the polysaccharide capsule. Our mutagenesis analysis demonstrates that inositol catabolism is required for C. neoformans virulence and deletion mutants of myo-inositol oxygenases result in altered capsule growth as well as the polysaccharide structure, including O-acetylation. Our study indicates that the ability to utilize the abundant inositol in the brain may contribute to fungal pathogenesis in this neurotropic fungal pathogen. IMPORTANCE The human pathogen Cryptococcus neoformans is the leading cause of fungal meningitis in primarily immunocompromised populations. Understanding how this environmental organism adapts to the human host to cause deadly infection will guide our development of novel disease control strategies. Our recent studies revealed that inositol utilization by the fungus promotes C. neoformans development in nature and invasion of the central nervous system during infection. The mechanisms of the inositol regulation in fungal virulence remain incompletely understood. In this study, we found that C. neoformans has three genes encoding myo-inositol oxygenase, a key enzyme in the inositol catabolic pathway. Expression of these genes is highly induced by inositol, and they are highly expressed in the cerebrospinal fluid of patients with meningoencephalitis. Our mutagenesis analysis indeed demonstrates that inositol catabolism is required for C. neoformans virulence by altering the growth and structure of polysaccharide capsule, a major virulence factor. Considering the abundance of free inositol and inositol-related metabolites in the brain, our study reveals an important mechanism of host inositol-mediated fungal pathogenesis for this neurotropic fungal pathogen.


Asunto(s)
Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Cápsulas Fúngicas/química , Inositol/metabolismo , Meningitis Criptocócica/microbiología , Animales , Encéfalo/metabolismo , Encéfalo/microbiología , Cryptococcus neoformans/química , Cryptococcus neoformans/genética , Femenino , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Humanos , Masculino , Meningitis Criptocócica/metabolismo , Ratones , Oxigenasas/genética , Oxigenasas/metabolismo , Conejos , Virulencia
7.
N Biotechnol ; 58: 55-60, 2020 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-32562862

RESUMEN

Co-culture conditions are beneficial for study due to the advances which arise from symbiotic interactions and which cannot be replicated under pure culture conditions. Here, the focus is on the connection between two fungi - a yeast, Saccharomyces cerevisiae, and a filamentous fungus, Penicillium chrysogenum - in a yeast immobilization system termed' yeast biocapsules', where the yeast and filamentous fungus are strongly attached to one another, forming spherical structures. This co-culture condition hinders filamentous fungal biomass growth, while immobilization of yeast cells continues to increase. The effect of the co-culture condition on endometabolites or intracellular metabolites were tracked during the beginning and end of the yeast biocapsule formation period, and metabolites analyzed by Gas Chromatography-Mass Spectrometry Detector (GC-MSD). Distinct metabolite profiles were found between single culture conditions, involving each organism separately, and with the co-culture condition, where there were differences in 54 endometabolites. Specifically, co-culture condition compounds such as fructose, glycolic acid and glyceric acid were present in higher concentrations at the end of biocapsule formation. These results shed light on the mechanisms and biochemical impact of the interaction between the yeast and filamentous fungus and serve as a basis to apply and further develop yeast biocapsules as a new biotechnological tool with benefits for industry.


Asunto(s)
Cápsulas Fúngicas/metabolismo , Penicillium chrysogenum/metabolismo , Saccharomyces cerevisiae/metabolismo , Biomasa , Biotecnología , Técnicas de Cocultivo , Fructosa/química , Fructosa/metabolismo , Cápsulas Fúngicas/química , Cromatografía de Gases y Espectrometría de Masas , Ácidos Glicéricos/química , Ácidos Glicéricos/metabolismo , Glicolatos/química , Glicolatos/metabolismo , Penicillium chrysogenum/química , Penicillium chrysogenum/citología , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citología
8.
J Mycol Med ; 30(1): 100905, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31706700

RESUMEN

INTRODUCTION: Iron chelator has previously demonstrated fungicidal effects. This study aimed to investigate the antifungal activity of the iron chelators deferoxamine (DFO) and deferasirox (DSX) against Cryptococcus. MATERIALS AND METHODS: Cryptococcus neoformans and Cryptococcus gattii were used to determine the minimal inhibitory concentrations (MICs) of DFO and DSX, and the fractional inhibitory concentration index (FICI) of DFO and DSX when combined with amphotericin B (AMB). Expression of cryptococcal CFT1, CFT2, and CIR1 genes was determined using real-time polymerase chain reaction (PCR). RESULTS: Neither DFO nor DSX alone showed antifungal activity against Cryptococcus strains. When combined with AMB, the MICs of DFO and DSX decreased from>200µg/mL to 6.25 or 12.5µg/mL. The MIC of AMB decreased one-fold dilution in most strains when combined with iron chelators. The FICI of DFO+AMB and DSX+AMB was 0.5 and 1, respectively. C. neoformans showed significant growth retardation when incubated with a combination of sub-MIC concentrations of AMB and DFO; whereas, C. gattii demonstrated lesser growth retardation in DFO+AMB. No cryptococcal growth retardation was observed when DSX was combined with AMB. When C. neoformans was grown in DFO, the CFT1, CFT2, and CIR1 proteins were expressed 1.7, 2.0, and 0.9 times, respectively. When C. neoformans was grown in DSX, the CFT1, CFT2, and CIR1 genes were expressed 0.5, 0.6, and 0.3 times, respectively. CONCLUSION: Synergistic antifungal activity of combination DFO and AMB was observed in Cryptococcus. Relatively increased CFT1 and CFT2 expression may be associated with the effect of DFO that inhibits the growth of fungi.


Asunto(s)
Cryptococcus/efectos de los fármacos , Cryptococcus/crecimiento & desarrollo , Cryptococcus/genética , Quelantes del Hierro/farmacología , Hierro/metabolismo , Anfotericina B/farmacología , Antifúngicos/farmacología , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus/metabolismo , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/genética , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/metabolismo , Deferasirox/farmacología , Deferoxamina/farmacología , Sinergismo Farmacológico , Cápsulas Fúngicas/efectos de los fármacos , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Infecciones Fúngicas Invasoras/complicaciones , Infecciones Fúngicas Invasoras/tratamiento farmacológico , Infecciones Fúngicas Invasoras/microbiología , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/microbiología , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/genética , Pruebas de Sensibilidad Microbiana , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
9.
Fungal Genet Biol ; 124: 59-72, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30630094

RESUMEN

Cryptococcus neoformans is a ubiquitous yeast pathogen that often infects the human central nervous system (CNS) to cause meningitis in immunocompromised individuals. Although numerous signaling pathways and factors important for fungal sexual reproduction and virulence have been investigated, their precise mechanism of action remains to be further elucidated. In this study, we identified and characterized a novel zinc finger protein Zfp1 that regulates fungal sexual reproduction and virulence in C. neoformans. qRT-PCR and ZFP1 promoter regulatory activity assays revealed a ubiquitous expression pattern of ZFP1 in all stages during mating. Subcellular localization analysis indicates that Zfp1 is targeted to the cytoplasm of C. neoformans. In vitro assays of stress responses showed that zfp1Δ mutants and the ZFP1 overexpressed strains ZFP1OE are hypersensitive to SDS, but not Congo red, indicating that Zfp1 may regulate cell membrane integrity. Zfp1 is also essential for fungal sexual reproduction because basidiospore production was blocked in bilateral mating between zfp1Δ mutants or ZFP1 overexpressed strains. Fungal nuclei development assay showed that nuclei in the bilateral mating of zfp1Δ mutants or ZFP1 overexpressed strains failed to undergo meiosis after fusion, indicating Zfp1 is important for regulating meiosis during mating. Although zfp1Δ mutants showed normal growth and produced normal major virulence factors, virulence was attenuated in a murine model. Interestingly, we found that the ZFP1 overexpressed strains were avirulent in a murine systemic-infection model. Overall, our study showed that the zinc finger protein Zfp1 is essential for fungal sporulation and virulence in C. neoformans.


Asunto(s)
Cryptococcus neoformans/fisiología , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/fisiología , Dedos de Zinc/fisiología , Secuencias de Aminoácidos , Animales , Western Blotting , Membrana Celular/metabolismo , División del Núcleo Celular/fisiología , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/genética , Femenino , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Meiosis/fisiología , Ratones Endogámicos BALB C , Reacción en Cadena en Tiempo Real de la Polimerasa , Virulencia , Zinc/metabolismo , Dedos de Zinc/genética
10.
Sci Rep ; 8(1): 16378, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30401972

RESUMEN

Cryptococcus neoformans is an opportunistic fungus that can cause lethal brain infections in immunosuppressed individuals. Infection usually occurs via the inhalation of a spore or desiccated yeast which can then disseminate from the lung to the brain and other tissues. Dissemination and disease is largely influence by the production of copious amounts of cryptococcal polysaccharides, both which are secreted to the extracellular environment or assembled into a thick capsule surrounding the cell body. There are two important polysaccharides: glucuronoxylomannan (GXM) and galactoxylomannan, also called as glucuronoxylomanogalactan (GXMGal or GalXM). Although GXM is more abundant, GalXM has a more potent modulatory effect. In the present study, we show that GalXM is a potent activator of murine dendritic cells, and when co-cultured with T cells, induces a Th17 cytokine response. We also demonstrated that treating mice with GalXM prior to infection with C. neoformans protects from infection, and this phenomenon is dependent on IL-6 and IL-17. These findings help us understand the immune biology of capsular polysaccharides in fungal pathogenesis.


Asunto(s)
Criptococosis/metabolismo , Cryptococcus neoformans/fisiología , Cápsulas Fúngicas/metabolismo , Interleucina-17/metabolismo , Polisacáridos/farmacología , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/metabolismo , Criptococosis/inmunología , Cryptococcus neoformans/metabolismo , Células Dendríticas/citología , Células Dendríticas/efectos de los fármacos , Interferón gamma/biosíntesis , Interleucina-17/biosíntesis , Ratones , Células Th17/citología , Células Th17/efectos de los fármacos
11.
Mem Inst Oswaldo Cruz ; 113(7): e180040, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29742198

RESUMEN

Cryptococcus neoformans is an opportunistic fungal pathogen that is ubiquitous in the environment. It causes a deadly meningitis that is responsible for over 180,000 deaths worldwide each year, including 15% of all AIDS-related deaths. The high mortality rates for this infection, even with treatment, suggest a need for improved therapy. Unique characteristics of C. neoformans may suggest directions for drug discovery. These include features of three structures that surround the cell: the plasma membrane, the cell wall around it, and the outermost polysaccharide capsule. We review current knowledge of the fundamental biology of these fascinating structures and highlight open questions in the field, with the goal of stimulating further investigation that will advance basic knowledge and human health.


Asunto(s)
Cryptococcus neoformans , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/biosíntesis , Polisacáridos/biosíntesis , Pared Celular , Cryptococcus neoformans/química , Cryptococcus neoformans/citología , Cryptococcus neoformans/patogenicidad , Virulencia
12.
Artículo en Inglés | MEDLINE | ID: mdl-29844051

RESUMEN

Cryptococcus spp. are common opportunistic fungal pathogens, particularly in HIV patients. The approved drug miltefosine (MFS) has potential as an alternative antifungal against cryptococcosis; however, the mechanism of action of MFS in Cryptococcus is poorly understood. Here, we examined the effects of MFS on C. neoformans and C. gattii yeasts (planktonic and biofilm lifestyles) to clarify its mechanism of action. MFS presented inhibitory and fungicidal effects against planktonic Cryptococcus cells, with similar activities against dispersion biofilm cells, while sessile biofilm cells were less sensitive to MFS. Interestingly, MFS had postantifungal effect on Cryptococcus, with a proliferation delay of up to 8.15 h after a short exposure to fungicidal doses. MFS at fungicidal concentrations increased the plasma membrane permeability, likely due to a direct interaction with ergosterol, as suggested by competition assays with exogenous ergosterol. Moreover, MFS reduced the mitochondrial membrane potential, increased reactive oxygen species (ROS) production, and induced DNA fragmentation and condensation, all of which are hallmarks of apoptosis. Transmission electron microscopy analysis showed that MFS-treated yeasts had a reduced mucopolysaccharide capsule (confirmed by morphometry with light microscopy), plasma membrane irregularities, mitochondrial swelling, and a less conspicuous cell wall. Our results suggest that MFS increases the plasma membrane permeability in Cryptococcus via an interaction with ergosterol and also affects the mitochondrial membrane, eventually leading to apoptosis, in line with its fungicidal activity. These findings confirm the potential of MFS as an antifungal against C. neoformans and C. gattii and warrant further studies to establish clinical protocols for MFS use against cryptococcosis.


Asunto(s)
Antifúngicos/farmacología , Apoptosis/efectos de los fármacos , Cryptococcus gattii/efectos de los fármacos , Cryptococcus neoformans/efectos de los fármacos , Fosforilcolina/análogos & derivados , Anfotericina B/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular/efectos de los fármacos , Criptococosis/tratamiento farmacológico , Criptococosis/microbiología , Cryptococcus gattii/metabolismo , Cryptococcus gattii/ultraestructura , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/ultraestructura , Fragmentación del ADN/efectos de los fármacos , Ergosterol/metabolismo , Cápsulas Fúngicas/efectos de los fármacos , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/ultraestructura , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Infecciones Oportunistas/tratamiento farmacológico , Infecciones Oportunistas/microbiología , Fosforilcolina/farmacología , Plancton/efectos de los fármacos , Plancton/crecimiento & desarrollo , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo
13.
Med Mycol J ; 59(1): E1-E6, 2018.
Artículo en Japonés | MEDLINE | ID: mdl-29491337

RESUMEN

This article presents the ultrastructural patterns of interactions between the murine lung macrophages and cells of low- (RKPGY-881, -1165, -1178) and high-virulence (RKPGY-1090, -1095, -1106) strains of Cryptococcus neoformans at the seventh post-experimental day. It was found that if macrophages ingest living yeast cells, the latter can: 1) become completely free from polysaccharide capsules, after that their contents undergo lysis, and cell wall debris are extruded from the macrophage (first scenario); 2) become partly free from their capsules, destroy the phagosomal plasma membrane and induce destructive processes inside the macrophage causing their death (second scenario); or 3) not lose their capsules and localize inside macrophage in latent state (third scenario). Macrophages can also ingest senescent and dead C. neoformans cells surrounded by capsules that are lost at the ingesting and phagosome stages (fourth scenario). The study revealed the dependence of cell-mediated immunity on the stage of development of ingested C. neoformans yeast cells. Here we describe a new mechanism of capsular polysaccharide elimination of C. neoformans yeast cells by murine macrophages.


Asunto(s)
Cryptococcus neoformans/inmunología , Cryptococcus neoformans/ultraestructura , Macrófagos Alveolares/inmunología , Macrófagos Alveolares/ultraestructura , Fagocitosis , Animales , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidad , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/ultraestructura , Polisacáridos Fúngicos/metabolismo , Inmunidad Celular/inmunología , Masculino , Ratones , Fagosomas , Virulencia
14.
PLoS Pathog ; 14(1): e1006765, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29346417

RESUMEN

Cryptococcus neoformans, an AIDS-defining opportunistic pathogen, is the leading cause of fungal meningitis worldwide and is responsible for hundreds of thousands of deaths annually. Cryptococcal glycans are required for fungal survival in the host and for pathogenesis. Most glycans are made in the secretory pathway, although the activated precursors for their synthesis, nucleotide sugars, are made primarily in the cytosol. Nucleotide sugar transporters are membrane proteins that solve this topological problem, by exchanging nucleotide sugars for the corresponding nucleoside phosphates. The major virulence factor of C. neoformans is an anti-phagocytic polysaccharide capsule that is displayed on the cell surface; capsule polysaccharides are also shed from the cell and impede the host immune response. Xylose, a neutral monosaccharide that is absent from model yeast, is a significant capsule component. Here we show that Uxt1 and Uxt2 are both transporters specific for the xylose donor, UDP-xylose, although they exhibit distinct subcellular localization, expression patterns, and kinetic parameters. Both proteins also transport the galactofuranose donor, UDP-galactofuranose. We further show that Uxt1 and Uxt2 are required for xylose incorporation into capsule and protein; they are also necessary for C. neoformans to cause disease in mice, although surprisingly not for fungal viability in the context of infection. These findings provide a starting point for deciphering the substrate specificity of an important class of transporters, elucidate a synthetic pathway that may be productively targeted for therapy, and contribute to our understanding of fundamental glycobiology.


Asunto(s)
Cryptococcus neoformans/metabolismo , Proteínas Fúngicas/metabolismo , Glicoproteínas/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Uridina Difosfato Xilosa/metabolismo , Animales , Transporte Biológico , Criptococosis/microbiología , Criptococosis/patología , Cryptococcus neoformans/patogenicidad , Cryptococcus neoformans/ultraestructura , Femenino , Cápsulas Fúngicas/metabolismo , Cápsulas Fúngicas/ultraestructura , Proteínas Fúngicas/genética , Galactosa/análogos & derivados , Galactosa/metabolismo , Eliminación de Gen , Regulación Fúngica de la Expresión Génica , Glicoproteínas/genética , Cinética , Ratones , Microscopía Electrónica de Transmisión , Mutación , Proteínas de Transporte de Nucleótidos/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Uridina Difosfato/análogos & derivados , Uridina Difosfato/metabolismo , Virulencia
15.
Diagn Microbiol Infect Dis ; 89(2): 143-145, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28784461

RESUMEN

Diagnosis of central nervous system cryptococcosis relies on a spectrum of methods but has improved with lateral flow diagnostic assays that detect capsular polysaccharide antigens of Cryptococcus. Here, we present the case of an HIV-infected African-American man with cryptococcal meningoencephalitis caused by a strain producing little or no capsule.


Asunto(s)
Antígenos Fúngicos/metabolismo , Cryptococcus neoformans/metabolismo , Cápsulas Fúngicas/metabolismo , Polisacáridos Fúngicos/metabolismo , Meningitis Criptocócica/diagnóstico , Meningoencefalitis/diagnóstico , Síndrome de Inmunodeficiencia Adquirida/complicaciones , Síndrome de Inmunodeficiencia Adquirida/microbiología , Adulto , Anfotericina B/uso terapéutico , Antifúngicos/uso terapéutico , Antígenos Fúngicos/inmunología , Flucitosina/uso terapéutico , Humanos , Masculino , Meningitis Criptocócica/microbiología , Meningoencefalitis/microbiología
16.
Environ Microbiol Rep ; 9(3): 268-278, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28251810

RESUMEN

In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen.


Asunto(s)
Acuaporina 1/genética , Acuaporina 1/metabolismo , Cryptococcus neoformans/patogenicidad , Proteínas Fúngicas/genética , Presión Osmótica/fisiología , Estrés Oxidativo/fisiología , Animales , Cryptococcus neoformans/metabolismo , Diamida/farmacología , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Polisacáridos Fúngicos/genética , Polisacáridos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Homeostasis/fisiología , Interacciones Hidrofóbicas e Hidrofílicas , Ratones , Proteínas Quinasas Activadas por Mitógenos/genética , Virulencia/genética , terc-Butilhidroperóxido/farmacología
17.
mBio ; 7(1): e01862-15, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26758180

RESUMEN

UNLABELLED: The opportunistic fungal pathogen Cryptococcus neoformans causes life-threatening meningitis in immunocompromised individuals. The expression of virulence factors, including capsule and melanin, is in part regulated by the cyclic-AMP/protein kinase A (cAMP/PKA) signal transduction pathway. In this study, we investigated the influence of PKA on the composition of the intracellular proteome to obtain a comprehensive understanding of the regulation that underpins virulence. Through quantitative proteomics, enrichment and bioinformatic analyses, and an interactome study, we uncovered a pattern of PKA regulation for proteins associated with translation, the proteasome, metabolism, amino acid biosynthesis, and virulence-related functions. PKA regulation of the ubiquitin-proteasome pathway in C. neoformans showed a striking parallel with connections between PKA and protein degradation in chronic neurodegenerative disorders and other human diseases. Further investigation of proteasome function with the inhibitor bortezomib revealed an impact on capsule production as well as hypersusceptibility for strains with altered expression or activity of PKA. Parallel studies with tunicamycin also linked endoplasmic reticulum stress with capsule production and PKA. Taken together, the data suggest a model whereby expression of PKA regulatory and catalytic subunits and the activation of PKA influence proteostasis and the function of the endoplasmic reticulum to control the elaboration of the polysaccharide capsule. Overall, this study revealed both broad and conserved influences of the cAMP/PKA pathway on the proteome and identified proteostasis as a potential therapeutic target for the treatment of cryptococcosis. IMPORTANCE: Fungi cause life-threatening diseases, but very few drugs are available to effectively treat fungal infections. The pathogenic fungus Cryptococcus neoformans causes a substantial global burden of life-threatening meningitis in patients suffering from HIV/AIDS. An understanding of the mechanisms by which fungi deploy virulence factors to cause disease is critical for developing new therapeutic approaches. We employed a quantitative proteomic approach to define the changes in the protein complement that occur upon modulating the cAMP signaling pathway that regulates virulence in C. neoformans. This approach identified a conserved role for cAMP signaling in the regulation of the ubiquitin-proteasome pathway and revealed a link between this pathway and elaboration of a major virulence determinant, the polysaccharide capsule. Targeting the ubiquitin-proteasome pathway opens new therapeutic options for the treatment of cryptococcosis.


Asunto(s)
Cryptococcus neoformans/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cápsulas Fúngicas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo , AMP Cíclico/metabolismo , Proteoma/análisis , Proteómica
18.
J Microbiol Biotechnol ; 26(5): 918-27, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-26437944

RESUMEN

Cryptococcus neoformans is a life-threatening pathogenic yeast that causes devastating meningoencephalitis. The mechanism of cryptococcal brain invasion is largely unknown, and recent studies suggest that its extracellular microvesicles may be involved in the invasion process. The 14-3-3 protein is abundant in the extracellular microvesicles of C. neoformans, and the 14-3-3-GFP fusion has been used as the microvesicle's marker. However, the physiological role of 14-3-3 has not been explored. In this report, we have found that C. neoformans contains a single 14-3-3 gene that apparently is an essential gene. To explore the functions of 14-3-3, we substituted the promoter region of the 14-3-3 with the copper-controllable promoter CTR4. The CTR4 regulatory strain showed an enlarged cell size, drastic changes in morphology, and a decrease in the thickness of the capsule under copper-enriched conditions. Furthermore, the mutant cells produced a lower amount of total proteins in their extracellular microvesicles and reduced adhesion to human brain microvascular endothelial cells in vitro. Proteomic analyses of the protein components under 14-3-3-overexpressed and -suppressed conditions revealed that the 14-3-3 function(s) might be associated with the microvesicle biogenesis. Our results support that 14-3-3 has diverse pertinent roles in both physiology and pathogenesis in C. neoformans. Its gene functions are closely relevant to the pathogenesis of this fungus.


Asunto(s)
Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Cryptococcus neoformans/genética , Fosfatasa Ácida/metabolismo , Biomarcadores/metabolismo , Encéfalo/irrigación sanguínea , Encéfalo/microbiología , Adhesión Celular/fisiología , Cobre/metabolismo , Cryptococcus neoformans/crecimiento & desarrollo , Cryptococcus neoformans/patogenicidad , Células Endoteliales/microbiología , Cápsulas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Lacasa/metabolismo , Mutación , Fenotipo , Regiones Promotoras Genéticas , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Eur J Clin Microbiol Infect Dis ; 34(12): 2421-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26463450

RESUMEN

The purpose of this investigation was to characterise the interactions of Cryptococcus neoformans with mammalian host alveolar epithelial cells and alveolar macrophages, with emphasis on the roles of the cryptococcal capsule and the host cell cytoskeletons. The adherence and internalisation of C. neoformans into mammalian lung cells and the roles of host cell cytoskeletons in host-pathogen interactions were studied using in vitro models coupled with a differential fluorescence assay, fluorescence staining, immunofluorescence and drug inhibition of actin and microtubule polymerisation. Under conditions devoid of opsonin and macrophage activation, C. neoformans has a high affinity towards MH-S alveolar macrophages, yet associated poorly to A549 alveolar epithelial cells. Acapsular C. neoformans adhered to and internalised into the mammalian cells more effectively compared to encapsulated cryptococci. Acapsular C. neoformans induced prominent actin reorganisation at the host-pathogen interface in MH-S alveolar macrophages, but minimally affected actin reorganisation in A549 alveolar epithelial cells. Acapsular C. neoformans also induced localisation of microtubules to internalised cryptococci in MH-S cells. Drug inhibition of actin and microtubule polymerisation both reduced the association of acapsular C. neoformans to alveolar macrophages. The current study visualises and confirms the interactions of C. neoformans with mammalian alveolar cells during the establishment of infection in the lungs. The acapsular form of C. neoformans effectively adhered to and internalised into alveolar macrophages by inducing localised actin reorganisation, relying on the host's actin and microtubule activities.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Cryptococcus neoformans/fisiología , Células Epiteliales/fisiología , Interacciones Huésped-Patógeno , Macrófagos/fisiología , Microtúbulos/metabolismo , Animales , Adhesión Celular , Línea Celular , Endocitosis , Células Epiteliales/microbiología , Cápsulas Fúngicas/genética , Cápsulas Fúngicas/metabolismo , Humanos , Macrófagos/microbiología , Ratones
20.
Med Mycol ; 53(8): 885-9, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26333356

RESUMEN

This study evaluated the synergistic interactions between amphotericin B (AMB) and azithromycin (AZM), daptomycin (DAP), linezolid (LNZ), minocycline (MINO), fluconazole (FLZ), flucytosine (5FC), linezolid (LZD), or tigecycline (TIG) against clinical isolates of Cryptococcus neoformans var. grubii before and after capsule induction. High synergism (>75%) was observed for the combinations, AMB+5FC, AMB+TIG, AMB+AZM, AMB+LZD and AMB+MINO but only in the strains after capsule induction. The results show that the presence of the capsule may lower the minimum inhibitory concentrations (MICs) of antifungal agents, but antimicrobial activity can be improved by combining antifungal and antibacterial agents.


Asunto(s)
Anfotericina B/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Cryptococcus neoformans/efectos de los fármacos , Interacciones Farmacológicas , Cápsulas Fúngicas/metabolismo , Criptococosis/microbiología , Cryptococcus neoformans/aislamiento & purificación , Cryptococcus neoformans/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...