Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 21860, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750511

RESUMEN

Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.


Asunto(s)
Microscopía/métodos , Nanopartículas , Espectroscopía Infrarroja Corta/métodos , Células A549/química , Células A549/patología , Escherichia coli/química , Escherichia coli/citología , Humanos , Microscopía Intravital/métodos , Nanotecnología , Fenómenos Ópticos , Compuestos de Silicona , Análisis de la Célula Individual , Espectroscopía Infrarroja por Transformada de Fourier , Agua
2.
J Nat Prod ; 82(6): 1527-1534, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31117521

RESUMEN

Six new asperane-type sesterterpenoids, asperunguisins A-F (1-6), were isolated from the endolichenic fungus Aspergillus unguis, together with a known analogue, aspergilloxide (7); these are rare asperane-type sesterterpenoids, characterized by a unique hydroxylated 7/6/6/5 tetracyclic system. The structures of asperunguisins A-F (1-6) were elucidated on the basis of spectroscopic methods (NMR and HRESIMS), X-ray single-crystal diffraction analysis, ECD calculations, and biogenetic considerations. Asperunguisin C (3) showed cytotoxicity against the human cancer cell line A549 with an IC50 value of 6.2 µM. Further investigation revealed that the observed cell death was a result of G0/G1 cell cycle arrest via DNA damage followed by cellular apoptosis.


Asunto(s)
Células A549/efectos de los fármacos , Antineoplásicos/farmacología , Aspergillus/química , Hongos/química , Sesterterpenos/química , Sesterterpenos/farmacología , Células A549/química , Antineoplásicos/química , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Estructura Molecular , Sesterterpenos/aislamiento & purificación
3.
BMC Cancer ; 18(1): 799, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089463

RESUMEN

BACKGROUND: Resistance to chemotherapy drugs (e.g. taxol) has been a major obstacle in successful cancer treatment. In A549 human lung adenocarcinoma, acquired resistance to the first-line chemotherapy taxol has been a critical problem in clinics. Sphingolipid (SPL) controls various aspects of cell growth, survival, adhesion, and motility in cancer, and has been gradually regarded as a key factor in drug resistance. To better understand the taxol-resistant mechanism, a comprehensive sphingolipidomic approach was carried out to investigate the sphingolipid metabolism in taxol-resistant strain of A549 cell (A549T). METHODS: A549 and A549T cells were extracted according to the procedure with optimal condition for SPLs. Sphingolipidomic analysis was carried out by using an UHPLC coupled with quadrupole time-of-flight (Q-TOF) MS system for qualitative profiling and an UHPLC coupled with triple quadrupole (QQQ) MS system for quantitative analysis. The differentially expressed sphingolipids between taxol-sensitive and -resistant cells were explored by using multivariate analysis. RESULTS: Based on accurate mass and characteristic fragment ions, 114 SPLs, including 4 new species, were clearly identified. Under the multiple reaction monitoring (MRM) mode of QQQ MS, 75 SPLs were further quantified in both A549 and A549T. Multivariate analysis explored that the levels of 57 sphingolipids significantly altered in A549T comparing to those of A549 (p < 0.001 and VIP > 1), including 35 sphingomyelins (SMs), 14 ceramides (Cers), 3 hexosylceramides (HexCers), 4 lactosylceramides (LacCers) and 1 sphingosine. A significant decrease of SM and Cer levels and overall increase of HexCer and LacCer represent the major SPL metabolic characteristic in A549T. CONCLUSIONS: This study investigated sphingolipid profiles in human lung adenocarcinoma cell lines, which is the most comprehensive sphingolipidomic analysis of A549 and A549T. To some extent, the mechanism of taxol-resistance could be attributed to the aberrant sphingolipid metabolism, "inhibition of the de novo synthesis pathway" and "activation of glycosphingolipid pathway" may play the dominant role for taxol-resistance in A549T. This study provides insights into the strategy for clinical diagnosis and treatment of taxol resistant lung cancer.


Asunto(s)
Células A549 , Resistencia a Antineoplásicos , Neoplasias Pulmonares/metabolismo , Paclitaxel/farmacología , Esfingolípidos , Células A549/química , Células A549/efectos de los fármacos , Células A549/metabolismo , Cromatografía Liquida , Biología Computacional , Humanos , Espectrometría de Masas , Análisis de Componente Principal , Esfingolípidos/análisis , Esfingolípidos/química , Esfingolípidos/metabolismo
4.
Drug Dev Ind Pharm ; 43(8): 1304-1313, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28402175

RESUMEN

In this study, biodegradable chitosan hollow nanospheres (CHN) were fabricated using polystyrene nanospheres (PS) as templates. CHN were applied to increase the solubility of poorly water-soluble drugs. The lung cancer drug paclitaxel (PTX), which is used as a model drug, was loaded into CHN by the adsorption equilibrium method. The drug-loaded sample (PTX-CHN) offered sustained PTX release and good bioavailability. The state characterization of PTX by differential scanning calorimetry (DSC), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that the PTX absorbed into CHN existed in an amorphous state. An in vitro toxicity experiment indicated that CHN were nontoxic as carriers of poorly water-soluble drugs. The PTX-CHN produced a marked inhibition of lung cancer A549 cells proliferation and encouraged apoptosis. A cell uptake experiment indicated that PTX-CHN was successfully taken up by lung cancer A549 cells. Furthermore, a degradation experiment revealed that CHN were readily biodegradable. These findings state clearly that CHN can be regarded as promising biomaterials for lung cancer treatment.


Asunto(s)
Células A549/efectos de los fármacos , Antineoplásicos/administración & dosificación , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Sistemas de Liberación de Medicamentos/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón/metabolismo , Nanopartículas/química , Nanosferas/química , Paclitaxel/administración & dosificación , Células A549/química , Células A549/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Disponibilidad Biológica , Rastreo Diferencial de Calorimetría , Humanos , Pulmón/química , Neoplasias Pulmonares/química , Paclitaxel/química , Paclitaxel/farmacología , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA