Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 454
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731942

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Especies Reactivas de Oxígeno , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patología , Ratones Transgénicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatorias de Macrófagos/metabolismo , Proteínas Inflamatorias de Macrófagos/genética , Páncreas/metabolismo , Páncreas/patología
2.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709385

RESUMEN

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Asunto(s)
Catepsina B , Lisosomas , Pancreatitis , Vesículas Secretoras , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Lisosomas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/genética , Catepsina B/metabolismo , Catepsina B/genética , Ratones , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7/metabolismo , Enfermedad Aguda , Células Acinares/metabolismo , Células Acinares/patología , Tripsinógeno/metabolismo , Tripsinógeno/genética , Ceruletida , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Ratones Endogámicos C57BL , Ratones Noqueados
3.
ACS Nano ; 18(18): 11778-11803, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38652869

RESUMEN

Severe acute pancreatitis (AP) is a life-threatening pancreatic inflammatory disease with a high mortality rate (∼40%). Existing pharmaceutical therapies in development or in clinical trials showed insufficient treatment efficacy due to their single molecular therapeutic target, poor water solubility, short half-life, limited pancreas-targeting specificity, etc. Herein, acid-responsive hollow mesoporous Prussian blue nanoparticles wrapped with neutrophil membranes and surface modified with the N,N-dimethyl-1,3-propanediamine moiety were developed for codelivering membrane-permeable calcium chelator BAPTA-AM (BA) and trypsin activity inhibitor gabexate mesylate (Ga). In the AP mouse model, the formulation exhibited efficient recruitment at the inflammatory endothelium, trans-endothelial migration, and precise acinar cell targeting, resulting in rapid pancreatic localization and higher accumulation. A single low dose of the formulation (BA: 200 µg kg-1, Ga: 0.75 mg kg-1) significantly reduced pancreas function indicators to close to normal levels at 24 h, effectively restored the cell redox status, reduced apoptotic cell proportion, and blocked the systemic inflammatory amplified cascade, resulting in a dramatic increase in the survival rate from 58.3 to even 100%. Mechanistically, the formulation inhibited endoplasmic reticulum stress (IRE1/XBP1 and ATF4/CHOP axis) and restored impaired autophagy (Beclin-1/p62/LC3 axis), thereby preserving dying acinar cells and restoring the cellular "health status". This formulation provides an upstream therapeutic strategy with clinical translation prospects for AP management through synergistic ion homeostasis regulation and pancreatic autodigestion inhibition.


Asunto(s)
Células Acinares , Calcio , Homeostasis , Nanomedicina , Pancreatitis , Animales , Pancreatitis/tratamiento farmacológico , Pancreatitis/patología , Pancreatitis/metabolismo , Células Acinares/efectos de los fármacos , Células Acinares/metabolismo , Células Acinares/patología , Ratones , Homeostasis/efectos de los fármacos , Calcio/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/patología , Inflamación/metabolismo , Nanopartículas/química , Páncreas/patología , Páncreas/efectos de los fármacos , Páncreas/metabolismo , Ratones Endogámicos C57BL , Masculino , Humanos
4.
World J Gastroenterol ; 30(14): 2038-2058, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38681131

RESUMEN

BACKGROUND: Acute pancreatitis (AP) encompasses a spectrum of pancreatic inflammatory conditions, ranging from mild inflammation to severe pancreatic necrosis and multisystem organ failure. Given the challenges associated with obtaining human pancreatic samples, research on AP predominantly relies on animal models. In this study, we aimed to elucidate the fundamental molecular mechanisms underlying AP using various AP models. AIM: To investigate the shared molecular changes underlying the development of AP across varying severity levels. METHODS: AP was induced in animal models through treatment with caerulein alone or in combination with lipopolysaccharide (LPS). Additionally, using Ptf1α to drive the specific expression of the hM3 promoter in pancreatic acinar cells transgenic C57BL/6J- hM3/Ptf1α(cre) mice were administered Clozapine N-oxide to induce AP. Subsequently, we conducted RNA sequencing of pancreatic tissues and validated the expression of significantly different genes using the Gene Expression Omnibus (GEO) database. RESULTS: Caerulein-induced AP showed severe inflammation and edema, which were exacerbated when combined with LPS and accompanied by partial pancreatic tissue necrosis. Compared with the control group, RNA sequencing analysis revealed 880 significantly differentially expressed genes in the caerulein model and 885 in the caerulein combined with the LPS model. Kyoto Encyclopedia of Genes and Genomes enrichment analysis and Gene Set Enrichment Analysis indicated substantial enrichment of the TLR and NOD-like receptor signaling pathway, TLR signaling pathway, and NF-κB signaling pathway, alongside elevated levels of apoptosis-related pathways, such as apoptosis, P53 pathway, and phagosome pathway. The significantly elevated genes in the TLR and NOD-like receptor signaling pathways, as well as in the apoptosis pathway, were validated through quantitative real-time PCR experiments in animal models. Validation from the GEO database revealed that only MYD88 concurred in both mouse pancreatic tissue and human AP peripheral blood, while TLR1, TLR7, RIPK3, and OAS2 genes exhibited marked elevation in human AP. The genes TUBA1A and GADD45A played significant roles in apoptosis within human AP. The transgenic mouse model hM3/Ptf1α(cre) successfully validated significant differential genes in the TLR and NOD-like receptor signaling pathways as well as the apoptosis pathway, indicating that these pathways represent shared pathological processes in AP across different models. CONCLUSION: The TLR and NOD receptor signaling pathways play crucial roles in the inflammatory progression of AP, notably the MYD88 gene. Apoptosis holds a central position in the necrotic processes of AP, with TUBA1A and GADD45A genes exhibiting prominence in human AP.


Asunto(s)
Ceruletida , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Lipopolisacáridos , Ratones Endogámicos C57BL , Ratones Transgénicos , Páncreas , Pancreatitis , Factores de Transcripción , Animales , Ceruletida/toxicidad , Ratones , Pancreatitis/genética , Pancreatitis/inducido químicamente , Pancreatitis/patología , Pancreatitis/metabolismo , Perfilación de la Expresión Génica/métodos , Páncreas/patología , Páncreas/metabolismo , Humanos , Transcriptoma , Masculino , Transducción de Señal , Células Acinares/metabolismo , Células Acinares/patología
5.
Apoptosis ; 29(5-6): 920-933, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625481

RESUMEN

BACKGROUND: Severe acute pancreatitis (SAP) is a serious gastrointestinal disease that is facilitated by pancreatic acinar cell death. The protective role of human placental mesenchymal stem cells (hP-MSCs) in SAP has been demonstrated in our previous studies. However, the underlying mechanisms of this therapy remain unclear. Herein, we investigated the regularity of acinar cell pyroptosis during SAP and investigated whether the protective effect of hP-MSCs was associated with the inhibition of acinar cell pyroptosis. METHODS: A mouse model of SAP was established by the retrograde injection of sodium taurocholate (NaTC) solution in the pancreatic duct. For the hP-MSCs group, hP-MSCs were injected via the tail vein and were monitored in vivo. Transmission electron microscopy (TEM) was used to observe the pyroptosis-associated ultramorphology of acinar cells. Immunofluorescence and Western blotting were subsequently used to assess the localization and expression of pyroptosis-associated proteins in acinar cells. Systemic inflammation and local injury-associated parameters were evaluated. RESULTS: Acinar cell pyroptosis was observed during SAP, and the expression of pyroptosis-associated proteins initially increased, peaked at 24 h, and subsequently showed a decreasing trend. hP-MSCs effectively attenuated systemic inflammation and local injury in the SAP model mice. Importantly, hP-MSCs decreased the expression of pyroptosis-associated proteins and the activity of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in acinar cells. CONCLUSIONS: Our study demonstrates the regularity and important role of acinar cell pyroptosis during SAP. hP-MSCs attenuate inflammation and inhibit acinar cell pyroptosis via suppressing NLRP3 inflammasome activation, thereby exerting a protective effect against SAP.


Asunto(s)
Células Acinares , Modelos Animales de Enfermedad , Inflamasomas , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Proteína con Dominio Pirina 3 de la Familia NLR , Pancreatitis , Piroptosis , Animales , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Ratones , Células Acinares/metabolismo , Células Acinares/patología , Inflamasomas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/terapia , Pancreatitis/patología , Humanos , Femenino , Trasplante de Células Madre Mesenquimatosas/métodos , Placenta/metabolismo , Embarazo , Masculino , Ratones Endogámicos C57BL
6.
Anal Chem ; 96(12): 4918-4924, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38471062

RESUMEN

Pancreatic cancer is a highly aggressive and rapidly progressing disease, often diagnosed in advanced stages due to the absence of early noticeable symptoms. The KRAS mutation is a hallmark of pancreatic cancer, yet the underlying mechanisms driving pancreatic carcinogenesis remain elusive. Cancer cells display significant metabolic heterogeneity, which is relevant to the pathogenesis of cancer. Population measurements may obscure information about the metabolic heterogeneity among cancer cells. Therefore, it is crucial to analyze metabolites at the single-cell level to gain a more comprehensive understanding of metabolic heterogeneity. In this study, we employed a 3D-printed ionization source for metabolite analysis in both mice and human pancreatic cancer cells at the single-cell level. Using advanced machine learning algorithms and mass spectral feature selection, we successfully identified 23 distinct metabolites that are statistically significantly different in KRAS mutant human pancreatic cancer cells and mouse acinar cells bearing the oncogenic KRAS mutation. These metabolites encompass a variety of chemical classes, including organic nitrogen compounds, organic acids and derivatives, organoheterocyclic compounds, benzenoids, and lipids. These findings shed light on the metabolic remodeling associated with KRAS-driven pancreatic cancer initiation and indicate that the identified metabolites hold promise as potential diagnostic markers for early detection in pancreatic cancer patients.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células Acinares/metabolismo , Células Acinares/patología , Detección Precoz del Cáncer , Neoplasias Pancreáticas/metabolismo , Mutación , Espectrometría de Masas , Biomarcadores/metabolismo , Carcinoma Ductal Pancreático/patología
7.
Int J Mol Med ; 53(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38390952

RESUMEN

Calcium overload, a notable instigator of acute pancreatitis (AP), induces oxidative stress and an inflammatory cascade, subsequently activating both endogenous and exogenous apoptotic pathways. However, there is currently lack of available pharmaceutical interventions to alleviate AP by addressing calcium overload. In the present study, the potential clinical application of liposome nanoparticles (LNs) loaded with 1,2­bis(2­aminophenoxy)ethane­N,N,N',N'­tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA­AM), a cell­permeant calcium chelator, was investigated as a therapeutic approach for the management of AP. To establish the experimental models in vitro, AR42J cells were exposed to high glucose/sodium oleate (HGO) to induce necrosis, and in vivo, intra­ductal taurocholate (TC) infusion was used to induce AP. The findings of the present study indicated that the use of BAPTA­AM­loaded LN (BLN) effectively and rapidly eliminated excessive Ca2+ and reactive oxygen species, suppressed mononuclear macrophage activation and the release of inflammatory cytokines, and mitigated pancreatic acinar cell apoptosis and necrosis induced by HGO. Furthermore, the systemic administration of BLN demonstrated promising therapeutic potential in the rat model of AP. Notably, BLN significantly enhanced the survival rates of rats subjected to the TC challenge, increasing from 37.5 to 75%. This improvement was attributed to the restoration of pancreatic function, as indicated by improved blood biochemistry indices and alleviation of pancreatic lesions. The potential therapeutic efficacy of BLN in rescuing patients with AP is likely attributed to its capacity to inhibit oxidative stress, prevent premature activation of zymogens and downregulate the expression of TNF­α, IL­6 and cathepsin B. Thus, BLN demonstrated promising value as a novel therapeutic approach for promptly alleviating the burden of intracellular Ca2+ overload in patients with AP.


Asunto(s)
Ácido Egtácico/análogos & derivados , Pancreatitis , Humanos , Ratas , Animales , Pancreatitis/metabolismo , Liposomas/metabolismo , Calcio/metabolismo , Enfermedad Aguda , Células Acinares/patología , Necrosis/metabolismo
8.
Toxicol Sci ; 199(1): 120-131, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407484

RESUMEN

The effect of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a persistent environmental pollutant commonly used as a flame retardant in various consumer products, on pancreatitis has not been clearly elucidated, although it has been reported to be toxic to the liver, nervous system, and reproductive system. Acute pancreatitis (AP) and chronic pancreatitis (CP) models were induced in this study by intraperitoneal injection of caerulein. The aim was to investigate the impact of BDE-47 on pancreatitis by exposing the animals to acute (1 week) or chronic (8 weeks) doses of BDE-47 (30 mg/kg in the low-concentration group and 100 mg/kg in the high-concentration group). Additionally, BDE-47 was utilized to stimulate mouse bone marrow-derived macrophages, pancreatic primary stellate cells, and acinar cells in order to investigate the impact of BDE-47 on pancreatitis. In vivo experiments conducted on mice revealed that chronic exposure to BDE-47, rather than acute exposure, exacerbated the histopathological damage of AP and CP, leading to elevated fibrosis in pancreatic tissue and increased infiltration of inflammatory cells in the pancreas. In vitro experiments showed that BDE-47 can promote the expression of the inflammatory cytokines Tnf-α and Il-6 in M1 macrophages, as well as promote acinar cell apoptosis through the activation of the PERK and JNK pathways via endoplasmic reticulum stress. The findings of this study imply chronic exposure to BDE-47 may exacerbate the progression of both AP and CP by inducing acinar cell apoptosis and dysregulating inflammatory responses.


Asunto(s)
Células Acinares , Apoptosis , Éteres Difenilos Halogenados , Pancreatitis Crónica , Pancreatitis , Animales , Éteres Difenilos Halogenados/toxicidad , Apoptosis/efectos de los fármacos , Pancreatitis Crónica/inducido químicamente , Pancreatitis Crónica/patología , Células Acinares/efectos de los fármacos , Células Acinares/patología , Células Acinares/metabolismo , Masculino , Pancreatitis/inducido químicamente , Pancreatitis/patología , Macrófagos/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones , Ceruletida/toxicidad , Páncreas/efectos de los fármacos , Páncreas/patología , Inflamación/inducido químicamente , Inflamación/patología , Células Estrelladas Pancreáticas/efectos de los fármacos , Células Estrelladas Pancreáticas/patología , Células Estrelladas Pancreáticas/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Retardadores de Llama/toxicidad , Células Cultivadas
10.
Gastroenterology ; 166(6): 1100-1113, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38325760

RESUMEN

BACKGROUND & AIMS: Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS: We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS: FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS: FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.


Asunto(s)
Células Acinares , Modelos Animales de Enfermedad , Homeostasis , Pancreatitis , Análisis de la Célula Individual , Transcriptoma , Animales , Pancreatitis/genética , Pancreatitis/inducido químicamente , Pancreatitis/patología , Pancreatitis/metabolismo , Humanos , Células Acinares/metabolismo , Células Acinares/patología , Ratones , Páncreas/patología , Páncreas/metabolismo , Perfilación de la Expresión Génica/métodos , RNA-Seq , Enfermedad Aguda , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Macrófagos/metabolismo , Metaplasia/genética , Metaplasia/patología , Ratones Endogámicos C57BL
11.
Gut ; 73(5): 770-786, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38233197

RESUMEN

OBJECTIVE: Epidemiological studies highlight an association between pancreatic ductal adenocarcinoma (PDAC) and oral carriage of the anaerobic bacterium Porphyromonas gingivalis, a species highly linked to periodontal disease. We analysed the potential for P. gingivalis to promote pancreatic cancer development in an animal model and probed underlying mechanisms. DESIGN: We tracked P. gingivalis bacterial translocation from the oral cavity to the pancreas following administration to mice. To dissect the role of P. gingivalis in PDAC development, we administered bacteria to a genetically engineered mouse PDAC model consisting of inducible acinar cell expression of mutant Kras (Kras +/LSL-G12D; Ptf1a-CreER, iKC mice). These mice were used to study the cooperative effects of Kras mutation and P. gingivalis on the progression of pancreatic intraepithelial neoplasia (PanIN) to PDAC. The direct effects of P. gingivalis on acinar cells and PDAC cell lines were studied in vitro. RESULTS: P. gingivalis migrated from the oral cavity to the pancreas in mice and can be detected in human PanIN lesions. Repetitive P. gingivalis administration to wild-type mice induced pancreatic acinar-to-ductal metaplasia (ADM), and altered the composition of the intrapancreatic microbiome. In iKC mice, P. gingivalis accelerated PanIN to PDAC progression. In vitro, P. gingivalis infection induced acinar cell ADM markers SOX9 and CK19, and intracellular bacteria protected PDAC cells from reactive oxygen species-mediated cell death resulting from nutrient stress. CONCLUSION: Taken together, our findings demonstrate a causal role for P. gingivalis in pancreatic cancer development in mice.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Microbiota , Neoplasias Pancreáticas , Lesiones Precancerosas , Ratones , Humanos , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Composición de Base , Lesiones Precancerosas/patología , Filogenia , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/patología , Carcinoma in Situ/genética , Células Acinares/patología , Bacterias/genética
12.
Gastroenterology ; 166(5): 842-858.e5, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38154529

RESUMEN

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) is characterized by desmoplastic stroma surrounding most tumors. Activated stromal fibroblasts, namely cancer-associated fibroblasts (CAFs), play a major role in PDAC progression. We analyzed whether CAFs influence acinar cells and impact PDAC initiation, that is, acinar-to-ductal metaplasia (ADM). ADM connection with PDAC pathophysiology is indicated, but not yet established. We hypothesized that CAF secretome might play a significant role in ADM in PDAC initiation. METHODS: Mouse and human acinar cell organoids, acinar cells cocultured with CAFs and exposed to CAF-conditioned media, acinar cell explants, and CAF cocultures were examined by means of quantitative reverse transcription polymerase chain reaction, RNA sequencing, immunoblotting, and confocal microscopy. Data from liquid chromatography with tandem mass spectrometry analysis of CAF-conditioned medium and RNA sequencing data of acinar cells post-conditioned medium exposure were integrated using bioinformatics tools to identify the molecular mechanism for CAF-induced ADM. Using confocal microscopy, immunoblotting, and quantitative reverse transcription polymerase chain reaction analysis, we validated the depletion of a key signaling axis in the cell line, acinar explant coculture, and mouse cancer-associated fibroblasts (mCAFs). RESULTS: A close association of acino-ductal markers (Ulex europaeus agglutinin 1, amylase, cytokeratin-19) and mCAFs (α-smooth muscle actin) in LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1Cre (KPC) and LSL-KrasG12D/+; Pdx1Cre (KC) autochthonous progression tumor tissue was observed. Caerulein treatment-induced mCAFs increased cytokeratin-19 and decreased amylase in wild-type and KC pancreas. Likewise, acinar-mCAF cocultures revealed the induction of ductal transdifferentiation in cell line, acinar-organoid, and explant coculture formats in WT and KC mice pancreas. Proteomic and transcriptomic data integration revealed a novel laminin α5/integrinα4/stat3 axis responsible for CAF-mediated acinar-to-ductal cell transdifferentiation. CONCLUSIONS: Results collectively suggest the first evidence for CAF-influenced acino-ductal phenotypic switchover, thus highlighting the tumor microenvironment role in pancreatic carcinogenesis inception.


Asunto(s)
Células Acinares , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Transdiferenciación Celular , Laminina , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Células Acinares/metabolismo , Células Acinares/patología , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Técnicas de Cocultivo , Medios de Cultivo Condicionados/metabolismo , Metaplasia/patología , Metaplasia/metabolismo , Organoides/metabolismo , Organoides/patología , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/genética , Transducción de Señal , Microambiente Tumoral
13.
Dev Cell ; 58(24): 2959-2973.e7, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38056453

RESUMEN

Inflammation is essential to the disruption of tissue homeostasis and can destabilize the identity of lineage-committed epithelial cells. Here, we employ lineage-traced mouse models, single-cell transcriptomic and chromatin analyses, and CUT&TAG to identify an epigenetic memory of inflammatory injury in the pancreatic acinar cell compartment. Despite resolution of pancreatitis, our data show that acinar cells fail to return to their molecular baseline, with retention of elevated chromatin accessibility and H3K4me1 at metaplasia genes, such that memory represents an incomplete cell fate decision. In vivo, we find this epigenetic memory controls lineage plasticity, with diminished metaplasia in response to a second insult but increased tumorigenesis with an oncogenic Kras mutation. The lowered threshold for oncogenic transformation, in turn, can be restored by blockade of MAPK signaling. Together, we define the chromatin dynamics, molecular encoding, and recall of a prolonged epigenetic memory of inflammatory injury that impacts future responses but remains reversible.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Memoria Epigenética , Transformación Celular Neoplásica/patología , Células Acinares/patología , Páncreas/patología , Cromatina/genética , Metaplasia/patología , Carcinoma Ductal Pancreático/genética
14.
Cell Metab ; 35(12): 2119-2135.e5, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-37913768

RESUMEN

The rising pancreatic cancer incidence due to obesity and type 2 diabetes is closely tied to hyperinsulinemia, an independent cancer risk factor. Previous studies demonstrated reducing insulin production suppressed pancreatic intraepithelial neoplasia (PanIN) pre-cancerous lesions in Kras-mutant mice. However, the pathophysiological and molecular mechanisms remained unknown, and in particular it was unclear whether hyperinsulinemia affected PanIN precursor cells directly or indirectly. Here, we demonstrate that insulin receptors (Insr) in KrasG12D-expressing pancreatic acinar cells are dispensable for glucose homeostasis but necessary for hyperinsulinemia-driven PanIN formation in the context of diet-induced hyperinsulinemia and obesity. Mechanistically, this was attributed to amplified digestive enzyme protein translation, triggering of local inflammation, and PanIN metaplasia in vivo. In vitro, insulin dose-dependently increased acinar-to-ductal metaplasia formation in a trypsin- and Insr-dependent manner. Collectively, our data shed light on the mechanisms connecting obesity-driven hyperinsulinemia and pancreatic cancer development.


Asunto(s)
Carcinoma in Situ , Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Insulinas , Neoplasias Pancreáticas , Ratones , Animales , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Receptor de Insulina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias Pancreáticas/metabolismo , Células Acinares/metabolismo , Células Acinares/patología , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patología , Inflamación/metabolismo , Hiperinsulinismo/complicaciones , Metaplasia/metabolismo , Metaplasia/patología , Obesidad/metabolismo , Insulinas/metabolismo
15.
Tissue Eng Part A ; 29(23-24): 607-619, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37565286

RESUMEN

Severe acute pancreatitis (SAP) is a common abdominal emergency with a high mortality rate and a lack of effective therapeutic options. Although mesenchymal stem cell (MSC) transplantation is a potential treatment for SAP, the mechanism remains unclear. It has been suggested that MSCs may act mainly through paracrine effects; therefore, we aimed to demonstrate the therapeutic efficacy of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (UCMSCs) for SAP. Na-taurocholate was used to induce a rat SAP model through retrograde injection into the common biliopancreatic duct. After 72 h of EVs transplantation, pancreatic pathological damage was alleviated, along with a decrease in serum amylase activity and pro-inflammatory cytokine levels. Interestingly, when UCMSCs were preconditioned with 10 ng/mL tumor necrosis factor alpha (TNF-α) for 48 h, the obtained EVs (named TNF-α-EVs) performed an enhanced efficacy. Furthermore, both animal and cellular experiments showed that TNF-α-EVs alleviated the necroptosis of acinar cells of SAP through RIPK3/MLKL axis. In conclusion, our study demonstrated that TNF-α-EVs were able to enhance the therapeutic effect on SAP by inhibiting necroptosis compared to normal EVs. This study heralds that TNF-α-EVs may be a promising therapeutic approach for SAP in the future.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Pancreatitis , Ratas , Humanos , Animales , Pancreatitis/terapia , Pancreatitis/patología , Factor de Necrosis Tumoral alfa , Células Acinares/patología , Enfermedad Aguda , Necroptosis , Modelos Animales de Enfermedad , Vesículas Extracelulares/patología , Células Madre Mesenquimatosas/patología , Cordón Umbilical
16.
Virchows Arch ; 483(3): 415-419, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37581694

RESUMEN

Amphicrine neoplasms (ANs) are poorly understood epithelial malignancies composed of cells with co-existing exocrine-neuroendocrine features. Here, we report a recurrent mucin-producing gastric amphicrine tumor co-expressing neuroendocrine (chromogranin-A, synaptophysin, and CD56) and pancreatic acinar cell (BCL10 and trypsin) markers, arisen in a 64-year-old woman during adjuvant immunotherapy for melanoma. Ki-67 was < 2%. The gastric background context was atrophic gastritis. Next-generation sequencing showed MEN1 mutation (p.P71fs*42) coupled with loss of heterozygosity. The key lessons were as follows: (1) gastric ANs can show the co-existence of exocrine mucin-producing elements with neuroendocrine and pancreatic acinar differentiation; (2) they may represent a new entity arising in the context of atrophic gastritis and during immunotherapy; (3) they should be considered in the diagnostic workup of gastric neuroendocrine tumors; and (4) their molecular profile can show striking similarities with well-differentiated neuroendocrine tumors. These findings may be of help to improve the knowledge and the biological taxonomy of ANs.


Asunto(s)
Gastritis Atrófica , Tumores Neuroendocrinos , Neoplasias Pancreáticas , Neoplasias Gástricas , Femenino , Humanos , Persona de Mediana Edad , Células Acinares/patología , Recurrencia Local de Neoplasia , Neoplasias Gástricas/genética , Neoplasias Gástricas/terapia , Neoplasias Gástricas/diagnóstico , Tumores Neuroendocrinos/terapia , Tumores Neuroendocrinos/diagnóstico , Diferenciación Celular , Mucinas , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/diagnóstico , Biomarcadores de Tumor/genética
17.
Int J Mol Sci ; 24(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37511311

RESUMEN

Ninjurin 1 (NINJ1) is a double-transmembrane cell-surface protein that might mediate plasma membrane rupture (PMR) and the diffusion of inflammatory factors. PMR is a characteristic of acinar cell injury in severe acute pancreatitis (SAP). However, the involvement of NINJ1 in mediating the PMR of acinar cells in SAP is currently unclear. Our study has shown that NINJ1 is expressed in acinar cells, and the expression is significantly upregulated in sodium-taurocholate-induced SAP. The knockout of NINJ1 delays PMR in acinar cells and alleviates SAP. Moreover, we observed that NINJ1 expression is mediated by Ca2+ concentration in acinar cells. Importantly, we found that Ca2+ overload drives mitochondrial stress to upregulate the P53/NINJ1 pathway, inducing PMR in acinar cells, and amlodipine, a Ca2+ channel inhibitor, can reduce the occurrence of PMR by decreasing the concentration of Ca2+. Our results demonstrate the mechanism by which NINJ1 induces PMR in SAP acinar cells and provide a potential new target for treatment of SAP.


Asunto(s)
Células Acinares , Calcio , Membrana Celular , Pancreatitis , Proteína p53 Supresora de Tumor , Humanos , Células Acinares/metabolismo , Células Acinares/patología , Enfermedad Aguda , Calcio/metabolismo , Calcio de la Dieta/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patología , Factores de Crecimiento Nervioso/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/fisiopatología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
18.
Cell Mol Life Sci ; 80(8): 206, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37452870

RESUMEN

Pancreatic cancer is typically detected at an advanced stage, and is refractory to most forms of treatment, contributing to poor survival outcomes. The incidence of pancreatic cancer is gradually increasing, linked to an aging population and increasing rates of obesity and pancreatitis, which are risk factors for this cancer. Sources of risk include adipokine signaling from fat cells throughout the body, elevated levels of intrapancreatic intrapancreatic adipocytes (IPAs), inflammatory signals arising from pancreas-infiltrating immune cells and a fibrotic environment induced by recurring cycles of pancreatic obstruction and acinar cell lysis. Once cancers become established, reorganization of pancreatic tissue typically excludes IPAs from the tumor microenvironment, which instead consists of cancer cells embedded in a specialized microenvironment derived from cancer-associated fibroblasts (CAFs). While cancer cell interactions with CAFs and immune cells have been the topic of much investigation, mechanistic studies of the source and function of IPAs in the pre-cancerous niche are much less developed. Intriguingly, an extensive review of studies addressing the accumulation and activity of IPAs in the pancreas reveals that unexpectedly diverse group of factors cause replacement of acinar tissue with IPAs, particularly in the mouse models that are essential tools for research into pancreatic cancer. Genes implicated in regulation of IPA accumulation include KRAS, MYC, TGF-ß, periostin, HNF1, and regulators of ductal ciliation and ER stress, among others. These findings emphasize the importance of studying pancreas-damaging factors in the pre-cancerous environment, and have significant implications for the interpretation of data from mouse models for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Pancreatitis , Ratones , Animales , Neoplasias Pancreáticas/patología , Pancreatitis/patología , Páncreas/patología , Células Acinares/patología , Carcinoma Ductal Pancreático/patología , Microambiente Tumoral , Neoplasias Pancreáticas
19.
Cytokine Growth Factor Rev ; 71-72: 40-53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37291030

RESUMEN

Pancreatic fibrosis is caused by excessive deposition of extracellular matrixes of collagen and fibronectin in the pancreatic tissue as a result of repeated injury often seen in patients with chronic pancreatic diseases. The most common causative conditions include inborn errors of metabolism, chemical toxicity and autoimmune disorders. Its pathophysiology is highly complex, including acinar cell injury, acinar stress response, duct dysfunction, pancreatic stellate cell activation, and persistent inflammatory response. However, the specific mechanism remains to be fully clarified. Although the current therapeutic strategies targeting pancreatic stellate cells show good efficacy in cell culture and animal models, they are not satisfactory in the clinic. Without effective intervention, pancreatic fibrosis can promote the transformation from pancreatitis to pancreatic cancer, one of the most lethal malignancies. In the normal pancreas, the acinar component accounts for 82% of the exocrine tissue. Abnormal acinar cells may activate pancreatic stellate cells directly as cellular source of fibrosis or indirectly via releasing various substances and initiate pancreatic fibrosis. A comprehensive understanding of the role of acinar cells in pancreatic fibrosis is critical for designing effective intervention strategies. In this review, we focus on the role of and mechanisms underlying pancreatic acinar injury in pancreatic fibrosis and their potential clinical significance.


Asunto(s)
Enfermedades Pancreáticas , Pancreatitis , Animales , Humanos , Células Acinares/metabolismo , Células Acinares/patología , Páncreas/metabolismo , Páncreas/patología , Enfermedades Pancreáticas/metabolismo , Enfermedades Pancreáticas/patología , Enfermedad Crónica , Fibrosis
20.
Int J Mol Sci ; 24(12)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37373094

RESUMEN

Adult pancreatic acinar cells show high plasticity allowing them to change in their differentiation commitment. Pancreatic acinar-to-ductal metaplasia (ADM) is a cellular process in which the differentiated pancreatic acinar cells transform into duct-like cells. This process can occur as a result of cellular injury or inflammation in the pancreas. While ADM is a reversible process allowing pancreatic acinar regeneration, persistent inflammation or injury can lead to the development of pancreatic intraepithelial neoplasia (PanIN), which is a common precancerous lesion that precedes pancreatic ductal adenocarcinoma (PDAC). Several factors can contribute to the development of ADM and PanIN, including environmental factors such as obesity, chronic inflammation and genetic mutations. ADM is driven by extrinsic and intrinsic signaling. Here, we review the current knowledge on the cellular and molecular biology of ADM. Understanding the cellular and molecular mechanisms underlying ADM is critical for the development of new therapeutic strategies for pancreatitis and PDAC. Identifying the intermediate states and key molecules that regulate ADM initiation, maintenance and progression may help the development of novel preventive strategies for PDAC.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adulto , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Páncreas/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Células Acinares/patología , Carcinoma in Situ/genética , Metaplasia/patología , Inflamación/patología , Neoplasias Pancreáticas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...