Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.871
Filtrar
1.
Folia Med (Plovdiv) ; 66(1): 12-18, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38426460

RESUMEN

The COVID-19 pandemic has left a lasting impact on global health, challenging communities, healthcare systems, and researchers worldwide. As we navigate this unprecedented crisis, this paper embarks on a multifaceted exploration of the pivotal role played by natural killer (NK) cells in the context of COVID-19. A significant portion of this paper is devoted to dissecting the nuanced role that NK cells assume in the context of COVID-19. From the initial acute infection to post-recovery immunity, NK cells emerge as critical players. We scrutinize the activation and dysregulation of NK cells during SARS-CoV-2 infection, shedding light on their potential contribution to disease severity. Moreover, we explore the fascinating landscape of post-COVID immunity, where NK cells are known to interact with adaptive immune responses, providing a foundation for long-term protection. In light of their central role, we investigate therapeutic strategies targeting NK cells in COVID-19 management, presenting an overview of current research efforts and their promise in mitigating disease progression. Lastly, we draw attention to research gaps, emphasizing the need for further investigation into NK cell dynamics during COVID-19. These gaps represent opportunities for advancing our understanding of NK cell biology and, by extension, enhancing our strategies for combating this global health crisis. This comprehensive exploration not only highlights the intricate interplay between NK cells and the COVID-19 pandemic but also underscores the importance of these innate immune warriors in shaping both the acute response and long-term immunity, ultimately contributing to the broader discourse surrounding the pandemic's pathophysiology and therapeutic approaches.


Asunto(s)
COVID-19 , Infecciones , Humanos , Células Asesinas Naturales/fisiología , Pandemias , SARS-CoV-2
2.
Eur J Immunol ; 54(3): e2350693, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38279603

RESUMEN

Natural killer (NK) cells play a vital role in eliminating tumorigenic cells. Efficient locating and killing of target cells in complex three-dimensional (3D) environments are critical for their functions under physiological conditions. However, the role of mechanosensing in regulating NK-cell killing efficiency in physiologically relevant scenarios is poorly understood. Here, we report that the responsiveness of NK cells is regulated by tumor cell stiffness. NK-cell killing efficiency in 3D is impaired against softened tumor cells, whereas it is enhanced against stiffened tumor cells. Notably, the durations required for NK-cell killing and detachment are significantly shortened for stiffened tumor cells. Furthermore, we have identified PIEZO1 as the predominantly expressed mechanosensitive ion channel among the examined candidates in NK cells. Perturbation of PIEZO1 abolishes stiffness-dependent NK-cell responsiveness, significantly impairs the killing efficiency of NK cells in 3D, and substantially reduces NK-cell infiltration into 3D collagen matrices. Conversely, PIEZO1 activation enhances NK killing efficiency as well as infiltration. In conclusion, our findings demonstrate that PIEZO1-mediated mechanosensing is crucial for NK killing functions, highlighting the role of mechanosensing in NK-cell killing efficiency under 3D physiological conditions and the influence of environmental physical cues on NK-cell functions.


Asunto(s)
Células Asesinas Naturales , Células Asesinas Naturales/fisiología , Muerte Celular
4.
Microbiol Res ; 273: 127393, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37182283

RESUMEN

Many subversive mechanisms promote the occurrence and development of chronic infectious diseases and cancer, among which the down-regulated expression of immune-activating receptors and the enhanced expression of immune-inhibitory receptors accelerate the occurrence and progression of the disease. Recently, the use of immune checkpoint inhibitors has shown remarkable efficacy in the treatment of tumors in multiple organs. However, the expression of immune checkpoint molecules on natural killer (NK) cells by Mycobacterium tuberculosis (Mtb) infection and its impact on NK cell effector functions have been poorly studied. In this review, we focus on what is currently known about the expression of various immune checkpoints in NK cells following Mtb infection and how it alters NK cell-mediated host cytotoxicity and cytokine secretion. Unraveling the function of NK cells after the infection of host cells by Mtb is crucial for a comprehensive understanding of the innate immune mechanism of NK cells involved in tuberculosis and the evaluation of the efficacy of immunotherapies using immune checkpoint inhibitors to treat tuberculosis. In view of some similarities in the immune characteristics of T cells and NK cells, we reviewed the molecular mechanism of the interaction between T cells and Mtb, which can help us to further understand and explore the specific interaction mechanism between NK cells and Mtb.


Asunto(s)
Mycobacterium tuberculosis , Neoplasias , Tuberculosis , Humanos , Linfocitos T , Inhibidores de Puntos de Control Inmunológico , Células Asesinas Naturales/patología , Células Asesinas Naturales/fisiología
5.
Sci Rep ; 12(1): 14799, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042379

RESUMEN

Impaired spiral artery remodeling (IRSA) underpins the great obstetrical syndromes. We previously demonstrated that intrauterine infection with the periodontal pathogen, Porphyromonas gingivalis, induces IRSA in rats. Since our previous studies only examined the end stage of arterial remodeling, the aim of this study was to identify the impact of P. gingivalis infection on the earlier stages of remodeling. Gestation day (GD) 11 specimens, a transition point between trophoblast-independent remodeling and the start of extravillous trophoblast invasion, were compared to late stage GD18 tissues. P. gingivalis was found in decidual stroma of GD11 specimens that already had reduced spiral artery remodeling defined as smaller arterial lumen size, increased retention of vascular smooth muscle, and decreased invasion by extravillous trophoblasts. At GD11, P. gingivalis-induced IRSA coincided with altered uterine natural killer (uNK) cell populations, decreased placental bed expression of interleukin-18 (IL-18) with increased production of temperature requirement A1 (Htra1), a marker of oxidative stress. By GD18, placental bed IL-18 and Htra1 levels, and uNK cell numbers were equivalent in control and infected groups. However, infected GD18 placental bed specimens had decreased TNF + T cells. These results suggest disturbances in placental bed decidual stroma and uNK cells are involved in P. gingivalis-mediated IRSA.


Asunto(s)
Decidua , Serina Peptidasa A1 que Requiere Temperaturas Altas/metabolismo , Interleucina-18/metabolismo , Porphyromonas gingivalis , Animales , Arterias , Decidua/metabolismo , Femenino , Células Asesinas Naturales/fisiología , Placenta , Embarazo , Ratas , Trofoblastos/metabolismo , Arteria Uterina
6.
Hematol Oncol Clin North Am ; 36(4): 745-768, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35773048

RESUMEN

Pediatric blood cancers are among the most common malignancies that afflict children. Intensive chemotherapy is not curative in many cases, and novel therapies are urgently needed. NK cells hold promise for use as immunotherapeutic effectors due to their favorable safety profile, intrinsic cytotoxic properties, and potential for genetic modification that can enhance specificity and killing potential. NK cells can be engineered to express CARs targeting tumor-specific antigens, to downregulate inhibitory and regulatory signals, to secrete cytokine, and to optimize interaction with small molecule engagers. Understanding NK cell biology is key to designing immunotherapy for clinical translation.


Asunto(s)
Neoplasias Hematológicas , Neoplasias , Niño , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/terapia , Humanos , Inmunoterapia , Inmunoterapia Adoptiva , Células Asesinas Naturales/patología , Células Asesinas Naturales/fisiología , Neoplasias/terapia
8.
Transl Stroke Res ; 13(1): 197-211, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34105078

RESUMEN

Rag1-/- mice, lacking functional B and T cells, have been extensively used as an adoptive transfer model to evaluate neuroinflammation in stroke research. However, it remains unknown whether natural killer (NK) cell development and functions are altered in Rag1-/- mice as well. This connection has been rarely discussed in previous studies but might have important implications for data interpretation. In contrast, the NOD-Rag1nullIL2rgnull (NRG) mouse model is devoid of NK cells and might therefore eliminate this potential shortcoming. Here, we compare immune-cell frequencies as well as phenotype and effector functions of NK cells in Rag1-/- and wildtype (WT) mice using flow cytometry and functional in vitro assays. Further, we investigate the effect of Rag1-/- NK cells in the transient middle cerebral artery occlusion (tMCAO) model using antibody-mediated depletion of NK cells and adoptive transfer to NRG mice in vivo. NK cells in Rag1-/- were comparable in number and function to those in WT mice. Rag1-/- mice treated with an anti-NK1.1 antibody developed significantly smaller infarctions and improved behavioral scores. Correspondingly, NRG mice supplemented with NK cells were more susceptible to tMCAO, developing infarctions and neurological deficits similar to Rag1-/- controls. Our results indicate that NK cells from Rag1-/- mice are fully functional and should therefore be considered in the interpretation of immune-cell transfer models in experimental stroke. Fortunately, we identified the NRG mice, as a potentially better-suited transfer model to characterize individual cell subset-mediated neuroinflammation in stroke.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Infarto de la Arteria Cerebral Media , Células Asesinas Naturales/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados
9.
Arch Pharm Res ; 45(1): 1-10, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34905179

RESUMEN

The susceptibility of cancer cells to natural killer (NK) cell-mediated cytotoxicity depends on the balance of activating and inhibitory ligands expressed on their surface. Although many types of cancer cells are killed by NK cells, non-small-cell lung cancer (NSCLC) cells are relatively resistant to NK cell-mediated cytotoxicity. In this study, we showed that several NSCLC cell lines have differential sensitivity to NK cell-mediated cytotoxicity: NCI-H522 cells were highly sensitive, but A549, NCI-H23, NCI-H1915, and NCI-H1299 were resistant. Among activating ligands such as CD48, HLA-A/B/G, ICAM-1, MICA/B, and ULBPs, only CD48 rendered NCI-H522 cells susceptible to NK cell-mediated cytotoxicity, which was proved by using CD48 siRNA and neutralizing antibody. CD48-positive NCI-H522 cells established a more stable contact with NK cells than did CD48-negative A549 and CD48 siRNA cell-transfected NCI-H522 cells. Taken together, these data demonstrate that CD48-positive NSCLC cells might be susceptible to NK cell-mediated cytotoxicity, which provide information on how to stratify NSCLC patients potentially responsive to NK-cell therapy.


Asunto(s)
Antígeno CD48/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Células Asesinas Naturales/fisiología , Neoplasias Pulmonares/inmunología , Western Blotting , Antígeno CD48/inmunología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Citometría de Flujo , Humanos , Células Asesinas Naturales/inmunología , Neoplasias Pulmonares/metabolismo , Reacción en Cadena de la Polimerasa
10.
Front Immunol ; 12: 791220, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34917097

RESUMEN

T cell factor 1 (Tcf1) is known as a critical mediator for natural killer (NK) cell development and terminal maturation. However, its essential targets and precise mechanisms involved in early NK progenitors (NKP) are not well clarified. To investigate the role of Tcf1 in NK cells at distinct developmental phases, we employed three kinds of genetic mouse models, namely, Tcf7fl/flVavCre/+, Tcf7fl/flCD122Cre/+ and Tcf7fl/flNcr1Cre/+ mice, respectively. Similar to Tcf1 germline knockout mice, we found notably diminished cell number and defective development in BM NK cells from all strains. In contrast, Tcf7fl/flNcr1Cre/+ mice exhibited modest defects in splenic NK cells compared with those in the other two strains. By analyzing the published ATAC-seq and ChIP-seq data, we found that Tcf1 directly targeted 110 NK cell-related genes which displayed differential accessibility in the absence of Tcf1. Along with this clue, we further confirmed that a series of essential regulators were expressed aberrantly in distinct BM NK subsets with conditional ablating Tcf1 at NKP stage. Eomes, Ets1, Gata3, Ikzf1, Ikzf2, Nfil3, Runx3, Sh2d1a, Slamf6, Tbx21, Tox, and Zeb2 were downregulated, whereas Spi1 and Gzmb were upregulated in distinct NK subsets due to Tcf1 deficiency. The dysregulation of these genes jointly caused severe defects in NK cells lacking Tcf1. Thus, our study identified essential targets of Tcf1 in NK cells, providing new insights into Tcf1-dependent regulatory programs in step-wise governing NK cell development.


Asunto(s)
Factor Nuclear 1-alfa del Hepatocito/metabolismo , Células Asesinas Naturales/fisiología , Subgrupos Linfocitarios/fisiología , Células Progenitoras Linfoides/fisiología , Animales , Antígenos Ly/genética , Antígenos Ly/metabolismo , Diferenciación Celular , Células Cultivadas , Regulación de la Expresión Génica , Granzimas/genética , Granzimas/metabolismo , Factor Nuclear 1-alfa del Hepatocito/genética , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor 1 Gatillante de la Citotoxidad Natural/genética , Receptor 1 Gatillante de la Citotoxidad Natural/metabolismo , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo
11.
Int J Biol Sci ; 17(15): 4377-4395, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803505

RESUMEN

Extracellular vesicles derived from trophoblasts (T-EVs) play an important role in pregnancy, but the mechanism is not entirely clear. In this study, we found that HLA-E, which is mostly confined to the cytoplasm of trophoblast cells, was secreted by T-EVs. The level of HLA-E in T-EVs from unexplained recurrent spontaneous abortion (URSA) patients was lower than that in normal pregnancy (NP) and RSA patients who had an abnormal embryo karyotype (AK-RSA). T-EVs promoted secretion of IFN-γ and VEGFα by decidual NK (dNK) cells from URSA patients via HLA-E, VEGFα was necessary for angiogenesis and trophoblast growth, and IFN-γ inhibited Th17 induction. Glycolysis and oxidative phosphorylation (OxPhos) were involved in this process. Glycolysis but not OxPhos of dNK cells facilitated by T-EVs was dependent on mTORC1 activation. Inhibition of T-EV production in vivo increased the susceptibility of mice to embryo absorption, which was reversed by transferring exogenous T-EVs. T-EVs promoted secretion of IFN-γ and VEGFα by dNK cells to maintain pregnancy via Qa-1 in abortion-prone mouse models. This study reveals a new mechanism of pregnancy maintenance mediated by HLA-E via T-EVs.


Asunto(s)
Decidua/citología , Vesículas Extracelulares/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Células Asesinas Naturales/fisiología , Trofoblastos/fisiología , Animales , Línea Celular , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Ratones , Ratones Desnudos , Placenta/citología , Embarazo , Técnicas de Cultivo de Tejidos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Antígenos HLA-E
12.
Int Immunopharmacol ; 101(Pt B): 108374, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34824036

RESUMEN

The tumor microenvironment (TME) is jointly constructed by a variety of cell types, including tumor cells, immune cells, fibroblasts, and epithelial cells, among others. The cells within the TME interact with each other and with tumor cells to influence tumor development and progression. As the most abundant immune cells in the TME, macrophages regulate the immune network by not only secreting a large amount of versatile cytokines but also expressing a series of ligands or receptors on the surface to interact with other cells directly. Due to their strong plasticity, they exert both immunostimulatory and immunosuppressive effects in the complex TME. The major effector cells of the immune system that directly target cancer cells include but are not limited to natural killer cells (NKs), dendritic cells (DCs), macrophages, polymorphonuclear leukocytes, mast cells, and cytotoxic T lymphocytes (CTLs). Among them, NK cells are the predominant innate lymphocyte subsets that mediate antitumor and antiviral responses. The activation and inhibition of NK cells are regulated by cytokines and the balance between activating and inhibitory receptors. There is an inextricable regulatory relationship between macrophages and NK cells. Herein, we systematically elaborate on the regulatory network between macrophages and NK cells through soluble mediator crosstalk and cell-to-cell interactions. We believe that a better understanding of the crosstalk between macrophages and NKs in the TME will benefit the development of novel macrophage- or NK cell-focused therapeutic strategies with superior efficacies in cancer therapy.


Asunto(s)
Comunicación Celular/fisiología , Células Asesinas Naturales/fisiología , Macrófagos/fisiología , Microambiente Tumoral , Animales , Humanos
13.
Int Immunopharmacol ; 101(Pt B): 108369, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34844872

RESUMEN

BACKGROUND: The roles of CD56bright and CD56dim natural killer (NK) subsets in the viral clearance and inflammatory processes of hand, foot, and mouth disease (HFMD) remain undefined. METHODS: A total of 39 HCs and 55 patients were enrolled to analyze peripheral CD56bright and CD56dim NK cells according to cell number, surface receptors, cytotoxic activities, and cytokine production. The plasma concentrations of IL-2, IL-6, IL-10, IFN-γ, TNF-α,and MCP-1 were detected using ELSA. RESULTS: Peripheral blood NK cells was significantly lower in severe patients than in HCs due to the dramatic loss of CD56dim NK cells with no changes in the cell count of CD56bright NK cells. For mild patients, decreased NKp46 expression coincided with enhanced cytolysis (CD107a, GNLY, and GrB) in CD56dim NK cells and decreased NKG2A expression with enhanced IL-10 production in CD56bright NK cells. In contrast, severe patients showed the dominant expression of NKG2A and decreased expression of NKG2D accompanied by cytotoxic dysfunction in CD56dim NK cells. Imbalanced receptor expression coincided with the increased concentrations of TNF-α in CD56bright NK cells. Moreover, EV71+ patients showed significantly decreased counts of CD56dim NK cells with cytolysis dysfunction, displayed cytokine hypersecretion in CD56bright NK cells, while the EV71- patients displayed significantly higher plasma cytokine concentrations. The changes in the immune function of NK subsets and their subpopulations were closely related to clinical inflammatory parameters. CONCLUSIONS: Low-frequency, exhausted immune status of CD56dim NK cells and disordered inflammatory cytokine secretion of CD56bright NK cells were associated with the progression of severe HFMD, especially in EV71-infected patients. This promoted the severity of inflammatory disorders, leading to enhanced disease pathogenesis.


Asunto(s)
Antígeno CD56/metabolismo , Citocinas/metabolismo , Enfermedad de Boca, Mano y Pie/metabolismo , Inflamación/metabolismo , Células Asesinas Naturales/clasificación , Biomarcadores , Estudios de Casos y Controles , Preescolar , Citocinas/genética , Femenino , Regulación de la Expresión Génica/inmunología , Enfermedad de Boca, Mano y Pie/inmunología , Humanos , Lactante , Células Asesinas Naturales/fisiología , Masculino , Proteínas de la Membrana
14.
Medwave ; 21(10): e8484, 2021 Nov 15.
Artículo en Español, Inglés | MEDLINE | ID: mdl-34780395

RESUMEN

Proper communication between natural killer cells and the human leukocyte antigens of the embryonic trophoblast at the maternal-fetal interface during pregnancy is essential for successful reproduction. However, specific combinations of embryonic human leukocyte antigen-C with killer immunoglobulin-like receptors on decidual natural killer cells (the immunological code of pregnancy) can be associated with obstetric morbidity and pregnancy loss. This article presents an updated review of the mechanisms underlying the interaction between embryonic human leukocyte antigen-C and maternal killer immunoglobulin-like receptors and their relevance to the physiology and pathophysiology of human reproduction.


Una adecuada comunicación entre las células asesinas naturales en la interfase materno-fetal con las moléculas de los antígenos de histocompatibilidad del trofoblasto embrionario es clave en el éxito de la reproducción. Sin embargo, combinaciones de determinados antígenos leucocitarios humanos tipo C embrionarios con los receptores tipo inmunoglobulina presentes en las células asesinas naturales deciduales (el código inmunológico del embarazo), pueden asociarse con morbilidad obstétrica y pérdidas gestacionales. En este artículo se presenta una revisión actualizada de los mecanismos subyacentes a la interacción entre el antígeno de histocompatibilidad tipo C embrionario y los receptores tipo inmunoglobulina maternos, y su relevancia tanto en la fisiología como en la fisiopatología de la reproducción humana.


Asunto(s)
Aborto Habitual/inmunología , Antígenos HLA-C/inmunología , Células Asesinas Naturales/inmunología , Placentación/fisiología , Receptores KIR/inmunología , Medicina Reproductiva , Útero/inmunología , Aborto Espontáneo/inmunología , Implantación del Embrión/inmunología , Femenino , Antígenos HLA , Antígenos HLA-C/fisiología , Humanos , Células Asesinas Naturales/fisiología , Embarazo , Receptores KIR/fisiología
15.
J Heart Lung Transplant ; 40(12): 1517-1528, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34627707

RESUMEN

BACKGROUND: In human lung transplant recipients, a decline in club cell secretory protein (CCSP) in bronchoalveolar lavage fluid has been associated with chronic lung allograft dysfunction (CLAD) as well as the induction of exosomes and immune responses that lead to CLAD. However, the mechanisms by which CCSP decline contributes to CLAD remain unknown. METHODS: To define the mechanisms leading to CCSP decline and chronic rejection, we employed two mouse models: 1) chronic rejection after orthotopic single lung transplantation and 2) anti-major histocompatibility complex (MHC) class I-induced obliterative airway disease. RESULTS: In the chronic rejection mouse model, we detected circulating exosomes with donor MHC (H2b) and lung self-antigens and also development of antibodies to H2b and lung self-antigens and then a decline in CCSP. Furthermore, DBA2 mice that received injections of these exosomes developed antibodies to donor MHC and lung self-antigens. In the chronic rejection mouse model, natural killer (NK) and CD8 T cells were the predominant graft-infiltrating cells on day 14 of rejection followed by exosomes containing NK cell-associated and cytotoxic molecules on day 14 and 28. When NK cells were depleted, exosomes with NK cell-associated and cytotoxic molecules as well as fibrosis decreased. CONCLUSIONS: Induction of exosomes led to immune responses to donor MHC and lung self-antigens, resulting in CCSP decline, leading to NK cell infiltration and release of exosomes from NK cells. These results suggest a novel role for exosomes derived from NK cells in the pathogenesis of chronic lung allograft rejection.


Asunto(s)
Bronquiolitis Obliterante/etiología , Exosomas/fisiología , Rechazo de Injerto/etiología , Células Asesinas Naturales/fisiología , Trasplante de Pulmón/efectos adversos , Uteroglobina/metabolismo , Animales , Anticuerpos/metabolismo , Autoantígenos/metabolismo , Bronquiolitis Obliterante/metabolismo , Modelos Animales de Enfermedad , Rechazo de Injerto/metabolismo , Antígenos de Histocompatibilidad Clase I/inmunología , Ratones
16.
Cell Death Dis ; 12(9): 836, 2021 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-34482362

RESUMEN

Multiple Myeloma (MM) is an incurable hematologic malignancy of terminally differentiated plasma cells (PCs), where immune interactions play a key role in the control of cancer cell growth and survival. In particular, MM is characterized by a highly immunosuppressive bone marrow microenvironment where the anticancer/cytotoxic activity of Natural Killer (NK) cells is impaired. This study is focused on understanding whether modulation of neddylation can regulate NK cell-activating ligands expression and sensitize MM to NK cell killing. Neddylation is a post-translational modification that adds a ubiquitin-like protein, NEDD8, to selected substrate proteins, affecting their stability, conformation, subcellular localization, and function. We found that pharmacologic inhibition of neddylation using a small-molecule inhibitor, MLN4924/Pevonedistat, increases the expression of the NK cell-activating receptor NKG2D ligands MICA and MICB on the plasma membrane of different MM cell lines and patient-derived PCs, leading to enhanced NK cell degranulation. Mechanistically, MICA expression is upregulated at mRNA level, and this is the result of an increased promoter activity after the inhibition of IRF4 and IKZF3, two transcriptional repressors of this gene. Differently, MLN4924/Pevonedistat induced accumulation of MICB on the plasma membrane with no change of its mRNA levels, indicating a post-translational regulatory mechanism. Moreover, inhibition of neddylation can cooperate with immunomodulatory drugs (IMiDs) in upregulating MICA surface levels in MM cells due to increased expression of CRBN, the cellular target of these drugs. In summary, MLN4924/Pevonedistat sensitizes MM to NK cell recognition, adding novel information on the anticancer activity of neddylation inhibition.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/metabolismo , Inmunomodulación , Células Asesinas Naturales/inmunología , Mieloma Múltiple/inmunología , Proteína NEDD8/antagonistas & inhibidores , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Regulación hacia Arriba , Anciano , Anciano de 80 o más Años , Degranulación de la Célula/efectos de los fármacos , Línea Celular Tumoral , Ciclopentanos/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Factores Inmunológicos/farmacología , Inmunomodulación/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/fisiología , Ligandos , Masculino , Persona de Mediana Edad , Mieloma Múltiple/genética , Mieloma Múltiple/patología , Proteína NEDD8/metabolismo , Células Plasmáticas/efectos de los fármacos , Células Plasmáticas/metabolismo , Regiones Promotoras Genéticas/genética , Pirimidinas/farmacología
17.
Cell Stress Chaperones ; 26(5): 845-857, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34542825

RESUMEN

Developing immunosuppressive therapies for autoimmune diseases comes with a caveat that immunosuppression may promote the risk of developing other conditions or diseases. We have previously shown that biolistic delivery of an expression construct encoding inducible HSP70 (HSP70i) with one amino acid modification in the dendritic cell (DC) activating moiety 435-445 (HSP70iQ435A) to mouse skin resulted in significant immunosuppressive activity of autoimmune vitiligo, associated with fewer tissue infiltrating T cells. To prepare HSP70iQ435A as a potential therapeutic for autoimmune vitiligo, in this study we evaluated whether and how biolistic delivery of HSP70iQ435A in mice affects anti-tumor responses. We found that HSP70iQ435A in fact supports anti-tumor responses in melanoma-challenged C57BL/6 mice. Biolistic delivery of the HSP70iQ435A-encoding construct to mice elicited significant anti-HSP70 titers, and anti-HSP70 IgG and IgM antibodies recognize surface-expressed and cytoplasmic HSP70i in human and mouse melanoma cells. A peptide scan revealed that the anti-HSP70 antibodies recognize a specific C-terminal motif within the HSP70i protein. The antibodies elicited surface CD107A expression among mouse NK cells, representative of antibody-mediated cellular cytotoxicity (ADCC), supporting the concept, that HSP70iQ435A-encoding DNA elicits a humoral response to the stress protein expressed selectively on the surface of melanoma cells. Thus, besides limiting autoimmunity and inflammation, HSP70iQ435A elicits humoral responses that limit tumor growth and may be used in conjunction with immune checkpoint inhibitors to not only control tumor but to also limit adverse events following tumor immunotherapy.


Asunto(s)
Autoinmunidad , Proteínas HSP70 de Choque Térmico/genética , Melanoma/genética , Melanoma/inmunología , Mutación/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Animales , Anticuerpos/metabolismo , Autoinmunidad/genética , Degranulación de la Célula , Línea Celular Tumoral , ADN de Neoplasias/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Masculino , Melanoma/patología , Ratones Endogámicos C57BL , Modelos Biológicos , Neoplasias Cutáneas/patología
18.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469647

RESUMEN

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Asunto(s)
Mutación de Línea Germinal , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales/fisiología , Infecciones por Papillomavirus/terapia , Citotoxicidad Inmunológica , Encefalitis/virología , Femenino , Humanos , Células Asesinas Naturales/efectos de los fármacos , Masculino , Microbiota/efectos de los fármacos , Células T Asesinas Naturales/fisiología , Papillomaviridae , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/inmunología , Linaje , Piel/microbiología , Trasplante Homólogo , Adulto Joven
19.
PLoS Biol ; 19(8): e3001328, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34343168

RESUMEN

Natural killer (NK) cells kill a target cell by secreting perforin into the lytic immunological synapse, a specialized interface formed between the NK cell and its target. Perforin creates pores in target cell membranes allowing delivery of proapoptotic enzymes. Despite the fact that secreted perforin is in close range to both the NK and target cell membranes, the NK cell typically survives while the target cell does not. How NK cells preferentially avoid death during the secretion of perforin via the degranulation of their perforin-containing organelles (lytic granules) is perplexing. Here, we demonstrate that NK cells are protected from perforin-mediated autolysis by densely packed and highly ordered presynaptic lipid membranes, which increase packing upon synapse formation. When treated with 7-ketocholesterol, lipid packing is reduced in NK cells making them susceptible to perforin-mediated lysis after degranulation. Using high-resolution imaging and lipidomics, we identified lytic granules themselves as having endogenously densely packed lipid membranes. During degranulation, lytic granule-cell membrane fusion thereby further augments presynaptic membrane packing, enhancing membrane protection at the specific sites where NK cells would face maximum concentrations of secreted perforin. Additionally, we found that an aggressive breast cancer cell line is perforin resistant and evades NK cell-mediated killing owing to a densely packed postsynaptic membrane. By disrupting membrane packing, these cells were switched to an NK-susceptible state, which could suggest strategies for improving cytotoxic cell-based cancer therapies. Thus, lipid membranes serve an unexpected role in NK cell functionality protecting them from autolysis, while degranulation allows for the inherent lytic granule membrane properties to create local ordered lipid "shields" against self-destruction.


Asunto(s)
Degranulación de la Célula , Células Asesinas Naturales/fisiología , Lípidos de la Membrana/metabolismo , Perforina/metabolismo , Línea Celular Tumoral , Supervivencia Celular , Voluntarios Sanos , Humanos , Cetocolesteroles , Cultivo Primario de Células
20.
Front Immunol ; 12: 674532, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34394074

RESUMEN

Early Life Adversity (ELA) is closely associated with the risk for developing diseases later in life, such as autoimmune diseases, type-2 diabetes and cardiovascular diseases. In humans, early parental separation, physical and sexual abuse or low social-economic status during childhood are known to have great impact on brain development, in the hormonal system and immune responses. Maternal deprivation (MD) is the closest animal model available to the human situation. This paradigm induces long lasting behavioral effects, causes changes in the HPA axis and affects the immune system. However, the mechanisms underlying changes in the immune response after ELA are still not fully understood. In this study we investigated how ELA changes the immune system, through an unbiased analysis, viSNE, and addressed specially the NK immune cell population and its functionality. We have demonstrated that maternal separation, in both humans and rats, significantly affects the sensitivity of the immune system in adulthood. Particularly, NK cells' profile and response to target cell lines are significantly changed after ELA. These immune cells in rats are not only less cytotoxic towards YAC-1 cells, but also show a clear increase in the expression of maturation markers after 3h of maternal separation. Similarly, individuals who suffered from ELA display significant changes in the cytotoxic profile of NK cells together with decreased degranulation capacity. These results suggest that one of the key mechanisms by which the immune system becomes impaired after ELA might be due to a shift on the senescent state of the cells, specifically NK cells. Elucidation of such a mechanism highlights the importance of ELA prevention and how NK targeted immunotherapy might help attenuating ELA consequences.


Asunto(s)
Experiencias Adversas de la Infancia , Crecimiento y Desarrollo/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/fisiología , Estrés Psicológico/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Adaptativa/fisiología , Adulto , Animales , Corticosterona/sangre , Modelos Animales de Enfermedad , Femenino , Glucosa , Crecimiento y Desarrollo/fisiología , Humanos , Masculino , Privación Materna , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...