Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.434
Filtrar
1.
Sci Rep ; 14(1): 10910, 2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740884

RESUMEN

Transforming growth factor-ß (TGF-ß) signaling plays a significant role in multiple biological processes, including inflammation, immunity, and cell death. However, its specific impact on the cochlea remains unclear. In this study, we aimed to investigate the effects of TGF-ß signaling suppression on auditory function and cochlear pathology in mice with kanamycin-induced ototoxicity. Kanamycin and furosemide (KM-FS) were systemically administered to 8-week-old C57/BL6 mice, followed by immediate topical application of a TGF-ß receptor inhibitor (TGF-ßRI) onto the round window membrane. Results showed significant TGF-ß receptor upregulation in spiral ganglion neurons (SGNs) after KM-FA ototoxicity, whereas expression levels in the TGF-ßRI treated group remained unchanged. Interestingly, despite no significant change in cochlear TGF-ß expression after KM-FS ototoxicity, TGF-ßRI treatment resulted in a significant decrease in TGF-ß signaling. Regarding auditory function, TGF-ßRI treatment offered no therapeutic effects on hearing thresholds and hair cell survival following KM-FS ototoxicity. However, SGN loss and macrophage infiltration were significantly increased with TGF-ßRI treatment. These results imply that inhibition of TGF-ß signaling after KM-FS ototoxicity promotes cochlear inflammation and SGN degeneration.


Asunto(s)
Kanamicina , Ratones Endogámicos C57BL , Ototoxicidad , Transducción de Señal , Ganglio Espiral de la Cóclea , Factor de Crecimiento Transformador beta , Animales , Kanamicina/toxicidad , Transducción de Señal/efectos de los fármacos , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Ototoxicidad/patología , Factor de Crecimiento Transformador beta/metabolismo , Ratones , Ganglio Espiral de la Cóclea/efectos de los fármacos , Ganglio Espiral de la Cóclea/metabolismo , Ganglio Espiral de la Cóclea/patología , Cóclea/metabolismo , Cóclea/efectos de los fármacos , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Furosemida/farmacología , Masculino
2.
Hear Res ; 447: 109013, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38718672

RESUMEN

Cisplatin, a highly effective chemotherapeutic drug for various human cancers, induces irreversible sensorineural hearing loss as a side effect. Currently there are no highly effective clinical strategies for the prevention of cisplatin-induced ototoxicity. Previous studies have indicated that short-term cisplatin ototoxicity primarily affects the outer hair cells of the cochlea. Therefore, preventing the entry of cisplatin into hair cells may be a promising strategy to prevent cisplatin ototoxicity. This study aimed to investigate the entry route of cisplatin into mouse cochlear hair cells. The competitive inhibitor of organic cation transporter 2 (OCT2), cimetidine, and the sensory mechanoelectrical transduction (MET) channel blocker benzamil, demonstrated a protective effect against cisplatin toxicity in hair cells in cochlear explants. Sensory MET-deficient hair cells explanted from Tmc1Δ;Tmc2Δ mice were resistant to cisplatin toxicity. Cimetidine showed an additive protective effect against cisplatin toxicity in sensory MET-deficient hair cells. However, in the apical turn, cimetidine, benzamil, or genetic ablation of sensory MET channels showed limited protective effects, implying the presence of other entry routes for cisplatin to enter the hair cells in the apical turn. Systemic administration of cimetidine failed to protect cochlear hair cells from ototoxicity caused by systemically administered cisplatin. Notably, outer hair cells in MET-deficient mice exhibited no apparent deterioration after systemic administration of cisplatin, whereas the outer hair cells in wild-type mice showed remarkable deterioration. The susceptibility of mouse cochlear hair cells to cisplatin ototoxicity largely depends on the sensory MET channel both ex vivo and in vivo. This result justifies the development of new pharmaceuticals, such as a specific antagonists for sensory MET channels or custom-designed cisplatin analogs which are impermeable to sensory MET channels.


Asunto(s)
Antineoplásicos , Cimetidina , Cisplatino , Mecanotransducción Celular , Transportador 2 de Cátion Orgánico , Ototoxicidad , Cisplatino/toxicidad , Animales , Ototoxicidad/prevención & control , Ototoxicidad/metabolismo , Ototoxicidad/fisiopatología , Mecanotransducción Celular/efectos de los fármacos , Transportador 2 de Cátion Orgánico/metabolismo , Transportador 2 de Cátion Orgánico/genética , Transportador 2 de Cátion Orgánico/antagonistas & inhibidores , Cimetidina/farmacología , Antineoplásicos/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas Externas/efectos de los fármacos , Células Ciliadas Auditivas Externas/patología , Células Ciliadas Auditivas Externas/metabolismo , Ratones Endogámicos C57BL , Ratones , Proteínas de la Membrana
3.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673858

RESUMEN

Hearing loss represents a multifaceted and pervasive challenge that deeply impacts various aspects of an individual's life, spanning psychological, emotional, social, and economic realms. Understanding the molecular underpinnings that orchestrate hearing loss remains paramount in the quest for effective therapeutic strategies. This review aims to expound upon the physiological, biochemical, and molecular aspects of hearing loss, with a specific focus on its correlation with diabetes. Within this context, phytochemicals have surfaced as prospective contenders in the pursuit of potential adjuvant therapies. These compounds exhibit noteworthy antioxidant and anti-inflammatory properties, which hold the potential to counteract the detrimental effects induced by oxidative stress and inflammation-prominent contributors to hearing impairment. Furthermore, this review offers an up-to-date exploration of the diverse molecular pathways modulated by these compounds. However, the dynamic landscape of their efficacy warrants recognition as an ongoing investigative topic, inherently contingent upon specific experimental models. Ultimately, to ascertain the genuine potential of phytochemicals as agents in hearing loss treatment, a comprehensive grasp of the molecular mechanisms at play, coupled with rigorous clinical investigations, stands as an imperative quest.


Asunto(s)
Antioxidantes , Células Ciliadas Auditivas , Pérdida Auditiva Sensorineural , Estrés Oxidativo , Fitoquímicos , Estrés Oxidativo/efectos de los fármacos , Humanos , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Pérdida Auditiva Sensorineural/tratamiento farmacológico , Pérdida Auditiva Sensorineural/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Muerte Celular/efectos de los fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
4.
Arch Toxicol ; 98(6): 1827-1842, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563869

RESUMEN

Aminoglycosides are commonly used antibiotics for treatment of gram-negative bacterial infections, however, they might act on inner ear, leading to hair-cell death and hearing loss. Currently, there is no targeted therapy for aminoglycoside ototoxicity, since the underlying mechanisms of aminoglycoside-induced hearing impairments are not fully defined. This study aimed to investigate whether the calcium channel blocker verapamil and changes in intracellular & extracellular calcium could ameliorate aminoglycoside-induced ototoxicity in zebrafish. The present findings showed that a significant decreased number of neuromasts in the lateral lines of zebrafish larvae at 5 days' post fertilization after neomycin (20 µM) and gentamicin (20 mg/mL) exposure, which was prevented by verapamil. Moreover, verapamil (10-100 µM) attenuated aminoglycoside-induced toxic response in different external calcium concentrations (33-3300 µM). The increasing extracellular calcium reduced hair cell loss from aminoglycoside exposure, while lower calcium facilitated hair cell death. In contrast, calcium channel activator Bay K8644 (20 µM) enhanced aminoglycoside-induced ototoxicity and reversed the protective action of higher external calcium on hair cell loss. However, neomycin-elicited hair cell death was not altered by caffeine, ryanodine receptor (RyR) agonist, and RyR antagonists, including thapsigargin, ryanodine, and ruthenium red. The uptake of neomycin into hair cells was attenuated by verapamil and under high external calcium concentration. Consistently, the production of reactive oxygen species (ROS) in neuromasts exposed to neomycin was also reduced by verapamil and high external calcium. Significantly, zebrafish larvae when exposed to neomycin exhibited decreased swimming distances in reaction to droplet stimulus when compared to the control group. Verapamil and elevated external calcium effectively protected the impaired swimming ability of zebrafish larvae induced by neomycin. These data imply that prevention of hair cell damage correlated with swimming behavior against aminoglycoside ototoxicity by verapamil and higher external calcium might be associated with inhibition of excessive ROS production and aminoglycoside uptake through cation channels. These findings indicate that calcium channel blocker and higher external calcium could be applied to protect aminoglycoside-induced listening impairments.


Asunto(s)
Antibacterianos , Bloqueadores de los Canales de Calcio , Calcio , Gentamicinas , Células Ciliadas Auditivas , Neomicina , Verapamilo , Pez Cebra , Animales , Bloqueadores de los Canales de Calcio/farmacología , Calcio/metabolismo , Verapamilo/farmacología , Neomicina/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Gentamicinas/toxicidad , Antibacterianos/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Ototoxicidad/prevención & control , Aminoglicósidos/toxicidad , Sistema de la Línea Lateral/efectos de los fármacos , Larva/efectos de los fármacos , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/prevención & control
5.
Toxicol Appl Pharmacol ; 486: 116947, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38688426

RESUMEN

AIMS: SERCA2, one of the P-type pumps encoded by gene ATP2A2, is the only calcium reflux channel of the endoplasmic reticulum (ER) and participates in maintaining calcium homeostasis. The present study was designed to explore SERCA2 expression pattern in auditory hair cells and the possible mechanism underlying the effects of SERCA2 on cisplatin-induced ototoxicity. MAIN METHODS: The SERCA2 expression pattern in cochlea hair cells and HEI-OC1 cells was measured by Western blot (WB) and immunofluorescence staining. The apoptosis and its related factors were detected by TUNEL assay and WB. The expression levels of ER stress-related factors, ATF6, PERK, IRE1α, and GRP78, were measured via WB. As for the determination of SERCA2 overexpression and knockdown, plasmids and lentiviral vectors were constructed, respectively. KEY FINDINGS: We found that SERCA2 was highly expressed in cochlea hair cells and HEI-OC1 cells. Of note, the level of SERCA2 expression in neonatal mice was remarkably higher than that in adult mice. Under the exposure of 30 µM cisplatin, SERCA2 was down-regulated significantly compared with the control group. In addition, cisplatin administration triggered the occurrence of ER stress and apoptosis. Those events were reversed by overexpressing SERCA2. On the contrary, SERCA2 knockdown could aggravate the above processes. SIGNIFICANCE: The findings from the present study disclose, for the first time, that SERCA2 is abundantly expressed in cochlea hair cells, and the suppression of SERCA2 caused by cisplatin could trigger ER homeostasis disruption, thereby implying that SERCA2 might be a promising target to prevent cisplatin-induced cytotoxicity of hair cells.


Asunto(s)
Apoptosis , Cisplatino , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Células Ciliadas Auditivas , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Cisplatino/toxicidad , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ratones , Apoptosis/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Línea Celular , Antineoplásicos/toxicidad , Masculino , Ototoxicidad/prevención & control
6.
Otolaryngol Head Neck Surg ; 170(5): 1421-1429, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38314899

RESUMEN

OBJECTIVE: Verification that blind and excessive use of antioxidants leads to antioxidant stress which exacerbates cochlear cell damage. STUDY DESIGN: Basic research. SETTING: The Third Affiliated Hospital of Sun Yat-Sen University. METHODS: We compared and quantified hair cell-like house ear institute-organ of corti 1 (HEI-OC1) cell density, cell viability, and apoptosis caused by different concentrations of N-acetylcysteine (NAC) via Hoechst staining, Cell Counting Kit 8, Hoechst with propidium iodide staining, and Annexin V with propidium iodide (PI) staining. Apoptosis induced by high concentrations of M40403 and coenzyme Q10 in cochlear explants was analyzed and compared by cochlear dissection and activated caspase 3 labeling. RESULTS: With the increase of NAC concentration (0-1000 µmol/L), cell density decreased consequently and reached the lowest at 1000 µmol/L (****P ≤ .0001). Cell viability is also declining (**P < .01). The number of Annexin V-fluorescein isothiocyanate-labeled cells and PI-labeled cells increased with increasing NAC concentration after treatment of HEI-OC1 cells for 48 hours. The proportion of apoptotic cells also rose (*P < .05, **P < .01). Cochlear hair cells (HCs) treated with low concentrations of M40403 and coenzyme Q10 for 48 hours showed no damage. When the concentrations of M40403 and coenzyme Q10 were increased (concentrations>30 µmol/L), HC damage began, followed by a dose-dependent increase in HC loss (*P < .001, **P < .0001). Activated caspase-3 was clearly apparent in cochlear explants treated with 50 µmol/L M40403 and coenzyme Q10 compared with cochlear explants without added M40403 and coenzyme Q10. CONCLUSION: These experimental results suggest that inappropriate application of antioxidants can cause severe damage to normal cochlear HCs.


Asunto(s)
Acetilcisteína , Antioxidantes , Apoptosis , Supervivencia Celular , Oligopéptidos , Estrés Oxidativo , Ubiquinona , Ubiquinona/análogos & derivados , Antioxidantes/farmacología , Acetilcisteína/farmacología , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Ratones , Cóclea/efectos de los fármacos , Cóclea/patología , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Recuento de Células
7.
Otol Neurotol ; 45(1): e49-e56, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085767

RESUMEN

BACKGROUND: The widespread use of aminoglycosides is a prevalent cause of sensorineural hearing loss. Patients receiving aminoglycosides usually have elevated levels of circulating stress hormones due to disease or physiological stress; however, whether the stress hormone cortisol impacts aminoglycoside-mediated injury of cochlear hair cells has not been fully investigated. METHODS: House Ear Institute-Organ of Corti 1 (HEI-OC1) cells with or without cortisol pretreatment were exposed to gentamicin, we investigated the effect of cortisol pretreatment on gentamicin ototoxicity by assessing cell viability. Molecular pathogenesis was explored by detecting apoptosis and oxidative stress. Meanwhile, by inhibiting glucocorticoid receptors (GR) and mineralocorticoid receptors (MR), the potential roles of receptor types in cortisol-mediated sensitization were evaluated. RESULTS: Cortisol concentrations below 75 µmol/l did not affect cell viability. However, pretreatment with 50 µmol/l cortisol for 24 hours sensitized hair cells to gentamicin-induced apoptosis. Further mechanistic studies revealed that cortisol significantly increased hair cell apoptosis and oxidative stress, and altered apoptosis-related protein expressions induced by gentamicin. In addition, blockade of either GR or MR attenuated cortisol-induced hair cell sensitization to gentamicin toxicity. CONCLUSION: Cortisol pretreatment increased mammalian hair cell susceptibility to gentamicin toxicity. Sensitization was related to the activation of the intrinsic apoptotic pathway and excessive generation of reactive oxygen species. Cortisol may exacerbate aminoglycoside ototoxicity.


Asunto(s)
Antibacterianos , Gentamicinas , Células Ciliadas Auditivas , Hidrocortisona , Ototoxicidad , Animales , Humanos , Aminoglicósidos , Antibacterianos/efectos adversos , Antibacterianos/farmacología , Apoptosis , Gentamicinas/efectos adversos , Gentamicinas/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Hidrocortisona/farmacología , Mamíferos/metabolismo , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Inhibidores de la Síntesis de la Proteína , Especies Reactivas de Oxígeno/metabolismo
8.
J Mol Med (Berl) ; 100(5): 797-813, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35471608

RESUMEN

Aminoglycoside antibiotics are lifesaving medicines, crucial for the treatment of chronic or drug resistant infections. However, aminoglycosides are toxic to the sensory hair cells in the inner ear. As a result, aminoglycoside-treated individuals can develop permanent hearing loss and vestibular impairment. There is considerable evidence that reactive oxygen species (ROS) production and the subsequent phosphorylation of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (P38) drives apoptosis in aminoglycoside-treated hair cells. However, treatment strategies that directly inhibit ROS, JNK, or P38 are limited by the importance of these molecules for normal cellular function. Alternatively, the upstream regulator apoptosis signal-regulating kinase 1 (ASK1/MAP3K5) is a key mediator of ROS-induced JNK and P38 activation under pathologic but not homeostatic conditions. We investigated ASK1 as a mediator of drug-induced hair cell death using cochlear explants from Ask1 knockout mice, demonstrating that Ask1 deficiency attenuates neomycin-induced hair cell death. We then evaluated pharmacological inhibition of ASK1 with GS-444217 as a potential otoprotective therapy. GS-444217 significantly attenuated hair cell death in neomycin-treated explants but did not impact aminoglycoside efficacy against P. aeruginosa in the broth dilution test. Overall, we provide significant pre-clinical evidence that ASK1 inhibition represents a novel strategy for preventing aminoglycoside ototoxicity. KEY MESSAGES: ASK1 is an upstream, redox-sensitive regulator of P38 and JNK, which are known mediators of hair cell death. Ask1 knockout does not affect hair cell development in vivo, but significantly reduces aminoglycoside-induced hair cell death in vitro. A small-molecule inhibitor of ASK1 attenuates neomycin-induced hair cell death, and does not impact antibiotic efficacy in vitro. ASK1 may be a novel molecular target for preventing aminoglycoside-induced hearing loss.


Asunto(s)
Aminoglicósidos , Células Ciliadas Auditivas , Pérdida Auditiva , MAP Quinasa Quinasa Quinasa 5 , Aminoglicósidos/efectos adversos , Animales , Antibacterianos/efectos adversos , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Pérdida Auditiva/inducido químicamente , Pérdida Auditiva/metabolismo , Pérdida Auditiva/patología , Pérdida Auditiva/prevención & control , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MAP Quinasa Quinasa Quinasa 5/metabolismo , Ratones , Neomicina/efectos adversos , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35197290

RESUMEN

Aminoglycosides (AGs) are commonly used antibiotics that cause deafness through the irreversible loss of cochlear sensory hair cells (HCs). How AGs enter the cochlea and then target HCs remains unresolved. Here, we performed time-lapse multicellular imaging of cochlea in live adult hearing mice via a chemo-mechanical cochleostomy. The in vivo tracking revealed that systemically administered Texas Red-labeled gentamicin (GTTR) enters the cochlea via the stria vascularis and then HCs selectively. GTTR uptake into HCs was completely abolished in transmembrane channel-like protein 1 (TMC1) knockout mice, indicating mechanotransducer channel-dependent AG uptake. Blockage of megalin, the candidate AG transporter in the stria vascularis, by binding competitor cilastatin prevented GTTR accumulation in HCs. Furthermore, cilastatin treatment markedly reduced AG-induced HC degeneration and hearing loss in vivo. Together, our in vivo real-time tracking of megalin-dependent AG transport across the blood-labyrinth barrier identifies new therapeutic targets for preventing AG-induced ototoxicity.


Asunto(s)
Antibacterianos/metabolismo , Gentamicinas/metabolismo , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Animales , Antibacterianos/toxicidad , Transporte Biológico , Cilastatina/farmacología , Endolinfa/metabolismo , Gentamicinas/toxicidad , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Audición/efectos de los fármacos , Proteína 2 Relacionada con Receptor de Lipoproteína de Baja Densidad/antagonistas & inhibidores , Ratones , Estría Vascular/metabolismo
10.
Cell Mol Life Sci ; 79(2): 79, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-35044530

RESUMEN

The Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.


Asunto(s)
Antibacterianos/efectos adversos , Células Ciliadas Auditivas/efectos de los fármacos , Vía de Señalización Hippo/efectos de los fármacos , Neomicina/efectos adversos , Proteínas Señalizadoras YAP/metabolismo , Animales , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Ratones , Factores Protectores , Inhibidores de la Síntesis de la Proteína/efectos adversos , Transducción de Señal/efectos de los fármacos
11.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119204, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35026350

RESUMEN

Cisplatin is a platinum-containing drug with ototoxicity commonly used clinically and has significant efficacy against a variety of solid tumors. One of the most important mechanisms of ototoxicity is that cisplatin induces apoptosis of hair cells. According to relevant literature, X-linked inhibitor of apoptosis protein (XIAP, anti-apoptotic protein) could inhibit the apoptotic pathway. We hypothesized that this protein might protect cochlear hair cells from cisplatin-induced injury. To figure it out, we treated cochlea of normal mice with various concentrations of cisplatin to observe the response and morphology of hair cells and determine a reasonable concentration. Next, Western Blot and quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) experiments were conducted to make an investigation about the expression of XIAP protein and mRNA. In addition, we constructed and identified XIAP overexpressing mice. Finally, we treated cochlear tissues of normal and overexpressing mice with cisplatin to investigate the cyto-protection of XIAP on hair cells, respectively. It was found that 50 µmol/L cisplatin resulted in significant loss and disorganization of hair cells, while simultaneously downregulating the protein and mRNA of XIAP. In XIAP overexpressing mice, the loss and disorganization of hair cells were significantly lessened. These results showed that XIAP can lessen cisplatin-induced hair cell loss and play a role in otoprotection.


Asunto(s)
Cisplatino/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Animales , Antineoplásicos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero/metabolismo , Proteína Inhibidora de la Apoptosis Ligada a X/genética
12.
J Clin Lab Anal ; 36(2): e24176, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34997776

RESUMEN

BACKGROUND: Cisplatin is a commonly used chemotherapeutic drug in clinics, and long-term application will lead to hearing impairment. LLY-283, an inhibitor of PRMT5, has not been reported in deafness. Our study aimed to explore the mechanism of LLY-283 in hearing impairment. MATERIALS AND METHODS: First, we performed RNA-seq (cisplatin in the experimental group and DMSO in the control group) to obtain the biological processes mainly involved in differentially expressed genes (DEGs). CCK-8 and LDH experiments were used to observe the effect of LLY-283 on cisplatin-induced auditory cell injury. ROS experiment was used to monitor the impact of LLY-283 on oxidative damage of auditory cells. Effect of LLY-283 on apoptosis of auditory cells detected by TUNEL experiment. PCR and Western blotting were used to detect the expression of genes and proteins related to auditory cell apoptosis in LLY-283 cells. Meanwhile, we explored the effect of LLY-283 on the expression of PRMT5 in cisplatin-induced hearing impaired cells at RNA and protein levels. RESULTS: Biological process analysis showed that DEGs were mainly enriched in the apoptotic process involved in morphogenesis (-Log10 P = 3.71). CCK-8 and LDH experiments confirmed that LLY-283 could save cisplatin-induced auditory cell injury. ROS experiments confirmed that LLY-283 could rescue cisplatin-induced oxidative damage to auditory cells. TUNEL experiments confirmed that LLY-283 could protect cisplatin-induced apoptosis of auditory cells. Meanwhile, LLY-283 could inhibit the expression of PRMT5 in auditory cells induced by cisplatin. CONCLUSION: LLY-283 can rescue cisplatin-induced auditory cell apoptosis injury. LLY-283 can inhibit the increase in PRMT5 expression induced by cisplatin.


Asunto(s)
Antineoplásicos , Apoptosis , Cisplatino , Células Ciliadas Auditivas , Ototoxicidad , Proteína-Arginina N-Metiltransferasas , Pirimidinas , Animales , Ratones , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Cisplatino/efectos adversos , Células Ciliadas Auditivas/efectos de los fármacos , Ototoxicidad/prevención & control , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , RNA-Seq , Pirimidinas/farmacología , Pirimidinas/uso terapéutico
13.
Oxid Med Cell Longev ; 2022: 1090034, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35082962

RESUMEN

Eupatilin (5,7-dihydroxy-3',4',6-trimethoxyflavone) is a pharmacologically active flavone that has been isolated from a variety of medicinal plants and possesses a number of pharmacological properties. This study evaluates the antioxidant and antiapoptotic effects of eupatilin on cisplatin-induced ototoxicity using in vitro and in vivo models including HEI-OC1 cells, cochlear hair cells, and zebrafish. Employing a CCK8 assay and Annexin V-FITC/PI double staining, we found that eupatilin significantly alleviated cisplatin-induced apoptosis and increased hair cell viability. The level of reactive oxygen species (ROS) was evaluated by CellROX green and MitoSOX Red staining. The results showed that eupatilin possesses antioxidant activity. MitoTracker Red staining indicated that eupatilin remarkably decreased mitochondrial damage. Furthermore, we demonstrated that eupatilin protects hair cells from cisplatin-induced damage. Mechanistic studies in cisplatin-induced HEI-OC1 cells revealed that eupatilin promoted Bcl-2 expression, downregulated Bax expression, reversed the increase in caspase-3 and PARP activity, and reduced the expression of phosphorylated p38 and JNK. Our data suggest a novel role for eupatilin as a protective agent against ototoxic drug-induced hair cell apoptosis by inhibiting ROS generation and modulating mitochondrial-related apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Cisplatino/efectos adversos , Medicamentos Herbarios Chinos/uso terapéutico , Flavonoides/uso terapéutico , Células Ciliadas Auditivas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Medicamentos Herbarios Chinos/farmacología , Flavonoides/farmacología , Humanos , Ratones , Pez Cebra
14.
Biochem Pharmacol ; 197: 114904, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34971589

RESUMEN

Cisplatin is a widely used chemotherapeutic agent for the treatment of various tumors, but its side effects limit its application. Ototoxicity, a major adverse effect of cisplatin, causes irreversible sensorineural hearing loss. Unfortunately, there are no effective approaches to protect against this damage. Autophagy has been shown to exert beneficial effects in various diseases models. However, the role of autophagy in cisplatin-induced ototoxicity has been not well elucidated. In this study, we aimed to investigate whether the novel autophagy activator trehalose could prevent cisplatin-induced damage in the auditory cell line HEI-OC1 and mouse cochlear explants and to further explore its mechanisms. Our data demonstrated that trehalose alleviated cisplatin-induced hair cell (HC) damage by inhibiting apoptosis, attenuating oxidative stress and rescuing mitochondrial dysfunction. Additionally, trehalose significantly enhanced autophagy levels in HCs, and inhibiting autophagy with 3-methyladenine (3-MA) abolished these protective effects. Mechanistically, we showed that the effect of trehalose was attributed to increased nuclear translocation of transcription factor EB (TFEB), and this effect could be mimicked by TFEB overexpression and inhibited by TFEB gene silencing or treatment with cyclosporin A (CsA), a calcineurin inhibitor. Taken together, our findings suggest that trehalose and autophagy play a role in protecting against cisplatin-induced ototoxicity and that pharmacological enhancement of TFEB-mediated autophagy is a potential treatment for cisplatin-induced damage in cochlear HCs and HEI-OC1 cells.


Asunto(s)
Antineoplásicos/toxicidad , Autofagia/fisiología , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Cisplatino/toxicidad , Células Ciliadas Auditivas/metabolismo , Trehalosa/farmacología , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/agonistas , Línea Celular , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/patología , Ratones , Ratones Endogámicos C57BL , Ototoxicidad/patología , Ototoxicidad/prevención & control
15.
Eur J Pharmacol ; 914: 174662, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34861207

RESUMEN

AIMS: The present study was aimed to explore the possible mechanism(s) underlying the action of cisplatin on auditory cells of mice in vitro, with special attention given to the dynamic variation in calcium homeostasis and responding channels. METHODS: The apoptosis of auditory cells was tested by flow cytometry and TUNEL staining. The expressions of inositol 1,4,5-trisphosphate receptors (IP3R), voltage-dependent anion channel 1 (VDAC1), phosphorylated protein kinase R-like ER kinase (p-PERK), activating transcription factor 6 (ATF6), caspase-12, bcl-2, bax, cleaved caspase-9, cleaved caspase-3, beclin-1 and light chain 3ß (LC3B) were measured by immunofluorescence or Western blotting. The calcium variations in subcellular structures were evaluated by Rhod-2 AM and Mag-Fluo-4 AM staining. The colocalization ratio between IP3R and beclin-1 was determined by immunocytochemistry. RESULTS: We found that cisplatin exposure induced the apoptosis of HEI-OC1 cells and hair cells (HCs) in a caspase-3 dependent manner. This apoptotic process was attributed to the activation of endoplasmic reticulum (ER) stress and mitochondrial pathway and, meanwhile, accompanied by variation in calcium homeostasis and responding channels. Interestingly, we also observed that IP3R might dissociate from beclin-1 to motivate autophagy under the cisplatin insult. CONCLUSIONS: Overall, the findings from this work indicate that cisplatin leads to auditory cell damage of mice in vitro, which is closely relevant to dynamic variation in calcium homeostasis and responding channels in subcellular structure.


Asunto(s)
Beclina-1/metabolismo , Señalización del Calcio/efectos de los fármacos , Caspasa 3/metabolismo , Cisplatino , Células Ciliadas Auditivas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Mitocondrias , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Factor de Transcripción Activador 6/metabolismo , Animales , Antineoplásicos/farmacología , Antineoplásicos/toxicidad , Apoptosis/efectos de los fármacos , Línea Celular , Cisplatino/farmacología , Cisplatino/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Células Ciliadas Auditivas/patología , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Transducción de Señal/efectos de los fármacos , eIF-2 Quinasa/metabolismo
16.
Genes Genomics ; 44(1): 1-7, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34800260

RESUMEN

BACKGROUND: Cisplatin (CP) is an effective anticancer drug broadly used for various types of cancers, but it has shown ototoxicity that results from oxidative stress. Berberine has been reported for its anti-oxidative stress suggesting its therapeutic potential for many diseases such as colitis, diabetes, and vascular dementia. OBJECTIVE: Organ of Corti of postnatal day 3 mouse cochlear explants were used to compare hair cells after the treatment with cisplatin alone or with berberine chloride (BC) followed by CP. METHODS: We investigated the potential of the anti-oxidative effect of BC against the cisplatin-induced ototoxicity. We observed a reduced aberrant bundle of stereocilia in hair cells in CP with BC pre-treated group. Caspase-3 immunofluorescence and TUNEL assay supported the hypothesis that BC attenuates the apoptotic signals induced by CP. Reactive oxygen species level in the mitochondria were investigated by MitoSOX Red staining and the mitochondrial membrane potentials were compared by JC-1 assay. RESULTS: BC decreased ROS generation with preserved mitochondrial membrane potentials in mitochondria as well as reduced DNA fragmentation in hair cells. In summary, our data indicate that BC might act as antioxidant against CP by reducing the stress in mitochondria resulting in cell survival. CONCLUSION: Our result suggests the therapeutic potential of BC for prevention of the detrimental effect of CP-induced ototoxicity.


Asunto(s)
Berberina/farmacología , Cloruros/farmacología , Cisplatino/efectos adversos , Ototoxicidad/prevención & control , Animales , Antineoplásicos/efectos adversos , Apoptosis/efectos de los fármacos , Berberina/química , Caspasa 3/metabolismo , Células Cultivadas , Cloruros/química , Cóclea/citología , Cóclea/efectos de los fármacos , Cóclea/metabolismo , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/metabolismo , Etiquetado Corte-Fin in Situ , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Órgano Espiral/citología , Órgano Espiral/efectos de los fármacos , Órgano Espiral/metabolismo , Ototoxicidad/etiología , Ototoxicidad/metabolismo , Sustancias Protectoras/farmacología , Especies Reactivas de Oxígeno/metabolismo
17.
Toxicol Lett ; 356: 151-160, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34954246

RESUMEN

Hearing impairment and deafness is frequently observed as one of the neurological signs in patients with Minamata disease caused by methylmercury (MeHg) poisoning. Loss of hair cells in humans and animals is a consequence of MeHg poisoning. However, it is still not clear how MeHg causes hearing deficits. We employed the hair cells of the lateral line system of zebrafish embryos as a model to explore this question. We exposed transgenic zebrafish embryos to MeHg (30-360 µg/L) at the different stages, and scored the numbers of hair cells. We find that MeHg-induced reduction of hair cells is in a concentration dependent manner. By employing antisense morpholino against to pu.1, we confirm that loss of hair cells involves the action of leukocytes. Moreover, hair cell loss is attenuated by co-treating MeHg-exposed embryos with pharmacological inhibitors of NADPH oxidases named diphenyleneiodonium (DPI) and VAS2870. In situ gene expression analysis showed that genes encoding the SQSTM1-Keap1-Nrf2 systems involved in combating oxidative stress and immune responses are highly expressed in the lateral line organs of embryos exposed to MeHg. This suggests that induction of hydrogen peroxide (H2O2) is the primary effect of MeHg on the hair cells. Genes induced by MeHg are also involved in regeneration of the hair cells. These features are likely related to the capacity of the zebrafish to regenerate the lost hair cells.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Leucocitos/efectos de los fármacos , Compuestos de Metilmercurio/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Leucocitos/fisiología , Compuestos de Metilmercurio/administración & dosificación , Pez Cebra
18.
Sci Rep ; 11(1): 23855, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903829

RESUMEN

ATP-utilizing enzymes play key roles in hair bundles, the mechanically sensitive organelles of sensory hair cells in the inner ear. We used a fluorescent ATP analog, EDA-ATP-Cy3 (Cy3-ATP), to label ATP-binding proteins in two different preparations of unfixed hair-cell stereocilia of the mouse. In the first preparation, we lightly permeabilized dissected cochleas, then labeled them with Cy3-ATP. Hair cells and their stereocilia remained intact, and stereocilia tips in rows 1 and 2 were labeled particularly strongly with Cy3-ATP. In many cases, vanadate (Vi) traps nucleotides at the active site of myosin isoforms and presents nucleotide dissociation. Co-application with Vi enhanced the tip labeling, which is consistent with myosin isoforms being responsible. By contrast, the actin polymerization inhibitors latrunculin A and cytochalasin D had no effect, suggesting that actin turnover at stereocilia tips was not involved. Cy3-ATP labeling was substantially reduced-but did not disappear altogether-in mutant cochleas lacking MYO15A; by contrast, labeling remained robust in cochleas lacking MYO7A. In the second preparation, used to quantify Cy3-ATP labeling, we labeled vestibular stereocilia that had been adsorbed to glass, which demonstrated that tip labeling was higher in longer stereocilia. We found that tip signal was reduced by ~ 50% in Myo15ash2/sh2 stereocilia as compared to Myo15ash2/+stereocilia. These results suggest that MYO15A accounts for a substantial fraction of the Cy3-ATP tip labeling in vestibular hair cells, and so this novel preparation could be utilized to examine the control of MYO15A ATPase activity in situ.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Células Ciliadas Auditivas/metabolismo , Indoles/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células Cultivadas , Citocalasina D/farmacología , Células Ciliadas Auditivas/citología , Células Ciliadas Auditivas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Miosinas/metabolismo , Estereocilios/metabolismo , Estereocilios/ultraestructura , Tiazolidinas/farmacología , Vanadatos/farmacología
19.
Molecules ; 26(22)2021 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-34834125

RESUMEN

The extract from Cnidium officinale rhizomes was shown in a prior experiment to markedly recover otic hair cells in zebrafish damaged by neomycin. The current study was brought about to identify the principal metabolite. Column chromatography using octadecyl SiO2 and SiO2 was performed to isolate the major metabolites from the active fraction. The chemical structures were resolved on the basis of spectroscopic data, including NMR, IR, MS, and circular dichroism (CD) data. The isolated phthalide glycosides were assessed for their recovery effect on damaged otic hair cells in neomycin-treated zebrafish. Three new phthalide glycosides were isolated, and their chemical structures, including stereochemical characteristics, were determined. Two glycosides (0.1 µM) showed a recovery effect (p < 0.01) on otic hair cells in zebrafish affected by neomycin ototoxicity. Repeated column chromatography led to the isolation of three new phthalide glycosides, named ligusticosides C (1), D (2), and E (3). Ligusticoside C and ligusticoside E recovered damaged otic hair cells in zebrafish.


Asunto(s)
Benzofuranos/farmacología , Cnidium/química , Glicósidos/farmacología , Células Ciliadas Auditivas/efectos de los fármacos , Rizoma/química , Animales , Neomicina/farmacología , Dióxido de Silicio/farmacología , Pez Cebra
20.
Mol Med Rep ; 24(6)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34651662

RESUMEN

Gentamicin (GM) is a commonly used antibiotic, and ototoxicity is one of its side effects. Puerarin (PU) is an isoflavone in kudzu roots that exerts a number of pharmacological effects, including antioxidative and free radical scavenging effects. The present study investigated whether PU could protect against GM­induced ototoxicity in C57BL/6J mice and House Ear Institute­Organ of Corti 1 (HEI­OC1) cells. C57BL/6J mice and HEI­OC1 cells were used to establish models of GM­induced ototoxicity in this study. Auditory brainstem responses were measured to assess hearing thresholds, and microscopy was used to observe the morphology of cochlear hair cells after fluorescent staining. Cell viability was examined with Cell Counting Kit­8 assays. To evaluate cell apoptosis and reactive oxygen species (ROS) production, TUNEL assays, reverse transcription­quantitative PCR, DCFH­DA staining, JC­1 staining and western blotting were performed. PU protected against GM­induced hearing damage in C57BL/6J mice. PU ameliorated the morphological changes of mouse cochlear hair cells and reduced the apoptosis rate of HEI­OC1 cells after GM­mediated damage. GM­induced ototoxicity may be closely related to the upregulation of p53 expression and the activation of endogenous mitochondrial apoptosis pathways, and PU could protect cochlear hair cells from GM­mediated damage by reducing the production of ROS and inhibiting the mitochondria­dependent apoptosis pathway.


Asunto(s)
Apoptosis/efectos de los fármacos , Gentamicinas/toxicidad , Isoflavonas/farmacología , Mitocondrias/metabolismo , Ototoxicidad/prevención & control , Sustancias Protectoras/farmacología , Animales , Caspasa 3/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Ciliadas Auditivas/efectos de los fármacos , Pérdida Auditiva/prevención & control , Isoflavonas/uso terapéutico , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Membranas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/uso terapéutico , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...