Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.780
Filtrar
1.
Cardiovasc Diabetol ; 23(1): 164, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724987

RESUMEN

Dynamin-related protein 1 (Drp1) is a crucial regulator of mitochondrial dynamics, the overactivation of which can lead to cardiovascular disease. Multiple distinct posttranscriptional modifications of Drp1 have been reported, among which S-nitrosylation was recently introduced. However, the detailed regulatory mechanism of S-nitrosylation of Drp1 (SNO-Drp1) in cardiac microvascular dysfunction in diabetes remains elusive. The present study revealed that mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4) was consistently upregulated in diabetic cardiomyopathy (DCM) and promoted SNO-Drp1 in cardiac microvascular endothelial cells (CMECs), which in turn led to mitochondrial dysfunction and cardiac microvascular disorder. Further studies confirmed that MAP4K4 promoted SNO-Drp1 at human C644 (mouse C650) by inhibiting glutathione peroxidase 4 (GPX4) expression, through which MAP4K4 stimulated endothelial ferroptosis in diabetes. In contrast, inhibition of MAP4K4 via DMX-5804 significantly reduced endothelial ferroptosis, alleviated cardiac microvascular dysfunction and improved cardiac dysfunction in db/db mice by reducing SNO-Drp1. In parallel, the C650A mutation in mice abolished SNO-Drp1 and the role of Drp1 in promoting cardiac microvascular disorder and cardiac dysfunction. In conclusion, our findings demonstrate that MAP4K4 plays an important role in endothelial dysfunction in DCM and reveal that SNO-Drp1 and ferroptosis activation may act as downstream targets, representing potential therapeutic targets for DCM.


Asunto(s)
Cardiomiopatías Diabéticas , Dinaminas , Células Endoteliales , Ratones Endogámicos C57BL , Transducción de Señal , Animales , Cardiomiopatías Diabéticas/metabolismo , Cardiomiopatías Diabéticas/genética , Cardiomiopatías Diabéticas/fisiopatología , Cardiomiopatías Diabéticas/patología , Cardiomiopatías Diabéticas/enzimología , Cardiomiopatías Diabéticas/etiología , Humanos , Dinaminas/metabolismo , Dinaminas/genética , Masculino , Células Endoteliales/metabolismo , Células Endoteliales/patología , Células Endoteliales/enzimología , Células Endoteliales/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ferroptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Células Cultivadas , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología , Mitocondrias Cardíacas/enzimología , Ratones , Procesamiento Proteico-Postraduccional , Circulación Coronaria , Péptidos y Proteínas de Señalización Intracelular
2.
J Clin Invest ; 134(10)2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38747293

RESUMEN

Molecular characterization of vascular anomalies has revealed that affected endothelial cells (ECs) harbor gain-of-function (GOF) mutations in the gene encoding the catalytic α subunit of PI3Kα (PIK3CA). These PIK3CA mutations are known to cause solid cancers when occurring in other tissues. PIK3CA-related vascular anomalies, or "PIKopathies," range from simple, i.e., restricted to a particular form of malformation, to complex, i.e., presenting with a range of hyperplasia phenotypes, including the PIK3CA-related overgrowth spectrum. Interestingly, development of PIKopathies is affected by fluid shear stress (FSS), a physiological stimulus caused by blood or lymph flow. These findings implicate PI3K in mediating physiological EC responses to FSS conditions characteristic of lymphatic and capillary vessel beds. Consistent with this hypothesis, increased PI3K signaling also contributes to cerebral cavernous malformations, a vascular disorder that affects low-perfused brain venous capillaries. Because the GOF activity of PI3K and its signaling partners are excellent drug targets, understanding PIK3CA's role in the development of vascular anomalies may inform therapeutic strategies to normalize EC responses in the diseased state. This Review focuses on PIK3CA's role in mediating EC responses to FSS and discusses current understanding of PIK3CA dysregulation in a range of vascular anomalies that particularly affect low-perfused regions of the vasculature. We also discuss recent surprising findings linking increased PI3K signaling to fast-flow arteriovenous malformations in hereditary hemorrhagic telangiectasias.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase I , Malformaciones Vasculares , Humanos , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Animales , Malformaciones Vasculares/genética , Malformaciones Vasculares/patología , Malformaciones Vasculares/fisiopatología , Malformaciones Vasculares/metabolismo , Malformaciones Vasculares/enzimología , Células Endoteliales/enzimología , Células Endoteliales/patología , Células Endoteliales/metabolismo , Estrés Mecánico , Mutación con Ganancia de Función , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Transducción de Señal , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Hemangioma Cavernoso del Sistema Nervioso Central/patología
3.
J Am Heart Assoc ; 13(9): e032872, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38639351

RESUMEN

BACKGROUND: Peripheral pulmonary stenosis (PPS) is a condition characterized by the narrowing of the pulmonary arteries, which impairs blood flow to the lung. The mechanisms underlying PPS pathogenesis remain unclear. Thus, the aim of this study was to investigate the genetic background of patients with severe PPS to elucidate the pathogenesis of this condition. METHODS AND RESULTS: We performed genetic testing and functional analyses on a pediatric patient with PPS and Williams syndrome (WS), followed by genetic testing on 12 patients with WS and mild-to-severe PPS, 50 patients with WS but not PPS, and 21 patients with severe PPS but not WS. Whole-exome sequencing identified a rare PTGIS nonsense variant (p.E314X) in a patient with WS and severe PPS. Prostaglandin I2 synthase (PTGIS) expression was significantly downregulated and cell proliferation and migration rates were significantly increased in cells transfected with the PTGIS p.E314X variant-encoding construct when compared with that in cells transfected with the wild-type PTGIS-encoding construct. p.E314X reduced the tube formation ability in human pulmonary artery endothelial cells and caspase 3/7 activity in both human pulmonary artery endothelial cells and human pulmonary artery smooth muscle cells. Compared with healthy controls, patients with PPS exhibited downregulated pulmonary artery endothelial prostaglandin I2 synthase levels and urinary prostaglandin I metabolite levels. We identified another PTGIS rare splice-site variant (c.1358+2T>C) in another pediatric patient with WS and severe PPS. CONCLUSIONS: In total, 2 rare nonsense/splice-site PTGIS variants were identified in 2 pediatric patients with WS and severe PPS. PTGIS variants may be involved in PPS pathogenesis, and PTGIS represents an effective therapeutic target.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Oxidorreductasas Intramoleculares , Arteria Pulmonar , Estenosis de la Válvula Pulmonar , Síndrome de Williams , Humanos , Masculino , Síndrome de Williams/genética , Síndrome de Williams/fisiopatología , Síndrome de Williams/enzimología , Femenino , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Arteria Pulmonar/fisiopatología , Arteria Pulmonar/enzimología , Estenosis de la Válvula Pulmonar/genética , Estenosis de la Válvula Pulmonar/fisiopatología , Niño , Codón sin Sentido , Preescolar , Secuenciación del Exoma , Índice de Severidad de la Enfermedad , Proliferación Celular , Adolescente , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Movimiento Celular , Predisposición Genética a la Enfermedad , Fenotipo , Células Cultivadas
4.
Cardiovasc Diabetol ; 23(1): 138, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38664801

RESUMEN

BACKGROUND: Neutral cholesterol ester hydrolase 1 (NCEH1) plays a critical role in the regulation of cholesterol ester metabolism. Deficiency of NCHE1 accelerated atherosclerotic lesion formation in mice. Nonetheless, the role of NCEH1 in endothelial dysfunction associated with diabetes has not been explored. The present study sought to investigate whether NCEH1 improved endothelial function in diabetes, and the underlying mechanisms were explored. METHODS: The expression and activity of NCEH1 were determined in obese mice with high-fat diet (HFD) feeding, high glucose (HG)-induced mouse aortae or primary endothelial cells (ECs). Endothelium-dependent relaxation (EDR) in aortae response to acetylcholine (Ach) was measured. RESULTS: Results showed that the expression and activity of NCEH1 were lower in HFD-induced mouse aortae, HG-exposed mouse aortae ex vivo, and HG-incubated primary ECs. HG exposure reduced EDR in mouse aortae, which was exaggerated by endothelial-specific deficiency of NCEH1, whereas NCEH1 overexpression restored the impaired EDR. Similar results were observed in HFD mice. Mechanically, NCEH1 ameliorated the disrupted EDR by dissociating endothelial nitric oxide synthase (eNOS) from caveolin-1 (Cav-1), leading to eNOS activation and nitric oxide (NO) release. Moreover, interaction of NCEH1 with the E3 ubiquitin-protein ligase ZNRF1 led to the degradation of Cav-1 through the ubiquitination pathway. Silencing Cav-1 and upregulating ZNRF1 were sufficient to improve EDR of diabetic aortas, while overexpression of Cav-1 and downregulation of ZNRF1 abolished the effects of NCEH1 on endothelial function in diabetes. Thus, NCEH1 preserves endothelial function through increasing NO bioavailability secondary to the disruption of the Cav-1/eNOS complex in the endothelium of diabetic mice, depending on ZNRF1-induced ubiquitination of Cav-1. CONCLUSIONS: NCEH1 may be a promising candidate for the prevention and treatment of vascular complications of diabetes.


Asunto(s)
Caveolina 1 , Dieta Alta en Grasa , Células Endoteliales , Endotelio Vascular , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo III , Vasodilatación , Animales , Masculino , Ratones , Aorta/enzimología , Aorta/fisiopatología , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Caveolina 1/metabolismo , Caveolina 1/deficiencia , Caveolina 1/genética , Células Cultivadas , Diabetes Mellitus Experimental/enzimología , Diabetes Mellitus Experimental/fisiopatología , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/fisiopatología , Endotelio Vascular/metabolismo , Endotelio Vascular/enzimología , Endotelio Vascular/efectos de los fármacos , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Obesidad/enzimología , Obesidad/fisiopatología , Obesidad/metabolismo , Transducción de Señal , Esterol Esterasa/metabolismo , Esterol Esterasa/genética , Ubiquitinación , Vasodilatación/efectos de los fármacos
5.
Am J Physiol Lung Cell Mol Physiol ; 323(1): L48-L57, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35672011

RESUMEN

The lungs of patients with acute respiratory distress syndrome (ARDS) have hyperpermeable capillaries that must undergo repair in an acidic microenvironment. Pulmonary microvascular endothelial cells (PMVECs) have an acid-resistant phenotype, in part due to carbonic anhydrase IX (CA IX). CA IX also facilitates PMVEC repair by promoting aerobic glycolysis, migration, and network formation. Molecular mechanisms of how CA IX performs such a wide range of functions are unknown. CA IX is composed of four domains known as the proteoglycan-like (PG), catalytic (CA), transmembrane (TM), and intracellular (IC) domains. We hypothesized that the PG and CA domains mediate PMVEC pH homeostasis and repair, and the IC domain regulates aerobic glycolysis and PI3k/Akt signaling. The functions of each CA IX domain were investigated using PMVEC cell lines that express either a full-length CA IX protein or a CA IX protein harboring a domain deletion. We found that the PG domain promotes intracellular pH homeostasis, migration, and network formation. The CA and IC domains mediate Akt activation but negatively regulate aerobic glycolysis. The IC domain also supports migration while inhibiting network formation. Finally, we show that exposure to acidosis suppresses aerobic glycolysis and migration, even though intracellular pH is maintained in PMVECs. Thus, we report that 1) the PG and IC domains mediate PMVEC migration and network formation, 2) the CA and IC domains support PI3K/Akt signaling, and 3) acidosis impairs PMVEC metabolism and migration independent of intracellular pH homeostasis.


Asunto(s)
Antígenos de Neoplasias , Anhidrasa Carbónica IX , Células Endoteliales , Pulmón , Acidosis/metabolismo , Antígenos de Neoplasias/química , Antígenos de Neoplasias/metabolismo , Anhidrasa Carbónica IX/metabolismo , Células Endoteliales/citología , Células Endoteliales/enzimología , Humanos , Concentración de Iones de Hidrógeno , Pulmón/irrigación sanguínea , Pulmón/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteoglicanos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Microambiente Tumoral
6.
EMBO Mol Med ; 14(6): e14121, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35491615

RESUMEN

The gut has a specific vascular barrier that controls trafficking of antigens and microbiota into the bloodstream. However, the molecular mechanisms regulating the maintenance of this vascular barrier remain elusive. Here, we identified Caspase-8 as a pro-survival factor in mature intestinal endothelial cells that is required to actively maintain vascular homeostasis in the small intestine in an organ-specific manner. In particular, we find that deletion of Caspase-8 in endothelial cells results in small intestinal hemorrhages and bowel inflammation, while all other organs remained unaffected. We also show that Caspase-8 seems to be particularly needed in lymphatic endothelial cells to maintain gut homeostasis. Our work demonstrates that endothelial cell dysfunction, leading to the breakdown of the gut-vascular barrier, is an active driver of chronic small intestinal inflammation, highlighting the role of the intestinal vasculature as a safeguard of organ function.


Asunto(s)
Caspasa 8 , Células Endoteliales , Mucosa Intestinal , Animales , Caspasa 8/metabolismo , Células Endoteliales/enzimología , Células Endoteliales/metabolismo , Células Endoteliales/patología , Enteritis/enzimología , Enteritis/patología , Homeostasis , Mucosa Intestinal/enzimología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Intestino Delgado/enzimología , Intestino Delgado/patología , Ratones
7.
Sci Rep ; 12(1): 1655, 2022 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-35102202

RESUMEN

To control sprouting angiogenesis, endothelial Notch signaling suppresses tip cell formation, migration, and proliferation while promoting barrier formation. Each of these responses may be regulated by distinct Notch-regulated effectors. Notch activity is highly dynamic in sprouting endothelial cells, while constitutive Notch signaling drives homeostatic endothelial polarization, indicating the need for both rapid and constitutive Notch targets. In contrast to previous screens that focus on genes regulated by constitutively active Notch, we characterized the dynamic response to Notch. We examined transcriptional changes from 1.5 to 6 h after Notch signal activation via ligand-specific or EGTA induction in cultured primary human endothelial cells and neonatal mouse brain. In each combination of endothelial type and Notch manipulation, transcriptomic analysis identified distinct but overlapping sets of rapidly regulated genes and revealed many novel Notch target genes. Among the novel Notch-regulated signaling pathways identified were effectors in GPCR signaling, notably, the constitutively active GTPase RND1. In endothelial cells, RND1 was shown to be a novel direct Notch transcriptional target and required for Notch control of sprouting angiogenesis, endothelial migration, and Ras activity. We conclude that RND1 is directly regulated by endothelial Notch signaling in a rapid fashion in order to suppress endothelial migration.


Asunto(s)
Encéfalo/irrigación sanguínea , Movimiento Celular , Células Endoteliales/enzimología , Neovascularización Fisiológica , Receptores Notch/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular , Regulación Enzimológica de la Expresión Génica , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores Notch/genética , Transducción de Señal , Factores de Tiempo , Transcripción Genética , Proteínas ras/genética , Proteínas ras/metabolismo , Proteínas de Unión al GTP rho/genética
8.
Am J Physiol Cell Physiol ; 322(3): C338-C353, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35044858

RESUMEN

The small conductance calcium-activated potassium channel (KCa2.3) has long been recognized for its role in mediating vasorelaxation through the endothelium-derived hyperpolarization (EDH) response. Histone deacetylases (HDACs) have been implicated as potential modulators of blood pressure and histone deacetylase inhibitors (HDACi) are being explored as therapeutics for hypertension. Herein, we show that HDACi increase KCa2.3 expression when heterologously expressed in HEK cells and endogenously expressed in primary cultures of human umbilical vein endothelial cells (HUVECs) and human intestinal microvascular endothelial cells (HIMECs). When primary endothelial cells were exposed to HDACi, KCa2.3 transcripts, subunits, and functional current are increased. Quantitative RT-PCR (qPCR) demonstrated increased KCa2.3 mRNA following HDACi, confirming transcriptional regulation of KCa2.3 by HDACs. By using pharmacological agents selective for different classes of HDACs, we discriminated between cytoplasmic and epigenetic modulation of KCa2.3. Biochemical analysis revealed an association between the cytoplasmic HDAC6 and KCa2.3 in immunoprecipitation studies. Specifically inhibiting HDAC6 increases expression of KCa2.3. In addition to increasing the expression of KCa2.3, we show that nonspecific inhibition of HDACs causes an increase in the expression of the molecular chaperone Hsp70 in endothelial cells. When Hsp70 is inhibited in the presence of HDACi, the magnitude of the increase in KCa2.3 expression is diminished. Finally, we show a slower rate of endocytosis of KCa2.3 as a result of exposure of primary endothelial cells to HDACi. These data provide the first demonstrated approach to increase KCa2.3 channel number in endothelial cells and may partially account for the mechanism by which HDACi induce vasorelaxation.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Histona Desacetilasa 6/antagonistas & inhibidores , Inhibidores de Histona Desacetilasas/farmacología , Intestinos/irrigación sanguínea , Microvasos/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Endocitosis , Células Endoteliales/enzimología , Células HEK293 , Proteínas HSP70 de Choque Térmico/metabolismo , Histona Desacetilasa 6/metabolismo , Humanos , Potenciales de la Membrana , Microvasos/enzimología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Regulación hacia Arriba , Vasodilatación
9.
Life Sci ; 294: 120355, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35093339

RESUMEN

AIM: Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, inflammatory responses and fibrosis. Our previous studies provided evidence that group IVA phospholipase A2 (IVA-PLA2), a key PLA2 isozyme in the arachidonic acid cascade, is involved in the development of NASH. However, which types of cells are critical for the IVA-PLA2-dependent onset and progression of NASH is unclear. We elucidated the effects of the cell-type-specific deficiency of IVA-PLA2 in mice on the development of NASH. MAIN METHODS: Cell-type-specific IVA-PLA2-conditional knockout (cKO) mice and littermate controls were fed a choline-deficient, L-amino-acid-defined, high-fat diet with 0.1% methionine as a NASH model. The degree of hepatic fibrosis was evaluated by staining with picric acid-Sirius red, and the number of activated hepatic stellate cells was determined by immunoblotting and immunostaining for α-smooth muscle actin. Sinusoidal capillarization was analyzed by scanning electron microscopy. KEY FINDINGS: The deposition of collagen and number of activated hepatic stellate cells were markedly reduced in endothelial cell/liver sinusoidal endothelial cell (EC/LSEC)-specific IVA-PLA2 cKO mice but not in hepatocyte-, monocyte/macrophage-, or hepatic stellate cell-specific IVA-PLA2 cKO mice. In addition, EC/LSEC-specific IVA-PLA2-deficient mice showed more fenestrae than control mice fed a CDAHFD, indicating suppression of sinusoidal capillarization. SIGNIFICANCE: These results suggest that ECs/LSECs contribute to the IVA-PLA2-dependent onset and/or progression of NASH. Endothelial IVA-PLA2 is a promising factor for promoting sinusoidal capillarization and the ensuing HSC activation and fibrosis; thus IVA-PLA2 in ECs/LSECs is a potential therapeutic target for NASH.


Asunto(s)
Capilares/patología , Células Endoteliales/patología , Fosfolipasas A2 Grupo IV/fisiología , Cirrosis Hepática/patología , Neovascularización Patológica/patología , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Animales , Capilares/enzimología , Células Endoteliales/enzimología , Cirrosis Hepática/enzimología , Cirrosis Hepática/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Patológica/enzimología
10.
Turk J Haematol ; 39(1): 13-21, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-34981912

RESUMEN

Objective: Philadelphia chromosome-negative myeloproliferative neoplasms (MPNs) have a high propensity for thrombosis, which has been attributed to increased blood counts, endothelial cell (EC) dysfunction, and inflammation. The presence of the JAK2V617F mutation in the ECs of MPN patients has been confirmed, but the consequences of EC involvement by JAK2V617F in the pathogenesis of thrombosis are unclear. Endothelial microparticles (EMPs) released from ECs play an important role in endothelial dysfunction and also in the intercellular exchange of biological signals and information. Several studies have revealed that patients with JAK2V617F and a thrombosis history have increased numbers of MPs in their circulation. Materials and Methods: The current study utilized a lentiviral transduction model of JAK2 wild type (JAK2wt) or JAK2V617F encoding green fluorescent protein (GFP) into human umbilical vein ECs to determine the effect of JAK2V617F on ECs. EC infected with JAK2V617F, JAK2WT, and only-GFP were tested after two days of culture. Results: The proteins of ECs that potentially play a role in the development of thrombosis, including endothelial protein C receptor, thrombomodulin, and tissue factor, were detected by flow cytometry analysis with no statistical significance. Increased annexin-V uptake of JAK2V617F and JAK2wt ECs compared to GFP-alone ECs was detected. The EMP production in the supernatants of the EC culture was investigated. Genotyping of the EMPs revealed the presence of genomic DNA and RNA fragments in EMP cargos. JAK2V617F-positive DNA was detected in EMPs released from JAK2V617F-infected ECs and EMPs were shown to carry the genotype of the cell of origin. Conclusion: JAK2V617F-positive EMPs were shown for the first time in the literature. This novel research provides the first evidence that EMPs might regulate neighboring and distant cells via their cargo materials. Thus, the direct effect of JAK2V617F on ECs and their functions suggests that different mechanisms might play a role in the pathogenesis of thrombosis in MPNs.


Asunto(s)
Apoptosis , Micropartículas Derivadas de Células , Células Endoteliales , Janus Quinasa 2 , Micropartículas Derivadas de Células/metabolismo , Células Endoteliales/enzimología , Humanos , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Mutación , Trastornos Mieloproliferativos/genética , Trombosis/genética
11.
J Pathol ; 256(2): 235-247, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34743335

RESUMEN

A common limitation of cancer treatments is chemotherapy resistance. We have previously identified that endothelial cell (EC)-specific deletion of focal adhesion kinase (FAK) sensitises tumour cells to DNA-damaging therapies, reducing tumour growth in mice. The present study addressed the kinase activity dependency of EC FAK sensitisation to the DNA-damaging chemotherapeutic drug, doxorubicin. FAK is recognised as a therapeutic target in tumour cells, leading to the development of a range of inhibitors, the majority being ATP competitive kinase inhibitors. We demonstrate that inactivation of EC FAK kinase domain (kinase dead; EC FAK-KD) in established subcutaneous B16F0 tumours improves melanoma cell sensitisation to doxorubicin. Doxorubicin treatment in EC FAK-KD mice reduced the percentage change in exponential B16F0 tumour growth further than in wild-type mice. There was no difference in tumour blood vessel numbers, vessel perfusion or doxorubicin delivery between genotypes, suggesting a possible angiocrine effect on the regulation of tumour growth. Doxorubicin reduced perivascular malignant cell proliferation, while enhancing perivascular tumour cell apoptosis and DNA damage in tumours grown in EC FAK-KD mice 48 h after doxorubicin injection. Human pulmonary microvascular ECs treated with the pharmacological FAK kinase inhibitors defactinib, PF-562,271 or PF-573,228 in combination with doxorubicin also reduced cytokine expression levels. Together, these data suggest that targeting EC FAK kinase activity may alter angiocrine signals that correlate with improved acute tumour cell chemosensitisation. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Células Endoteliales/enzimología , Quinasa 1 de Adhesión Focal/metabolismo , Melanoma Experimental/enzimología , Neovascularización Fisiológica , Neoplasias Cutáneas/enzimología , Inhibidores de la Angiogénesis/farmacología , Animales , Antibióticos Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Citocinas/metabolismo , Doxorrubicina/farmacología , Resistencia a Antineoplásicos , Femenino , Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Quinasa 1 de Adhesión Focal/genética , Humanos , Masculino , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/genética , Melanoma Experimental/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carga Tumoral
12.
Arterioscler Thromb Vasc Biol ; 42(1): 19-34, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34789002

RESUMEN

OBJECTIVE: Fluid shear stress (FSS) is known to mediate multiple phenotypic changes in the endothelium. Laminar FSS (undisturbed flow) is known to promote endothelial alignment to flow, which is key to stabilizing the endothelium and rendering it resistant to atherosclerosis and thrombosis. The molecular pathways responsible for endothelial responses to FSS are only partially understood. In this study, we determine the role of PGC1α (peroxisome proliferator gamma coactivator-1α)-TERT (telomerase reverse transcriptase)-HMOX1 (heme oxygenase-1) during shear stress in vitro and in vivo. Approach and Results: Here, we have identified PGC1α as a flow-responsive gene required for endothelial flow alignment in vitro and in vivo. Compared with oscillatory FSS (disturbed flow) or static conditions, laminar FSS (undisturbed flow) showed increased PGC1α expression and its transcriptional coactivation. PGC1α was required for laminar FSS-induced expression of TERT in vitro and in vivo via its association with ERRα(estrogen-related receptor alpha) and KLF (Kruppel-like factor)-4 on the TERT promoter. We found that TERT inhibition attenuated endothelial flow alignment, elongation, and nuclear polarization in response to laminar FSS in vitro and in vivo. Among the flow-responsive genes sensitive to TERT status, HMOX1 was required for endothelial alignment to laminar FSS. CONCLUSIONS: These data suggest an important role for a PGC1α-TERT-HMOX1 axis in the endothelial stabilization response to laminar FSS.


Asunto(s)
Células Endoteliales/enzimología , Hemo-Oxigenasa 1/metabolismo , Mecanotransducción Celular , Proteínas de la Membrana/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Telomerasa/metabolismo , Animales , Células Cultivadas , Células Endoteliales/patología , Transición Epitelial-Mesenquimal , Femenino , Regulación Enzimológica de la Expresión Génica , Hemo-Oxigenasa 1/genética , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Flujo Sanguíneo Regional , Estrés Mecánico , Telomerasa/genética
13.
Cardiovasc Res ; 118(1): 254-266, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33483748

RESUMEN

AIMS: Rheumatoid arthritis (RA) is a chronic inflammatory disease affecting joints and blood vessels. Despite low levels of low-density lipoprotein cholesterol (LDL-C), RA patients exhibit endothelial dysfunction and are at increased risk of death from cardiovascular complications, but the molecular mechanism of action is unknown. We aimed in the present study to identify the molecular mechanism of endothelial dysfunction in a mouse model of RA and in patients with RA. METHODS AND RESULTS: Endothelium-dependent relaxations to acetylcholine were reduced in aortae of two tumour necrosis factor alpha (TNFα) transgenic mouse lines with either mild (Tg3647) or severe (Tg197) forms of RA in a time- and severity-dependent fashion as assessed by organ chamber myograph. In Tg197, TNFα plasma levels were associated with severe endothelial dysfunction. LOX-1 receptor was markedly up-regulated leading to increased vascular oxLDL uptake and NFκB-mediated enhanced Arg2 expression via direct binding to its promoter resulting in reduced NO bioavailability and vascular cGMP levels as shown by ELISA and chromatin immunoprecipitation. Anti-TNFα treatment with infliximab normalized endothelial function together with LOX-1 and Arg2 serum levels in mice. In RA patients, soluble LOX-1 serum levels were also markedly increased and closely related to serum levels of C-reactive protein. Similarly, ARG2 serum levels were increased. Similarly, anti-TNFα treatment restored LOX-1 and ARG2 serum levels in RA patients. CONCLUSIONS: Increased TNFα levels not only contribute to RA, but also to endothelial dysfunction by increasing vascular oxLDL content and activation of the LOX-1/NFκB/Arg2 pathway leading to reduced NO bioavailability and decreased cGMP levels. Anti-TNFα treatment improved both articular symptoms and endothelial function by reducing LOX-1, vascular oxLDL, and Arg2 levels.


Asunto(s)
Aorta Torácica/efectos de los fármacos , Arginasa/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Receptores Depuradores de Clase E/metabolismo , Inhibidores del Factor de Necrosis Tumoral/uso terapéutico , Factor de Necrosis Tumoral alfa/metabolismo , Vasodilatación/efectos de los fármacos , Adulto , Animales , Animales Modificados Genéticamente , Aorta Torácica/enzimología , Aorta Torácica/inmunología , Aorta Torácica/fisiopatología , Arginasa/genética , Artritis Reumatoide/enzimología , Artritis Reumatoide/inmunología , Artritis Reumatoide/fisiopatología , Estudios de Casos y Controles , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/inmunología , Endotelio Vascular/enzimología , Endotelio Vascular/inmunología , Endotelio Vascular/fisiopatología , Femenino , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos CBA , Persona de Mediana Edad , FN-kappa B/metabolismo , Receptores Depuradores de Clase E/genética , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética
14.
Adipocyte ; 11(1): 28-33, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34957913

RESUMEN

Oxidative tissues such as brown adipose tissue and muscle internalize large amounts of circulating lipids and glucose as energy source. Endothelial cells (ECs) provide a platform for regulated transport and processing of blood-borne nutrients. Next to this role, it has become recognized that intercellular crosstalk between ECs and underlying parenchymal cells is indispensable for maintenance of tissue homoeostasis. Here, we comment on our recent observation that capillary ECs in thermogenic adipose tissues take up and metabolize entire triglyceride-rich lipoprotein (TRL) particles in response to cold exposure. This process is dependent on CD36, lipoprotein lipase (LPL) and lysosomal acid lipase (LAL). Remarkably, loss of LAL specifically in endothelial cells results in impaired endothelial proliferation and diminished thermogenic adaptation. Mechanistically, cell culture experiments indicate that LAL-mediated TRL processing leads to the generation of reactive oxygen species, which in turn activate hypoxia-induced factor (HIF)-mediated proliferative responses. In the current manuscript, we provide in vivo evidence that LAL-deficiency impairs proliferation of endothelial cells in thermogenic adipose tissue. In addition, we show uptake of nanoparticle-labelled TRL and LAL expression in cardiac endothelial cells, suggesting a physiological function of endothelial lipoprotein processing not only in thermogenic adipose tissue but also in cardiac muscle.


Asunto(s)
Proliferación Celular , Frío , Células Endoteliales/citología , Esterol Esterasa , Tejido Adiposo Pardo , Células Endoteliales/enzimología , Humanos , Esterol Esterasa/metabolismo , Termogénesis , Enfermedad de Wolman
15.
Cells ; 10(12)2021 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-34944016

RESUMEN

Excessive inflammation in the lung is a primary cause of acute respiratory distress syndrome (ARDS). CD26/dipeptidyl peptidase-4 (DPP4) is a transmembrane protein that is expressed in various cell types and exerts multiple pleiotropic effects. We recently reported that pharmacological CD26/DPP4 inhibition ameliorated lipopolysaccharide (LPS)-induced lung injury in mice and exerted anti-inflammatory effects on human lung microvascular endothelial cells (HLMVECs), in vitro. However, the mechanistic roles of CD26/DPP4 in lung injury and its effects on HLMVECs remain unclear. In this study, transcriptome analysis, followed by various confirmation experiments using siRNA in cultured HLMVECs, are performed to evaluate the role of CD26/DPP4 in response to the pro-inflammatory involved in inflammation, barrier function, and regenerative processes in HLMVECs after pro-inflammatory stimulation. These are all functions that are closely related to the pathophysiology and repair process of lung injury. Confirmatory experiments using flow cytometry; enzyme-linked immunosorbent assay; quantitative polymerase chain reaction; dextran permeability assay; WST-8 assay; wound healing assay; and tube formation assay, reveal that the reduction of CD26/DPP4 via siRNA is associated with altered parameters of inflammation, barrier function, and the regenerative processes in HLMVECs. Thus, CD26/DPP4 can play a pathological role in mediating injury in pulmonary endothelial cells. CD26/DPP4 inhibition can be a new therapeutic strategy for inflammatory lung diseases, involving pulmonary vascular damage.


Asunto(s)
Dipeptidil Peptidasa 4/metabolismo , Células Endoteliales/enzimología , Inflamación/patología , Pulmón/patología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Inflamación/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Lipopolisacáridos/farmacología , ARN Interferente Pequeño/metabolismo , Reproducibilidad de los Resultados , Síndrome de Dificultad Respiratoria/genética , Transcriptoma/efectos de los fármacos , Transcriptoma/genética
16.
BMC Cardiovasc Disord ; 21(1): 603, 2021 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-34922451

RESUMEN

BACKGROUND: Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells. METHODS: Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. RESULTS: Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. CONCLUSIONS: Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases.


Asunto(s)
Aorta/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Glutatión/metabolismo , Glioxal/toxicidad , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Aorta/enzimología , Aorta/patología , Células Cultivadas , Daño del ADN , Células Endoteliales/enzimología , Células Endoteliales/patología , Humanos , Mitocondrias/enzimología , Mitocondrias/patología , Estrés Oxidativo/efectos de los fármacos , Fosforilación , Transducción de Señal , Tiorredoxinas/metabolismo
17.
J Cardiovasc Pharmacol ; 78(Suppl 6): S63-S77, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840264

RESUMEN

ABSTRACT: SIRT1, a member of the sirtuin family of longevity regulators, possesses potent activities preventing vascular aging. The expression and function of SIRT1 in endothelial cells are downregulated with age, in turn causing early vascular aging and predisposing various vascular abnormalities. Overexpression of SIRT1 in the vascular endothelium prevents aging-associated endothelial dysfunction and senescence, thus the development of hypertension and atherosclerosis. Numerous efforts have been directed to increase SIRT1 signaling as a potential strategy for different aging-associated diseases. However, the complex mechanisms underlying the regulation of SIRT1 have posed a significant challenge toward the design of specific and effective therapeutics. This review aimed to provide a summary on the regulation and function of SIRT1 in the vascular endothelium and to discuss the different approaches targeting this molecule for the prevention and treatment of age-related cardiovascular and cerebrovascular diseases.


Asunto(s)
Senescencia Celular , Células Endoteliales/enzimología , Endotelio Vascular/enzimología , Sirtuina 1/metabolismo , Enfermedades Vasculares/enzimología , Animales , Senescencia Celular/efectos de los fármacos , Suplementos Dietéticos , Células Endoteliales/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Endotelio Vascular/fisiopatología , Regulación Enzimológica de la Expresión Génica , Estilo de Vida Saludable , Humanos , Terapia Molecular Dirigida , Rejuvenecimiento , Conducta de Reducción del Riesgo , Transducción de Señal , Sirtuina 1/genética , Enfermedades Vasculares/patología , Enfermedades Vasculares/fisiopatología , Enfermedades Vasculares/prevención & control
18.
Nat Cell Biol ; 23(11): 1136-1147, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34750583

RESUMEN

The development of a functional vasculature requires the coordinated control of cell fate, lineage differentiation and network growth. Cellular proliferation is spatiotemporally regulated in developing vessels, but how this is orchestrated in different lineages is unknown. Here, using a zebrafish genetic screen for lymphatic-deficient mutants, we uncover a mutant for the RNA helicase Ddx21. Ddx21 cell-autonomously regulates lymphatic vessel development. An established regulator of ribosomal RNA synthesis and ribosome biogenesis, Ddx21 is enriched in sprouting venous endothelial cells in response to Vegfc-Flt4 signalling. Ddx21 function is essential for Vegfc-Flt4-driven endothelial cell proliferation. In the absence of Ddx21, endothelial cells show reduced ribosome biogenesis, p53 and p21 upregulation and cell cycle arrest that blocks lymphangiogenesis. Thus, Ddx21 coordinates the lymphatic endothelial cell response to Vegfc-Flt4 signalling by balancing ribosome biogenesis and p53 function. This mechanism may be targetable in diseases of excessive lymphangiogenesis such as cancer metastasis or lymphatic malformation.


Asunto(s)
Proliferación Celular , ARN Helicasas DEAD-box/metabolismo , Células Endoteliales/enzimología , Linfangiogénesis , Vasos Linfáticos/enzimología , ARN Ribosómico/biosíntesis , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Puntos de Control del Ciclo Celular , Células Cultivadas , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , ARN Helicasas DEAD-box/genética , Regulación del Desarrollo de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/enzimología , Humanos , Vasos Linfáticos/embriología , ARN Ribosómico/genética , Ribosomas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
19.
Placenta ; 115: 129-138, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34619429

RESUMEN

INTRODUCTION: The human placenta performs multiple functions necessary for successful pregnancy, but the metabolic pathways and molecular mechanisms responsible for regulating placental development and functions remain incompletely understood. Catabolism of the essential amino acid tryptophan has numerous critical roles in normal physiology, including inflammation. The kynurenine pathway, which accounts for ∼90% of tryptophan breakdown, is mediated by indoleamine 2,3 dioxygenase 1 (IDO1) in the placenta. In pregnant mice, alterations of IDO1 activity or expression result in fetal resorption and a preeclampsia-like phenotype. Decreased IDO1 expression at the maternal-fetal interface has also been linked to preeclampsia, in utero growth restriction and recurrent miscarriage in humans. These collective observations suggest essential role(s) for IDO1 in maintaining healthy pregnancy. Despite these important roles, the precise temporal, cell-specific and inflammatory cytokine-mediated patterns of IDO1 expression in the human placenta have not been thoroughly characterized across gestation. METHODS: Western blot and whole mount immunofluorescence (WMIF) were utilized to characterize and quantify basal and interferon (IFN)-inducible IDO1 expression in 1st trimester (7-13 weeks), 2nd trimester (14-22 weeks) and term (39-41 weeks) placental villi. RESULTS: IDO1 expression is activated in the human placenta between the 13th and 14th weeks of pregnancy, increases through the 2nd trimester and remains elevated at term. Constitutive IDO1 expression is restricted to placental endothelial cells. Interestingly, different types of IFNs have distinct effects on IDO1 expression in the human placenta. DISCUSSION: Our collective results are consistent with potential role(s) for IDO1 in the regulation of vascular functions in placental villi.


Asunto(s)
Inducción Enzimática/efectos de los fármacos , Edad Gestacional , Indolamina-Pirrol 2,3,-Dioxigenasa/análisis , Interferones/farmacología , Placenta/enzimología , Vellosidades Coriónicas/enzimología , Células Endoteliales/enzimología , Femenino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Embarazo
20.
Biomed Pharmacother ; 144: 112306, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34656060

RESUMEN

BACKGROUND: The pumping function of corneal endothelial cells (CECs) plays a pivotal role in the maintenance of corneal water homeostasis. Corneal endothelial dysfunction (CED) leads to corneal edema and opacity, but with the exception of keratoplasty, no optimal therapeutic strategies have been established for CED. In this study, we aimed to investigate the ameliorative effect of ascorbic acid (AA) on CED and the underlying mechanism of action in the corneal endothelium. METHODS: Rabbit corneal endothelial damage was induced by anterior chamber injection of benzalkonium chloride (BAK). AA was topically administered to the corneal surface, and the transparency and thickness of the cornea were assessed by external eye photography, slit-lamp photography, and ultrasonic pachymetry. To further analyze the mechanism, rabbit CECs and immortalized human CECs (B4G12 cells) were cultured. A ferric reducing/antioxidant and AA (FRASC) assay was performed to measure the AA concentration. Cell proliferation was evaluated by cell counting and bromodeoxyuridine (BrdU) labeling assays, and protein expression was examined by liquid chromatography-mass spectrometry (LC/MS) and immunoblotting. The involvement of glucose transporter 1 (GLUT1) and phospho-ERK was evaluated via GLUT1-siRNA and phospho-ERK inhibitor (PD98059) treatment. INTERPRETATION: We observed that topical AA ameliorates BAK-induced rabbit corneal endothelial damage. Furthermore, we demonstrated that AA is transported into B4G12 cells via GLUT1, and afterward, AA increases ERK phosphorylation and promotes cell proliferation. Our findings indicate that CEC proliferation stimulated via the noncanonical AA-GLUT1-ERK axis contributes to AA-enhanced healing of CED.


Asunto(s)
Ácido Ascórbico/farmacología , Proliferación Celular/efectos de los fármacos , Pérdida de Celulas Endoteliales de la Córnea/prevención & control , Células Endoteliales/efectos de los fármacos , Endotelio Corneal/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Cicatrización de Heridas/efectos de los fármacos , Administración Oftálmica , Animales , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/metabolismo , Compuestos de Benzalconio , Línea Celular , Pérdida de Celulas Endoteliales de la Córnea/inducido químicamente , Pérdida de Celulas Endoteliales de la Córnea/metabolismo , Pérdida de Celulas Endoteliales de la Córnea/patología , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Células Endoteliales/patología , Endotelio Corneal/enzimología , Endotelio Corneal/patología , Transportador de Glucosa de Tipo 1/genética , Humanos , Fosforilación , Conejos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...