Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 481
Filtrar
1.
PLoS Pathog ; 20(5): e1011820, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38718306

RESUMEN

The production of IFN-γ is crucial for control of multiple enteric infections, but its impact on intestinal epithelial cells (IEC) is not well understood. Cryptosporidium parasites exclusively infect epithelial cells and the ability of interferons to activate the transcription factor STAT1 in IEC is required for parasite clearance. Here, the use of single cell RNA sequencing to profile IEC during infection revealed an increased proportion of mid-villus enterocytes during infection and induction of IFN-γ-dependent gene signatures that was comparable between uninfected and infected cells. These analyses were complemented by in vivo studies, which demonstrated that IEC expression of the IFN-γ receptor was required for parasite control. Unexpectedly, treatment of Ifng-/- mice with IFN-γ showed the IEC response to this cytokine correlates with a delayed reduction in parasite burden but did not affect parasite development. These data sets provide insight into the impact of IFN-γ on IEC and suggest a model in which IFN-γ signalling to uninfected enterocytes is important for control of Cryptosporidium.


Asunto(s)
Criptosporidiosis , Interferón gamma , Mucosa Intestinal , Ratones Noqueados , Animales , Interferón gamma/metabolismo , Interferón gamma/inmunología , Criptosporidiosis/inmunología , Criptosporidiosis/parasitología , Ratones , Mucosa Intestinal/parasitología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/inmunología , Cryptosporidium , Células Epiteliales/parasitología , Células Epiteliales/metabolismo , Células Epiteliales/inmunología , Enterocitos/parasitología , Enterocitos/metabolismo , Enterocitos/inmunología , Ratones Endogámicos C57BL , Receptor de Interferón gamma , Factor de Transcripción STAT1/metabolismo , Receptores de Interferón/metabolismo , Receptores de Interferón/genética , Transducción de Señal
2.
Acta Trop ; 249: 107076, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37977254

RESUMEN

The research aimed to describe a new Trichinella spiralis dipeptidyl peptidase 1 (TsDPP1) and investigate its functions in the larval invasion of intestinal epithelial cells (IECs). The gene TsDPP1 was successfully replicated and produced in Escherichia coli BL21 (DE3), showing a strong immune response. TsDPP1 was detected in diverse stages of T. spiralis and showed significant expression in the intestine infective larvae (IIL) and adult worms at 6 days post infection, as confirmed by qPCR and Western blot analysis. The primary localization of TsDPP1 in this parasite was observed in cuticles, stichosomes, and embryos by using the indirect immunofluorescence assay (IIFA). rTsDPP1 exhibited the enzymatic function of natural dipeptidyl peptidase and showed specific binding to IECs, and the binding site was found to be localized on cell membrane. Following transfection with dsRNA-TsDPP1, the expression of TsDPP1 mRNA and protein in muscle larvae (ML) were decreased by approximately 63.52 % and 58.68 %, correspondingly. The activity of TsDPP1 in the ML and IIL treated with dsRNA-TsDPP1 was reduced by 42.98 % and 45.07 %, respectively. The acceleration of larval invasion of IECs was observed with rTsDPP1, while the invasion was suppressed by anti-rTsDPP1 serum. The ability of the larvae treated with dsRNA-TsDPP1 to invade IECs was hindered by 31.23 %. In mice infected with dsRNA-treated ML, the intestinal IIL, and adults experienced a significant decrease in worm burdens and a noticeable reduction in adult female length and fecundity compared to the PBS group. These findings indicated that TsDPP1 significantly impedes the invasion, growth, and reproductive capacity of T. spiralis in intestines, suggesting its potential as a target for anti-Trichinella vaccines.


Asunto(s)
Catepsina C , Proteínas del Helminto , Mucosa Intestinal , Trichinella spiralis , Triquinelosis , Animales , Femenino , Ratones , Células Epiteliales/parasitología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Larva/patogenicidad , Ratones Endogámicos BALB C , Trichinella spiralis/genética , Trichinella spiralis/patogenicidad , Triquinelosis/parasitología , Catepsina C/genética , Catepsina C/metabolismo , Mucosa Intestinal/parasitología
3.
PLoS Negl Trop Dis ; 17(12): e0011816, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048314

RESUMEN

BACKGROUND: Cathepsin L, a lysosomal enzyme, participates in diverse physiological processes. Recombinant Trichinella spiralis cathepsin L domains (rTsCatL2) exhibited natural cysteine protease activity and hydrolyzed host immunoglobulin and extracellular matrix proteins in vitro, but its functions in larval invasion are unknown. The aim of this study was to explore its functions in T. spiralis invasion of the host's intestinal epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: RNAi significantly suppressed the expression of TsCatL mRNA and protein with TsCatL specific siRNA-302. T. spiralis larval invasion of Caco-2 cells was reduced by 39.87% and 38.36%, respectively, when anti-TsCatL2 serum and siRNA-302 were used. Mice challenged with siRNA-302-treated muscle larvae (ML) exhibited a substantial reduction in intestinal infective larvae, adult worm, and ML burden compared to the PBS group, with reductions of 44.37%, 47.57%, and 57.06%, respectively. The development and fecundity of the females from the mice infected with siRNA-302-treated ML was significantly inhibited. After incubation of rTsCatL2 with Caco-2 cells, immunofluorescence test showed that the rTsCatL2 gradually entered into the cells, altered the localization of cellular tight junction proteins (claudin 1, occludin and zo-1), adhesion junction protein (e-cadherin) and extracellular matrix protein (laminin), and intercellular junctions were lost. Western blot showed a 58.65% reduction in claudin 1 expression in Caco-2 cells treated with rTsCatL2. Co-IP showed that rTsCatL2 interacted with laminin and collagen I but not with claudin 1, e-cadherin, occludin and fibronectin in Caco-2 cells. Moreover, rTsCatL2 disrupted the intestinal epithelial barrier by inducing cellular autophagy. CONCLUSIONS: rTsCatL2 disrupts the intestinal epithelial barrier and facilitates T. spiralis larval invasion.


Asunto(s)
Catepsina L , Uniones Estrechas , Trichinella spiralis , Triquinelosis , Animales , Femenino , Humanos , Ratones , Células CACO-2 , Cadherinas/metabolismo , Catepsina L/genética , Catepsina L/metabolismo , Claudina-1/genética , Claudina-1/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Laminina/genética , Laminina/metabolismo , Larva/parasitología , Ratones Endogámicos BALB C , Ocludina/genética , Ocludina/metabolismo , ARN Bicatenario , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Uniones Estrechas/parasitología , Uniones Estrechas/patología , Trichinella spiralis/genética
4.
PLoS Negl Trop Dis ; 17(1): e0011016, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36595499

RESUMEN

Cytoadherence of Trichomonas vaginalis to human vaginal epithelial cells (hVECs) was previously shown to involve surface lipoglycans and several reputed adhesins on the parasite. Herein, we report some new observations on the host-parasite interactions of adherent versus nonadherent T. vaginalis isolates to hVECs. The binding of the TH17 adherent isolate to hVECs exhibited an initial discrete phase followed by an aggregation phase inhibited by lactose. T. vaginalis infection immediately induced surface expression of galectin-1 and -3, with extracellular amounts in the spent medium initially decreasing and then increasing thereafter over the next 60 min. Extracellular galectin-1 and -3 were detected on the parasite surface but only the TH17 adherent isolate could uptake galectin-3 via the lysosomes. Only the adherent isolate could morphologically transform from the round-up flagellate with numerous transient protrusions into a flat amoeboid form on contact with the solid surface. Cytochalasin D challenge revealed that actin organization was essential to parasite morphogenesis and cytoadherence. Real-time microscopy showed that parasite exploring and anchoring on hVECs via the axostyle may be required for initial cytoadherence. Together, the parasite cytoskeleton behaviors may collaborate with cell surface adhesion molecules for cytoadherence. The nonadherent isolate migrated faster than the adherent isolate, with motility transiently increasing in the presence of hVECs. Meanwhile, differential histone acetylation was detected between the two isolates. Also, TH17 without Mycoplasma symbiosis suggests that symbiont might not determine TH17 innate cytoadherence. Our findings regarding distinctive host-parasite interactions of the isolates may provide novel insights into T. vaginalis infection.


Asunto(s)
Trichomonas vaginalis , Femenino , Humanos , Galectina 1 , Interacciones Huésped-Parásitos , Adhesión Celular , Células Epiteliales/parasitología , Moléculas de Adhesión Celular
5.
Exp Parasitol ; 242: 108376, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36089006

RESUMEN

Aminopeptidases P are metalloproteases belonging to the M24 peptidase family. It specifically hydrolyzes the N-terminus of polypeptides free of acidic amino acids, and plays an important role in the nutrition, metabolism and growth of parasites. The aim of this study was to characterize a novel Trichinella spiralis aminopeptidase P (TsAPP) and to investigate its functions in the invasion of T. spiralis. TsAPP contained two domains of creatinase (a creatinase N and creatinase N2) and a domain of peptidase M24C and APP. The complete TsAPP sequence was cloned and expressed in Escherichia coli BL21 cells. The recombinantly produced TsAPP was used to raise polyclonal antibodies that were subsequently used to detect the expression of the protein in the different life stages of T. spiralis. TsAPP was expressed in various T. spiralis stages. TsAPP was primarily localized in the cuticle, stichosome and intrauterine embryos of this nematode. rTsAPP has an enzymatic activity of a natural aminopeptidase P to hydrolyze the substrate H-Ala-Pro-OH. rTsAPP promoted the larval intrusion of intestinal epithelium cells (IECs). The results showed that TsAPP is involved in the T. spiralis intrusion of IECs and it might be a potential candidate vaccine target against Trichinella infection.


Asunto(s)
Trichinella spiralis , Triquinelosis , Vacunas , Ratones , Animales , Proteínas del Helminto , Ratones Endogámicos BALB C , Triquinelosis/parasitología , Aminopeptidasas/genética , Aminopeptidasas/metabolismo , Células Epiteliales/parasitología , Larva
6.
Exp Parasitol ; 240: 108329, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35868574

RESUMEN

Intestinal epithelial cells (IECs) reside in a highly anaerobic environment that is subject to daily fluctuations in partial oxygen pressure (pO2), depending on intestinal tissue perfusion. This condition, known as physiological hypoxia, has a major impact on the maintenance of gut homeostasis, such as effects on the integrity and function of the intestinal epithelial barrier. Giardia lamblia is a microaerophilic protozoan parasite that infects and colonizes the small intestine of its host, causing watery diarrhea. The disease, known as giardiasis, is associated with enhanced intestinal permeability and disruption or reorganization of tight junction (TJ) proteins between IECs. Given the central role of oxygen in gut homeostasis, in this study, we aimed to evaluate whether pO2 affects intestinal permeability (flux of ions and macromolecules) and TJ protein expression in human IECs during G. lamblia infection. Using human cell lines HuTu-80 and Caco-2 as models of "loose" (low resistance) and "tight" (high resistance) intestines, respectively, we elucidated that low pO2 drives intestinal barrier dysfunction in IECs infected with trophozoites through dephosphorylation of protein kinase C (PKC α/ß II). Additionally, we demonstrated that IECs infected with trophozoites in the presence of a pharmacological PKC activator (phorbol 12-myristate 13-acetate) partially restored the barrier function, which was correlated with increased protein expression levels of zonula occludens (ZO)-2 and occludin. Collectively, these results support the emerging theory that molecular oxygen impacts gut homeostasis during Giardia infection via direct host signaling pathways. These findings further our knowledge regarding Giardia-host interactions and the pathophysiological mechanisms of human giardiasis.


Asunto(s)
Giardia lamblia , Giardiasis , Células CACO-2 , Células Epiteliales/parasitología , Giardia lamblia/metabolismo , Giardiasis/parasitología , Humanos , Mucosa Intestinal/parasitología , Oxígeno/metabolismo , Permeabilidad , Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo
7.
PLoS One ; 17(1): e0262223, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34986189

RESUMEN

Contact lens usage has contributed to increased incidence rates of Acanthamoeba keratitis (AK), a serious corneal infection that can lead to blindness. Since symptoms associated with AK closely resemble those incurred by bacterial or fungal keratitis, developing a diagnostic method enabling rapid detection with a high degree of Acanthamoeba-specificity would be beneficial. Here, we produced a polyclonal antibody targeting the carboxylesterase (CE) superfamily protein secreted by the pathogenic Acanthamoeba and evaluated its diagnostic potential. Western blot analysis revealed that the CE antibody specifically interacts with the cell lysates and conditioned media of pathogenic Acanthamoeba, which were not observed from the cell lysates and conditioned media of human corneal epithelial (HCE) cells, Fusarium solani, Staphylococcus aureus, and Pseudomonas aeruginosa. High titers of A. castellanii-specific antibody production were confirmed sera of immunized mice via ELISA, and these antibodies were capable of detecting A. castellanii from the cell lysates and their conditioned media. The specificity of the CE antibody was further confirmed on A. castellanii trophozoites and cysts co-cultured with HCE cells, F. solani, S. aureus, and P. aeruginosa using immunocytochemistry. Additionally, the CE antibody produced in this study successfully interacted with 7 different Acanthamoeba species. Our findings demonstrate that the polyclonal CE antibody specifically detects multiple species belong to the genus Acanthamoeba, thus highlighting its potential as AK diagnostic tool.


Asunto(s)
Queratitis por Acanthamoeba/diagnóstico , Acanthamoeba/inmunología , Anticuerpos Antiprotozoarios/análisis , Carboxilesterasa/inmunología , Medios de Cultivo Condicionados/metabolismo , Epitelio Corneal/citología , Acanthamoeba/clasificación , Acanthamoeba/crecimiento & desarrollo , Acanthamoeba/aislamiento & purificación , Animales , Anticuerpos Antiprotozoarios/sangre , Especificidad de Anticuerpos , Carboxilesterasa/administración & dosificación , Carboxilesterasa/genética , Línea Celular , Células Cultivadas , Lentes de Contacto/parasitología , Diagnóstico Precoz , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Epitelio Corneal/metabolismo , Epitelio Corneal/parasitología , Humanos , Inmunización , Masculino , Ratones , Proteínas Protozoarias/administración & dosificación , Proteínas Protozoarias/genética , Proteínas Protozoarias/inmunología
8.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34779829

RESUMEN

Helminth parasites are adept manipulators of the immune system, using multiple strategies to evade the host type 2 response. In the intestinal niche, the epithelium is crucial for initiating type 2 immunity via tuft cells, which together with goblet cells expand dramatically in response to the type 2 cytokines IL-4 and IL-13. However, it is not known whether helminths modulate these epithelial cell populations. In vitro, using small intestinal organoids, we found that excretory/secretory products (HpES) from Heligmosomoides polygyrus blocked the effects of IL-4/13, inhibiting tuft and goblet cell gene expression and expansion, and inducing spheroid growth characteristic of fetal epithelium and homeostatic repair. Similar outcomes were seen in organoids exposed to parasite larvae. In vivo, H. polygyrus infection inhibited tuft cell responses to heterologous Nippostrongylus brasiliensis infection or succinate, and HpES also reduced succinate-stimulated tuft cell expansion. Our results demonstrate that helminth parasites reshape their intestinal environment in a novel strategy for undermining the host protective response.


Asunto(s)
Células Epiteliales/metabolismo , Células Caliciformes/metabolismo , Intestino Delgado/citología , Organoides/metabolismo , Infecciones por Strongylida/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Epiteliales/parasitología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Células Caliciformes/parasitología , Proteínas del Helminto/metabolismo , Proteínas del Helminto/farmacología , Interacciones Huésped-Parásitos , Interleucina-13/farmacología , Interleucina-4/farmacología , Intestino Delgado/parasitología , Ratones Endogámicos C57BL , Nematospiroides dubius/metabolismo , Nematospiroides dubius/fisiología , Nippostrongylus/metabolismo , Nippostrongylus/fisiología , Organoides/citología , Organoides/parasitología , Infecciones por Strongylida/parasitología , Ácido Succínico/farmacología , Transcriptoma/efectos de los fármacos
9.
BMC Pulm Med ; 21(1): 376, 2021 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-34794427

RESUMEN

BACKGROUND: Cigarettes smoking and IL-17A contribute to chronic obstructive pulmonary disease (COPD), and have synergistical effect on bronchial epithelial cell proliferation. CCAAT/enhancer-binding protein ß (C-EBPß) could be induced by IL-17A and is up-regulated in COPD. We explored the effect of cigarettes and IL-17 on bronchial epithelial-mesenchymal transition (EMT) in COPD mice and potential mechanism involved with C-EBPß in this study. METHODS: COPD model was established with mice by exposing to cigarettes. E-Cadherin, Vimentin, IL-17A and C-EBPß distributions were detected in lung tissues. Primary bronchial epithelial cells were separated from health mice and cocultured with cigarette smoke extract (CSE) or/and IL-17A. E-Cadherin, Vimentin and IL-17 receptor (IL-17R) expressions in vitro were assessed. When C-EBPß were silenced by siRNA in cells, E-Cadherin, Vimentin and C-EBPß expressions were detected. RESULTS: E-Cadherin distribution was less and Vimentin distribution was more in bronchus of COPD mice than controls. IL-17A and C-EBPß expressions were higher in lung tissues of COPD mice than controls. In vitro, C-EBPß protein expression was highest in CSE + IL-17A group, followed by CSE and IL-17A groups. E-cadherin expression in vitro was lowest and Vimentin expression was highest in CSE + IL-17A group, followed by CSE or IL-17A group. Those could be inhibited by C-EBPß silenced. CONCLUSIONS: C-EBPß mediates in cigarette/IL-17A-induced bronchial EMT in COPD mice. Our findings contribute to a better understanding on the progress from COPD to lung cancers, which will provide novel avenues in preventing tumorigenesis of airway in the context of cigarette smoking.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Transición Epitelial-Mesenquimal/fisiología , Interleucina-17/metabolismo , Nicotiana/efectos adversos , Enfermedad Pulmonar Obstructiva Crónica/etiología , Humo/efectos adversos , Productos de Tabaco/efectos adversos , Animales , Biomarcadores/metabolismo , Bronquios/metabolismo , Bronquios/patología , Bronquios/fisiopatología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Progresión de la Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Células Epiteliales/patología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/patología , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
10.
mBio ; 12(5): e0212721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34488445

RESUMEN

Interferon (IFN) signaling is key to mucosal immunity in the gastrointestinal tract, but cellular regulatory elements that determine interferon gamma (IFN-γ)-mediated antimicrobial defense in intestinal epithelial cells are not fully understood. We report here that a long noncoding RNA (lncRNA), GenBank accession no. XR_001779380, was increased in abundance in murine intestinal epithelial cells following infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Expression of XR_001779380 in infected intestinal epithelial cells was triggered by TLR4/NF-κB/Cdc42 signaling and epithelial-specific transcription factor Elf3. XR_001779380 primed epithelial cells for IFN-γ-mediated gene transcription through facilitating Stat1/Swi/Snf-associated chromatin remodeling. Interactions between XR_001779380 and Prdm1, which is expressed in neonatal but not adult intestinal epithelium, attenuated Stat1/Swi/Snf-associated chromatin remodeling induced by IFN-γ, contributing to suppression of IFN-γ-mediated epithelial defense in neonatal intestine. Our data demonstrate that XR_001779380 is an important regulator in IFN-γ-mediated gene transcription and age-associated intestinal epithelial antimicrobial defense. IMPORTANCE Epithelial cells along the mucosal surface provide the front line of defense against luminal pathogen infection in the gastrointestinal tract. These epithelial cells represent an integral component of a highly regulated communication network that can transmit essential signals to cells in the underlying intestinal mucosa that, in turn, serve as targets of mucosal immune mediators. LncRNAs are recently identified long noncoding transcripts that can regulate gene transcription through their interactions with other effect molecules. In this study, we demonstrated that lncRNA XR_001779380 was upregulated in murine intestinal epithelial cells following infection by a mucosal protozoan parasite Cryptosporidium. Expression of XR_001779380 in infected cells primed host epithelial cells for IFN-γ-mediated gene transcription, relevant to age-dependent intestinal antimicrobial defense. Our data provide new mechanistic insights into how intestinal epithelial cells orchestrate intestinal mucosal defense against microbial infection.


Asunto(s)
Criptosporidiosis/inmunología , Cryptosporidium parvum/fisiología , Interferón gamma/inmunología , Mucosa Intestinal/inmunología , ARN Largo no Codificante/inmunología , Factores de Edad , Animales , Criptosporidiosis/genética , Criptosporidiosis/parasitología , Cryptosporidium parvum/genética , Células Epiteliales/inmunología , Células Epiteliales/parasitología , Humanos , Inmunidad Mucosa , Interferón gamma/genética , Mucosa Intestinal/parasitología , Ratones , FN-kappa B/genética , FN-kappa B/inmunología , ARN Largo no Codificante/genética , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/inmunología
11.
Sci Rep ; 11(1): 16202, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34376718

RESUMEN

Eimeria tenella and Eimeria bovis are complex parasites responsible for the condition of coccidiosis, that invade the animal gastrointestinal intestinal mucosa causing severe diarrhoea, loss of appetite or abortions, with devastating impacts on the farming industry. The negative impacts of these parasitic infections are enhanced by their role in promoting the colonisation of the gut by common foodborne pathogens. The aim of this study was to test the anti-Eimeria efficacy of maltodextrin, sodium chloride, citric acid, sodium citrate, silica, malic acid, citrus extract, and olive extract individually, in vitro and in combination, in vivo. Firstly, in vitro infection models demonstrated that antimicrobials reduced (p < 0.05), both singly and in combination (AG), the ability of E. tenella and E. bovis to infect MDBK and CLEC-213 epithelial cells, and the virulence reduction was similar to that of the anti-coccidial drug Robenidine. Secondly, using an in vivo broiler infection model, we demonstrated that AG reduced (p = 0.001) E. tenella levels in the caeca and excreted faeces, reduced inflammatory oxidative stress, improved the immune response through reduced ROS, increased Mn-SOD and SCFA levels. Levels of IgA and IgM were significantly increased in caecal tissues of broilers that received 0.5% AG and were associated with improved (p < 0.0001) tissue lesion scores. A prophylactic approach increased the anti-parasitic effect in vivo, and results indicated that administration from day 0, 5 and 10 post-hatch reduced tissue lesion scores (p < 0.0001) and parasite excretion levels (p = 0.002). Conclusively, our in vitro and in vivo results demonstrate that the natural antimicrobial mixture (AG) reduced parasitic infections through mechanisms that reduced pathogen virulence and attenuated host inflammatory events.


Asunto(s)
Ácidos/farmacología , Antiparasitarios/farmacología , Coccidiosis/tratamiento farmacológico , Células Epiteliales/efectos de los fármacos , Compuestos Orgánicos/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Esporozoítos/efectos de los fármacos , Animales , Bovinos , Pollos , Coccidiosis/parasitología , Coccidiosis/veterinaria , Eimeria/efectos de los fármacos , Eimeria tenella/efectos de los fármacos , Células Epiteliales/parasitología , Técnicas In Vitro , Pulmón/efectos de los fármacos , Pulmón/parasitología , Enfermedades de las Aves de Corral/parasitología
12.
Cell Host Microbe ; 29(9): 1407-1420.e5, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34348092

RESUMEN

The parasite Cryptosporidium invades and replicates in intestinal epithelial cells and is a leading cause of diarrheal disease and early childhood mortality. The molecular mechanisms that underlie infection and pathogenesis are largely unknown. Here, we delineate the events of host cell invasion and uncover a mechanism unique to Cryptosporidium. We developed a screen to identify parasite effectors, finding the injection of multiple parasite proteins into the host from the rhoptry organelle. These factors are targeted to diverse locations within the host cell and its interface with the parasite. One identified effector, rhoptry protein 1 (ROP1), accumulates in the terminal web of enterocytes through direct interaction with the host protein LIM domain only 7 (LMO7) an organizer of epithelial cell polarity and cell-cell adhesion. Genetic ablation of LMO7 or ROP1 in mice or parasites, respectively, impacts parasite burden in vivo in opposite ways. Taken together, these data provide molecular insight into how Cryptosporidium manipulates its intestinal host niche.


Asunto(s)
Criptosporidiosis/patología , Cryptosporidium parvum/patogenicidad , Enterocitos/parasitología , Proteínas con Dominio LIM/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Transcripción/metabolismo , Animales , Células CACO-2 , Adhesión Celular/fisiología , Línea Celular , Modelos Animales de Enfermedad , Enterocitos/citología , Células Epiteliales/parasitología , Células HEK293 , Interacciones Huésped-Parásitos/fisiología , Humanos , Proteínas con Dominio LIM/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Orgánulos/metabolismo , Factores de Transcripción/genética
13.
Diagn Cytopathol ; 49(9): 1052-1055, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34291890

RESUMEN

OBJECTIVE: The parasite Trichomonas vaginalis (T. vaginalis) causes one of the most common non-viral sexually transmitted infections in humans. T. vaginalis is notorious for its inconspicuous appearance in vaginal smears. It can be missed under the microscope. METHOD: In the present study, we investigate the immunoreactivity of T. vaginalis to smooth muscle actin (SMA) in the vaginal smear. RESULT: T. vaginalis trophozoite and pseduocyst are immunoreactive for SMA in all of the study group cases (n = 21) and in none of the control group cases (n = 21). Thus, SMA immunostain is a sensitive method for the demonstration of T. vaginalis. Moreover, the protozoan attains a conspicuous and unique appearance. By SMA immunohistochemical stain, the apperance of T. vaginalis floated freely or located in the cytoplasm of the epithelial cells is easily identified. CONCLUSION: We recommend performing SMA immunostain in every vaginal smear with clinical or pathologic suspicion of trichomoniasis.


Asunto(s)
Actinas/inmunología , Proteínas Protozoarias/inmunología , Tricomoniasis/diagnóstico , Trichomonas vaginalis/inmunología , Células Epiteliales/parasitología , Femenino , Humanos , Inmunohistoquímica/métodos , Técnicas de Diagnóstico Molecular/métodos , Tricomoniasis/parasitología , Trichomonas vaginalis/aislamiento & purificación , Trichomonas vaginalis/patogenicidad , Frotis Vaginal/métodos
14.
Parasit Vectors ; 14(1): 238, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33957927

RESUMEN

BACKGROUND: Cryptosporidium is an important zoonotic pathogen responsible for severe enteric diseases in humans and animals. However, the molecular mechanisms underlying host and Cryptosporidium interactions are still not clear. METHODS: To study the roles of circRNAs in host cells during Cryptosporidium infection, the expression profiles of circRNAs in HCT-8 cells infected with C. parvum were investigated using a microarray assay, and the regulatory role of a significantly upregulated circRNA, ciRS-7, was investigated during C. parvum infection. RESULTS: C. parvum infection caused notable alterations in the expression profiles of circRNAs in HCT-8 cells, and a total of 178 (including 128 up- and 50 downregulated) circRNAs were significantly differentially expressed following C. parvum infection. Among them, ciRS-7 was significantly upregulated and regulated the NF-κB signaling pathway by sponging miR-1270 during C. parvum infection. Furthermore, the ciRS-7/miR-1270/relA axis markedly affected the propagation of C. parvum in HCT-8 cells. CONCLUSIONS: Our results revealed that ciRS-7 would promote C. parvum propagation by regulating the miR-1270/relA axis and affecting the NF-κB pathway. To the best of our knowledge, this is the first study to investigate the role of circRNA during Cryptosporidium infection, and the findings provide a novel view for implementing control strategies against Cryptosporidium infection.


Asunto(s)
Cryptosporidium parvum , Células Epiteliales/parasitología , MicroARNs/metabolismo , ARN Circular/metabolismo , Animales , Línea Celular , Criptosporidiosis/metabolismo , Cryptosporidium parvum/crecimiento & desarrollo , Cryptosporidium parvum/patogenicidad , Células Epiteliales/metabolismo , Humanos , FN-kappa B/metabolismo , Transducción de Señal
15.
Parasit Vectors ; 14(1): 213, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33879231

RESUMEN

BACKGROUND: Biliary tract infection with the carcinogenic human liver fluke, Clonorchis sinensis, provokes chronic inflammation, epithelial hyperplasia, periductal fibrosis, and even cholangiocarcinoma. Complications are proportional to the intensity and duration of the infection. In addition to mechanical irritation of the biliary epithelia from worms, their excretory-secretory products (ESPs) cause chemical irritation, which leads to inflammation, proliferation, and free radical generation. METHODS: A three-dimensional in vitro cholangiocyte spheroid culture model was established, followed by ESP treatment. This allowed us to examine the intrinsic pathological mechanisms of clonorchiasis via the imitation of prolonged and repetitive in vivo infection. RESULTS: Microarray and RNA-Seq analysis revealed that ESP-treated cholangiocyte H69 spheroids displayed global changes in gene expression compared to untreated spheroids. In ESP-treated H69 spheroids, 185 and 63 probes were found to be significantly upregulated and downregulated, respectively, corresponding to 209 genes (p < 0.01, fold change > 2). RNA-Seq was performed for the validation of the microarray results, and the gene expression patterns in both transcriptome platforms were well matched for 209 significant genes. Gene ontology analysis demonstrated that differentially expressed genes were mainly classified into immune system processes, the extracellular region, and the extracellular matrix. Among the upregulated genes, four genes (XAF1, TRIM22, CXCL10, and BST2) were selected for confirmation using quantitative RT-PCR, resulting in 100% similar expression patterns in microarray and RNA-Seq. CONCLUSIONS: These findings broaden our understanding of the pathological pathways of liver fluke-associated hepatobiliary disorders and suggest a novel therapeutic strategy for this infectious cancer.


Asunto(s)
Conductos Biliares/parasitología , Clonorquiasis/genética , Clonorchis sinensis/metabolismo , Proteínas del Helminto/metabolismo , Esferoides Celulares/parasitología , Animales , Conductos Biliares/citología , Clonorquiasis/metabolismo , Clonorquiasis/parasitología , Clonorchis sinensis/genética , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Perfilación de la Expresión Génica , Proteínas del Helminto/genética , Humanos , Masculino , Conejos , Esferoides Celulares/citología , Esferoides Celulares/metabolismo
16.
Commun Biol ; 4(1): 377, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33742093

RESUMEN

Mammalian three-dimensional (3D) enteroids mirror in vivo intestinal organisation and are powerful tools to investigate intestinal cell biology and host-pathogen interactions. We have developed complex multilobulated 3D chicken enteroids from intestinal embryonic villi and adult crypts. These avian enteroids develop optimally in suspension without the structural support required to produce mammalian enteroids, resulting in an inside-out enteroid conformation with media-facing apical brush borders. Histological and transcriptional analyses show these enteroids comprise of differentiated intestinal epithelial cells bound by cell-cell junctions, and notably, include intraepithelial leukocytes and an inner core of lamina propria leukocytes. The advantageous polarisation of these enteroids has enabled infection of the epithelial apical surface with Salmonella Typhimurium, influenza A virus and Eimeria tenella without the need for micro-injection. We have created a comprehensive model of the chicken intestine which has the potential to explore epithelial and leukocyte interactions and responses in host-pathogen, food science and pharmaceutical research.


Asunto(s)
Eimeria tenella/patogenicidad , Células Epiteliales , Virus de la Influenza A/patogenicidad , Mucosa Intestinal , Leucocitos , Salmonella typhimurium/patogenicidad , Animales , Células Cultivadas , Microambiente Celular , Pollos , Eimeria tenella/inmunología , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Células Epiteliales/parasitología , Células Epiteliales/virología , Interacciones Huésped-Patógeno , Virus de la Influenza A/inmunología , Mucosa Intestinal/inmunología , Mucosa Intestinal/microbiología , Mucosa Intestinal/parasitología , Mucosa Intestinal/virología , Leucocitos/inmunología , Leucocitos/microbiología , Leucocitos/parasitología , Leucocitos/virología , Ratones Endogámicos C57BL , Organoides , Permeabilidad , Fagocitosis , Fenotipo , Codorniz , Salmonella typhimurium/inmunología
17.
Parasit Vectors ; 14(1): 153, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712075

RESUMEN

BACKGROUND: Toxoplasma gondii is a parasite that primarily infects through the oral route. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) play crucial roles in the immune responses generated during parasitic infection and also drive the inflammatory response against invading parasites. However, little is known about the regulation of NLRs and inflammasome activation in T. gondii-infected human small intestinal epithelial (FHs 74 Int) cells. METHODS: FHs 74 Int cells infected with T. gondii were subsequently evaluated for morphological changes, cytotoxicity, expression profiles of NLRs, inflammasome components, caspase-cleaved interleukins (ILs), and the mechanisms of NLRP3 and NLRP6 inflammasome activation. Immunocytochemistry, lactate dehydrogenase assay, reverse transcription polymerase chain reaction (RT-PCR), real-time quantitative RT-PCR, and western blotting techniques were utilized for analysis. RESULTS: Under normal and T. gondii-infected conditions, members of the NLRs, inflammasome components and caspase-cleaved ILs were expressed in the FHs Int 74 cells, except for NLRC3, NLRP5, and NLRP9. Among the NLRs, mRNA expression of NOD2, NLRP3, NLRP6, and NAIP1 was significantly increased in T. gondii-infected cells, whereas that of NLRP2, NLRP7, and CIITA mRNAs decreased significantly in a time-dependent manner. In addition, T. gondii infection induced NLRP3, NLRP6 and NLRC4 inflammasome activation and production of IL-1ß, IL-18, and IL-33 in FHs 74 Int cells. T. gondii-induced NLRP3 inflammasome activation was strongly associated with the phosphorylation of p38 MAPK; however, JNK1/2 had a weak effect. NLRP6 inflammasome activation was not related to the MAPK pathway in FHs 74 Int cells. CONCLUSIONS: This study highlighted the expression profiles of NLRs and unraveled the underlying mechanisms of NLRP3 inflammasome activation in T. gondii-infected FHs 74 Int cells. These findings may contribute to understanding of the mucosal and innate immune responses induced by the NLRs and inflammasomes during T. gondii infection in FHs 74 Int cells.


Asunto(s)
Células Epiteliales/parasitología , Regulación de la Expresión Génica/inmunología , Inmunidad Innata , Inflamasomas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/inmunología , Proteínas NLR/genética , Línea Celular , Humanos , Inflamasomas/inmunología , Intestino Delgado/citología , Intestino Delgado/parasitología , Proteínas NLR/clasificación , Proteínas NLR/inmunología , ARN Mensajero
18.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563826

RESUMEN

Trichomonas vaginalis is a highly prevalent, sexually transmitted parasite which adheres to mucosal epithelial cells to colonize the human urogenital tract. Despite adherence being crucial for this extracellular parasite to thrive within the host, relatively little is known about the mechanisms or key molecules involved in this process. Here, we have identified and characterized a T. vaginalis hypothetical protein, TVAG_157210 (TvAD1), as a surface protein that plays an integral role in parasite adherence to the host. Quantitative proteomics revealed TvAD1 to be ∼4-fold more abundant in parasites selected for increased adherence (MA parasites) than the isogenic parental (P) parasite line. De novo modeling suggested that TvAD1 binds N-acetylglucosamine (GlcNAc), a sugar comprising host glycosaminoglycans (GAGs). Adherence assays utilizing GAG-deficient cell lines determined that host GAGs, primarily heparan sulfate (HS), mediate adherence of MA parasites to host cells. TvAD1 knockout (KO) parasites, generated using CRISPR-Cas9, were found to be significantly reduced in host cell adherence, a phenotype that is rescued by overexpression of TvAD1 in KO parasites. In contrast, there was no significant difference in parasite adherence to GAG-deficient lines by KO parasites compared with wild-type, which is contrary to that observed for KO parasites overexpressing TvAD1. Isothermal titration calorimetric (ITC) analysis showed that TvAD1 binds to HS, indicating that TvAD1 mediates host cell adherence via HS interaction. In addition to characterizing the role of TvAD1 in parasite adherence, these studies reveal a role for host GAG molecules in T. vaginalis adherence.IMPORTANCE The ability of the sexually transmitted parasite Trichomonas vaginalis to adhere to its human host is critical for establishing and maintaining an infection. Yet how parasites adhere to host cells is poorly understood. In this study, we employed a novel adherence selection method to identify proteins involved in parasite adherence to the host. This method led to the identification of a protein, with no previously known function, that is more abundant in parasites with increased capacity to bind host cells. Bioinformatic modeling and biochemical analyses revealed that this protein binds a common component on the host cell surface proteoglycans. Subsequent creation of parasites that lack this protein directly demonstrated that the protein mediates parasite adherence via an interaction with host cell proteoglycans. These findings both demonstrate a role for this protein in T. vaginalis adherence to the host and shed light on host cell molecules that participate in parasite colonization.


Asunto(s)
Adhesión Celular , Interacciones Huésped-Parásitos , Proteoglicanos/metabolismo , Proteínas Protozoarias/genética , Trichomonas vaginalis/química , Trichomonas vaginalis/fisiología , Animales , Células CHO , Línea Celular , Biología Computacional , Cricetulus , Células Epiteliales/parasitología , Proteómica , Proteínas Protozoarias/metabolismo , Trichomonas vaginalis/genética
19.
PLoS Pathog ; 17(1): e1009241, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33481946

RESUMEN

The gastrointestinal epithelium guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the type I IFN signal pathway. Epithelial cells along the epithelium provide the front line of host defense against pathogen infection in the gastrointestinal tract. Increasing evidence supports the regulatory potential of long noncoding RNAs (lncRNAs) in immune defense but their role in regulating intestinal epithelial antimicrobial responses is still unclear. Cryptosporidium, a protozoan parasite that infects intestinal epithelial cells, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Recent advances in Cryptosporidium research have revealed a strong type I IFN response in infected intestinal epithelial cells. We previously identified a panel of host cell lncRNAs that are upregulated in murine intestinal epithelial cells following microbial challenge. One of these lncRNAs, NR_033736, is upregulated in intestinal epithelial cells following Cryptosporidium infection and displays a significant suppressive effect on type I IFN-controlled gene transcription in infected host cells. NR_033736 can be assembled into the ISGF3 complex and suppresses type I IFN-mediated gene transcription. Interestingly, upregulation of NR_033736 itself is triggered by the type I IFN signaling. Moreover, NR_033736 modulates epithelial anti-Cryptosporidium defense. Our data suggest that upregulation of NR_033736 provides negative feedback regulation of type I IFN signaling through suppression of type I IFN-controlled gene transcription, and consequently, contributing to fine-tuning of epithelial innate defense against microbial infection.


Asunto(s)
Criptosporidiosis/inmunología , Cryptosporidium/inmunología , Interferón Tipo I/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal , Animales , Animales Recién Nacidos , Criptosporidiosis/parasitología , Diarrea/inmunología , Diarrea/parasitología , Células Epiteliales/parasitología , Tracto Gastrointestinal/inmunología , Tracto Gastrointestinal/parasitología , Humanos , Mucosa Intestinal/inmunología , Mucosa Intestinal/parasitología , Intestinos/parasitología , Ratones , Transcripción Genética , Regulación hacia Arriba
20.
Cell Microbiol ; 23(3): e13283, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33108050

RESUMEN

Toxoplasma gondii shows high dissemination and migration properties across biological barriers infecting immunologically privileged organs. Toxoplasma uses different routes for dissemination; however, the mechanisms are not fully understood. Herein, we studied the effects of proteases present in excretion/secretion products (ESPs) of Toxoplasma on MDCK cell monolayers. Ultrastructural analysis showed that ESPs of Toxoplasma disrupt the intercellular junctions (IJ) of adjacent cells. The tight junction (TJ) proteins ZO-1, occludin, and claudin-1 suffered a progressive decrease in protein levels upon ESPs treatment. In addition, ESPs induced mislocalization of such TJ proteins, along with the adherent junction protein E-cadherin, and this was prevented by pre-treating the ESPs with protease inhibitors. Reorganisation of cytoskeleton proteins was also observed. Endocytosis inhibitors, Dyngo®-4a and Dynasore, impeded the modifications, suggesting that TJ proteins internalisation is triggered by the ESPs proteases hence contributing to the loss of IJ. The observed disruption in TJ proteins went in line with a decrease in the transepithelial electrical resistance of the monolayers, which was significantly blocked by pre-treating ESPs with metalloprotease and serine protease inhibitors. Moreover, exposure of cell monolayers to ESPs facilitated paracellular migration of tachyzoites. Our results demonstrate that Toxoplasma ESPs contain proteases that can disrupt the IJ of epithelial monolayers and this could facilitate the paracellular route for Toxoplasma tissue dissemination and migration.


Asunto(s)
Uniones Intercelulares/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Protozoarias/metabolismo , Proteínas de Uniones Estrechas/metabolismo , Toxoplasma/fisiología , Animales , Cadherinas/metabolismo , Claudina-1/metabolismo , Proteínas del Citoesqueleto/metabolismo , Perros , Células Epiteliales/metabolismo , Células Epiteliales/parasitología , Hidrazonas/farmacología , Uniones Intercelulares/ultraestructura , Células de Riñón Canino Madin Darby , Metaloproteasas/metabolismo , Movimiento , Naftoles/farmacología , Ocludina/metabolismo , Toxoplasma/enzimología , Toxoplasma/patogenicidad , Proteína de la Zonula Occludens-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...