Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.485
Filtrar
1.
Part Fibre Toxicol ; 21(1): 25, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760786

RESUMEN

Exposure to indoor air pollutants (IAP) has increased recently, with people spending more time indoors (i.e. homes, offices, schools and transportation). Increased exposures of IAP on a healthy population are poorly understood, and those with allergic respiratory conditions even less so. The objective of this study, therefore, was to implement a well-characterised in vitro model of the human alveolar epithelial barrier (A549 + PMA differentiated THP-1 incubated with and without IL-13, IL-5 and IL-4) to determine the effects of a standardised indoor particulate (NIST 2583) on both a healthy lung model and one modelling a type-II (stimulated with IL-13, IL-5 and IL-4) inflammatory response (such as asthma).Using concentrations from the literature, and an environmentally appropriate exposure we investigated 232, 464 and 608ng/cm2 of NIST 2583 respectively. Membrane integrity (blue dextran), viability (trypan blue), genotoxicity (micronucleus (Mn) assay) and (pro-)/(anti-)inflammatory effects (IL-6, IL-8, IL-33, IL-10) were then assessed 24 h post exposure to both models. Models were exposed using a physiologically relevant aerosolisation method (VitroCell Cloud 12 exposure system).No changes in Mn frequency or membrane integrity in either model were noted when exposed to any of the tested concentrations of NIST 2583. A significant decrease (p < 0.05) in cell viability at the highest concentration was observed in the healthy model. Whilst cell viability in the "inflamed" model was decreased at the lower concentrations (significantly (p < 0.05) after 464ng/cm2). A significant reduction (p < 0.05) in IL-10 and a significant increase in IL-33 was seen after 24 h exposure to NIST 2583 (464, 608ng/cm2) in the "inflamed" model.Collectively, the results indicate the potential for IAP to cause the onset of a type II response as well as exacerbating pre-existing allergic conditions. Furthermore, the data imposes the importance of considering unhealthy individuals when investigating the potential health effects of IAP. It also highlights that even in a healthy population these particles have the potential to induce this type II response and initiate an immune response following exposure to IAP.


Asunto(s)
Contaminación del Aire Interior , Supervivencia Celular , Material Particulado , Humanos , Contaminación del Aire Interior/efectos adversos , Material Particulado/toxicidad , Supervivencia Celular/efectos de los fármacos , Células A549 , Citocinas/metabolismo , Células THP-1 , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Contaminantes Atmosféricos/toxicidad , Inflamación/inducido químicamente , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología
2.
Mol Med Rep ; 30(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38695251

RESUMEN

Although exogenous calcitonin gene­related peptide (CGRP) protects against hyperoxia­induced lung injury (HILI), the underlying mechanisms remain unclear. The present study attempted to elucidate the molecular mechanism by which CGRP protects against hyperoxia­induced alveolar cell injury. Human alveolar A549 cells were treated with 95% hyperoxia to establish a hyperoxic cell injury model. ELISA was performed to detect the CGRP secretion. Immunofluorescence, quantitative (q)PCR, and western blotting were used to detect the expression and localization of CGRP receptor (CGRPR) and transient receptor potential vanilloid 1 (TRPV1). Cell counting kit­8 and flow cytometry were used to examine the proliferation and apoptosis of treated cells. Digital calcium imaging and patch clamp were used to analyze the changes in intracellular Ca2+ signaling and membrane currents induced by CGRP in A549 cells. The mRNA and protein expression levels of Cyclin D1, proliferating cell nuclear antigen (PCNA), Bcl­2 and Bax were detected by qPCR and western blotting. The expression levels of CGRPR and TRPV1 in A549 cells were significantly downregulated by hyperoxic treatment, but there was no significant difference in CGRP release between cells cultured under normal air and hyperoxic conditions. CGRP promoted cell proliferation and inhibited apoptosis in hyperoxia, but selective inhibitors of CGRPR and TRPV1 channels could effectively attenuate these effects; TRPV1 knockdown also attenuated this effect. CGRP induced Ca2+ entry via the TRPV1 channels and enhanced the membrane non­selective currents through TRPV1 channels. The CGRP­induced increase in intracellular Ca2+ was reduced by inhibiting the phospholipase C (PLC)/protein kinase C (PKC) pathway. Moreover, PLC and PKC inhibitors attenuated the effects of CGRP in promoting cell proliferation and inhibiting apoptosis. In conclusion, exogenous CGRP acted by inversely regulating the function of TRPV1 channels in alveolar cells. Importantly, CGRP protected alveolar cells from hyperoxia­induced injury via the CGRPR/TRPV1/Ca2+ axis, which may be a potential target for the prevention and treatment of the HILI.


Asunto(s)
Células Epiteliales Alveolares , Apoptosis , Péptido Relacionado con Gen de Calcitonina , Calcio , Proliferación Celular , Receptores de Péptido Relacionado con el Gen de Calcitonina , Canales Catiónicos TRPV , Humanos , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Péptido Relacionado con Gen de Calcitonina/metabolismo , Péptido Relacionado con Gen de Calcitonina/farmacología , Apoptosis/efectos de los fármacos , Células A549 , Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Hiperoxia/metabolismo , Transducción de Señal/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos
3.
Theranostics ; 14(7): 2687-2705, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38773980

RESUMEN

Rationale: Pulmonary fibrosis is a chronic progressive lung disease with limited therapeutic options. We previously revealed that there is iron deposition in alveolar epithelial type II cell (AECII) in pulmonary fibrosis, which can be prevented by the iron chelator deferoxamine. However, iron in the cytoplasm and the mitochondria has two relatively independent roles and regulatory systems. In this study, we aimed to investigate the role of mitochondrial iron deposition in AECII injury and pulmonary fibrosis, and to find potential therapeutic strategies. Methods: BLM-treated mice, MLE-12 cells, and primary AECII were employed to establish the mouse pulmonary fibrosis model and epithelial cells injury model, respectively. Mitochondrial transplantation, siRNA and plasmid transfection, western blotting (WB), quantitative real-time polymerase chain reaction (RT-qPCR), polymerase chain reaction (PCR), immunofluorescence, immunoprecipitation (IP), MitoSOX staining, JC-1 staining, oxygen consumption rate (OCR) measurement, and Cell Counting Kit-8 (CCK8) assay were utilized to elucidate the role of mitochondrial iron deposition in cell and lung fibrosis and determine its mechanism. Results: This study showed that prominent mitochondrial iron deposition occurs within AECII in bleomycin (BLM)-induced pulmonary fibrosis mouse model and in BLM-treated MLE-12 epithelial cells. Further, the study revealed that healthy mitochondria rescue BLM-damaged AECII mitochondrial iron deposition and cell damage loss. Mitoferrin-2 (MFRN2) is the main transporter that regulates mitochondrial iron metabolism by transferring cytosolic iron into mitochondria, which is upregulated in BLM-treated MLE-12 epithelial cells. Direct overexpression of MFRN2 causes mitochondrial iron deposition and cell damage. In this study, decreased ubiquitination of the ubiquitin ligase F-box/LRR-repeat protein 5 (FBXL5) degraded iron-reactive element-binding protein 2 (IREB2) and promoted MFRN2 expression as well as mitochondrial iron deposition in damaged AECII. Activation of the prostaglandin E2 receptor EP4 subtype (EP4) receptor signaling pathway counteracted mitochondrial iron deposition by downregulating IREB2-MFRN2 signaling through upregulation of FBXL5. This intervention not only reduced mitochondrial iron content but also preserved mitochondrial function and protected against AECII damage after BLM treatment. Conclusion: Our findings highlight the unexplored roles, mechanisms, and regulatory approaches of abnormal mitochondrial iron metabolism of AECII in pulmonary fibrosis. Therefore, this study deepens the understanding of the mechanisms underlying pulmonary fibrosis and offers a promising strategy for developing effective therapeutic interventions using the EP4 receptor activator.


Asunto(s)
Células Epiteliales Alveolares , Bleomicina , Modelos Animales de Enfermedad , Hierro , Mitocondrias , Fibrosis Pulmonar , Animales , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Ratones , Hierro/metabolismo , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Ratones Endogámicos C57BL , Línea Celular , Masculino
4.
Biochem Biophys Res Commun ; 718: 150083, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38735138

RESUMEN

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), represent critical clinical syndromes with multifactorial origins, notably stemming from sepsis within intensive care units (ICUs). Despite their high mortality rates, no selective cure is available beside ventilation support. Apoptosis plays a complex and pivotal role in the pathophysiology of acute lung injury. Excessive apoptosis of alveolar epithelial and microvascular endothelial cells can lead to disruption of lung epithelial barrier integrity, impairing the body's ability to exchange blood and gas. At the same time, apoptosis of damaged or dysfunctional cells, including endothelial and epithelial cells, can help maintain tissue integrity and accelerate recovery from organ pro-inflammatory stress. The balance between pro-survival and pro-apoptotic signals in lung injury determines patient outcomes, making the modulation of apoptosis an area of intense research in the quest for more effective therapies. Here we found that protein tyrosine phosphatase receptor type O (PTPRO), a poorly understood receptor-like protein tyrosine phosphatase, is consistently upregulated in multiple tissue types of mice under septic conditions and in the lung alveolar epithelial cells. PTPRO reduction by its selective short-interfering RNA (siRNA) leads to excessive apoptosis in lung alveolar epithelial cells without affecting cell proliferation. Consistently PTPRO overexpression by a DNA construct attenuates apoptotic signaling induced by LPS. These effects of PTPTO on cellular apoptosis are dependent on an ErbB2/PI3K/Akt/NFκB signaling pathway. Here we revealed a novel regulatory pathway of cellular apoptosis by PTPRO in lung alveolar epithelial cells during sepsis.


Asunto(s)
Células Epiteliales Alveolares , Apoptosis , Lipopolisacáridos , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores , Apoptosis/efectos de los fármacos , Animales , Lipopolisacáridos/farmacología , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Ratones , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Ratones Endogámicos C57BL , Humanos , Masculino , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Transducción de Señal/efectos de los fármacos , Sepsis/metabolismo , Sepsis/patología
5.
Sci Rep ; 14(1): 11160, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750066

RESUMEN

Sepsis is a systemic inflammatory response syndrome resulting from the invasion of the human body by bacteria and other pathogenic microorganisms. One of its most prevalent complications is acute lung injury, which places a significant medical burden on numerous countries and regions due to its high morbidity and mortality rates. MicroRNA (miRNA) plays a critical role in the body's inflammatory response and immune regulation. Recent studies have focused on miR-21-5p in the context of acute lung injury, but its role appears to vary in different models of this condition. In the LPS-induced acute injury model of A549 cells, there is differential expression, but the specific mechanism remains unclear. Therefore, our aim is to investigate the changes in the expression of miR-21-5p and SLC16A10 in a type II alveolar epithelial cell injury model induced by LPS and explore the therapeutic effects of their targeted regulation. A549 cells were directly stimulated with 10 µg/ml of LPS to construct a model of LPS-induced cell injury. Cells were collected at different time points and the expression of interleukin 1 beta (IL-1ß), tumor necrosis factor-α (TNF-α) and miR-21-5p were measured by RT-qPCR and western blot. Then miR-21-5p mimic transfection was used to up-regulate the expression of miR-21-5p in A549 cells and the expression of IL-1ß and TNF-α in each group of cells was measured by RT-qPCR and western blot. The miRDB, TargetScan, miRWalk, Starbase, Tarbase and miR Tarbase databases were used to predict the miR-21-5p target genes and simultaneously, the DisGeNet database was used to search the sepsis-related gene groups. The intersection of the two groups was taken as the core gene. Luciferase reporter assay further verified SLC16A10 as the core gene with miR-21-5p. The expression of miR-21-5p and SLC16A10 were regulated by transfection or inhibitors in A549 cells with or without LPS stimulation. And then the expression of IL-1ß and TNF-α in A549 cells was tested by RT-qPCR and western blot in different groups, clarifying the role of miR-21-5p-SLC16A10 axis in LPS-induced inflammatory injury in A549 cells. (1) IL-1ß and TNF-α mRNA and protein expression significantly increased at 6, 12, and 24 h after LPS stimulation as well as the miR-21-5p expression compared with the control group (P < 0.05). (2) After overexpression of miR-21-5p in A549 cells, the expression of IL-1ß and TNF-α was significantly reduced after LPS stimulation, suggesting that miR-21-5p has a protection against LPS-induced injury. (3) The core gene set, comprising 51 target genes of miR-21-5p intersecting with the 1448 sepsis-related genes, was identified. This set includes SLC16A10, TNPO1, STAT3, PIK3R1, and FASLG. Following a literature review, SLC16A10 was selected as the ultimate target gene. Dual luciferase assay results confirmed that SLC16A10 is indeed a target gene of miR-21-5p. (4) Knocking down SLC16A10 expression by siRNA significantly reduced the expression of IL-1ß and TNF-α in A549 cells after LPS treatment (P < 0.05). (5) miR-21-5p inhibitor increased the expression levels of IL-1ß and TNF-α in A549 cells after LPS stimulation (P < 0.05). In comparison to cells solely transfected with miR-21-5p inhibitor, co-transfection of miR-21-5p inhibitor and si-SLC6A10 significantly reduced the expression of IL-1ß and TNF-α (P < 0.05). MiR-21-5p plays a protective role in LPS-induced acute inflammatory injury of A549 cells. By targeting SLC16A10, it effectively mitigates the inflammatory response in A549 cells induced by LPS. Furthermore, SLC16A10 holds promise as a potential target for the treatment of acute lung injury.


Asunto(s)
Lesión Pulmonar Aguda , Células Epiteliales Alveolares , Lipopolisacáridos , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Humanos , Lipopolisacáridos/toxicidad , Células A549 , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Regulación de la Expresión Génica
6.
Sci Rep ; 14(1): 11131, 2024 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750140

RESUMEN

This study aimed to investigate the potential anti-fibrotic activity of vinpocetine in an experimental model of pulmonary fibrosis by bleomycin and in the MRC-5 cell line. Pulmonary fibrosis was induced in BALB/c mice by oropharyngeal aspiration of a single dose of bleomycin (5 mg/kg). The remaining induced animals received a daily dose of pirfenidone (as a standard anti-fibrotic drug) (300 mg/kg/PO) and vinpocetine (20 mg/kg/PO) on day 7 of the induction till the end of the experiment (day 21). The results of the experiment revealed that vinpocetine managed to alleviate the fibrotic endpoints by statistically improving (P ≤ 0.05) the weight index, histopathological score, reduced expression of fibrotic-related proteins in immune-stained lung sections, as well as fibrotic markers measured in serum samples. It also alleviated tissue levels of oxidative stress and inflammatory and pro-fibrotic mediators significantly elevated in bleomycin-only induced animals (P ≤ 0.05). Vinpocetine managed to express a remarkable attenuating effect in pulmonary fibrosis both in vivo and in vitro either directly by interfering with the classical TGF-ß1/Smad2/3 signaling pathway or indirectly by upregulating the expression of Nrf2 enhancing the antioxidant system, activating PPAR-γ and downregulating the NLRP3/NF-κB pathway making it a candidate for further clinical investigation in cases of pulmonary fibrosis.


Asunto(s)
Ratones Endogámicos BALB C , FN-kappa B , Proteína con Dominio Pirina 3 de la Familia NLR , PPAR gamma , Fibrosis Pulmonar , Transducción de Señal , Proteína Smad2 , Proteína smad3 , Factor de Crecimiento Transformador beta1 , Alcaloides de la Vinca , Animales , Alcaloides de la Vinca/farmacología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/tratamiento farmacológico , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Factor de Crecimiento Transformador beta1/metabolismo , PPAR gamma/metabolismo , Ratones , FN-kappa B/metabolismo , Proteína smad3/metabolismo , Proteína Smad2/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Humanos , Bleomicina/efectos adversos , Modelos Animales de Enfermedad , Masculino , Línea Celular , Estrés Oxidativo/efectos de los fármacos
7.
Nat Commun ; 15(1): 4148, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755149

RESUMEN

Cell plasticity theoretically extends to all possible cell types, but naturally decreases as cells differentiate, whereas injury-repair re-engages the developmental plasticity. Here we show that the lung alveolar type 2 (AT2)-specific transcription factor (TF), CEBPA, restricts AT2 cell plasticity in the mouse lung. AT2 cells undergo transcriptional and epigenetic maturation postnatally. Without CEBPA, both neonatal and mature AT2 cells reduce the AT2 program, but only the former reactivate the SOX9 progenitor program. Sendai virus infection bestows mature AT2 cells with neonatal plasticity where Cebpa mutant, but not wild type, AT2 cells express SOX9, as well as more readily proliferate and form KRT8/CLDN4+ transitional cells. CEBPA promotes the AT2 program by recruiting the lung lineage TF NKX2-1. The temporal change in CEBPA-dependent plasticity reflects AT2 cell developmental history. The ontogeny of AT2 cell plasticity and its transcriptional and epigenetic mechanisms have implications in lung regeneration and cancer.


Asunto(s)
Células Epiteliales Alveolares , Plasticidad de la Célula , Factor Nuclear Tiroideo 1 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/citología , Factor Nuclear Tiroideo 1/metabolismo , Factor Nuclear Tiroideo 1/genética , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción SOX9/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Diferenciación Celular , Epigénesis Genética , Ratones Endogámicos C57BL , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/genética , Regeneración , Virus Sendai/genética , Virus Sendai/fisiología , Proliferación Celular , Ratones Noqueados , Pulmón/metabolismo
8.
Cell Mol Life Sci ; 81(1): 206, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709307

RESUMEN

The epithelial-mesenchymal transformation (EMT) process of alveolar epithelial cells is recognized as involved in the development of pulmonary fibrosis. Recent evidence has shown that lipopolysaccharide (LPS)-induced aerobic glycolysis of lung tissue and elevated lactate concentration are associated with the pathogenesis of sepsis-associated pulmonary fibrosis. However, it is uncertain whether LPS promotes the development of sepsis-associated pulmonary fibrosis by promoting lactate accumulation in lung tissue, thereby initiating EMT process. We hypothesized that monocarboxylate transporter-1 (MCT1), as the main protein for lactate transport, may be crucial in the pathogenic process of sepsis-associated pulmonary fibrosis. We found that high concentrations of lactate induced EMT while moderate concentrations did not. Besides, we demonstrated that MCT1 inhibition enhanced EMT process in MLE-12 cells, while MCT1 upregulation could reverse lactate-induced EMT. LPS could promote EMT in MLE-12 cells through MCT1 inhibition and lactate accumulation, while this could be alleviated by upregulating the expression of MCT1. In addition, the overexpression of MCT1 prevented LPS-induced EMT and pulmonary fibrosis in vivo. Altogether, this study revealed that LPS could inhibit the expression of MCT1 in mouse alveolar epithelial cells and cause lactate transport disorder, which leads to lactate accumulation, and ultimately promotes the process of EMT and lung fibrosis.


Asunto(s)
Transición Epitelial-Mesenquimal , Ácido Láctico , Lipopolisacáridos , Transportadores de Ácidos Monocarboxílicos , Fibrosis Pulmonar , Simportadores , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/antagonistas & inhibidores , Animales , Transición Epitelial-Mesenquimal/efectos de los fármacos , Lipopolisacáridos/farmacología , Simportadores/metabolismo , Simportadores/genética , Simportadores/antagonistas & inhibidores , Ratones , Ácido Láctico/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/inducido químicamente , Ratones Endogámicos C57BL , Línea Celular , Masculino , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
10.
J Cell Mol Med ; 28(8): e18299, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613355

RESUMEN

Pulmonary fibrosis is a lung disorder affecting the lungs that involves the overexpressed extracellular matrix, scarring and stiffening of tissue. The repair of lung tissue after injury relies heavily on Type II alveolar epithelial cells (AEII), and repeated damage to these cells is a crucial factor in the development of pulmonary fibrosis. Studies have demonstrated that chronic exposure to PM2.5, a form of air pollution, leads to an increase in the incidence and severity of pulmonary fibrosis by stimulation of epithelial-mesenchymal transition (EMT) in lung epithelial cells. Pyrroloquinoline quinone (PQQ) is a bioactive compound found naturally that exhibits potent anti-inflammatory and anti-oxidative properties. The mechanism by which PQQ prevents pulmonary fibrosis caused by exposure to PM2.5 through EMT has not been thoroughly discussed until now. In the current study, we discovered that PQQ successfully prevented PM2.5-induced pulmonary fibrosis by targeting EMT. The results indicated that PQQ was able to inhibit the expression of type I collagen, a well-known fibrosis marker, in AEII cells subjected to long-term PM2.5 exposure. We also found the alterations of cellular structure and EMT marker expression in AEII cells with PM2.5 incubation, which were reduced by PQQ treatment. Furthermore, prolonged exposure to PM2.5 considerably reduced cell migratory ability, but PQQ treatment helped in reducing it. In vivo animal experiments indicated that PQQ could reduce EMT markers and enhance pulmonary function. Overall, these results imply that PQQ might be useful in clinical settings to prevent pulmonary fibrosis.


Asunto(s)
Fibrosis Pulmonar , Animales , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Cofactor PQQ/farmacología , Transición Epitelial-Mesenquimal , Células Epiteliales Alveolares , Material Particulado/toxicidad
11.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38627401

RESUMEN

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Asunto(s)
Células Epiteliales Alveolares , Glándulas Mamarias Humanas , Embarazo , Animales , Femenino , Humanos , Endorreduplicación , Glándulas Mamarias Animales , Lactancia/genética , Leche
12.
Proc Natl Acad Sci U S A ; 121(16): e2400077121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38598345

RESUMEN

Type 2 alveolar epithelial cells (AEC2s) are stem cells in the adult lung that contribute to lower airway repair. Agents that promote the selective expansion of these cells might stimulate regeneration of the compromised alveolar epithelium, an etiology-defining event in several pulmonary diseases. From a high-content imaging screen of the drug repurposing library ReFRAME, we identified that dipeptidyl peptidase 4 (DPP4) inhibitors, widely used type 2 diabetes medications, selectively expand AEC2s and are broadly efficacious in several mouse models of lung damage. Mechanism of action studies revealed that the protease DPP4, in addition to processing incretin hormones, degrades IGF-1 and IL-6, essential regulators of AEC2 expansion whose levels are increased in the luminal compartment of the lung in response to drug treatment. To selectively target DPP4 in the lung with sufficient drug exposure, we developed NZ-97, a locally delivered, lung persistent DPP4 inhibitor that broadly promotes efficacy in mouse lung damage models with minimal peripheral exposure and good tolerability. This work reveals DPP4 as a central regulator of AEC2 expansion and affords a promising therapeutic approach to broadly stimulate regenerative repair in pulmonary disease.


Asunto(s)
Células Epiteliales Alveolares , Diabetes Mellitus Tipo 2 , Animales , Ratones , Células Epiteliales Alveolares/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Pulmón/metabolismo , Modelos Animales de Enfermedad
13.
Clin Sci (Lond) ; 138(8): 537-554, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38577922

RESUMEN

Patients with pulmonary fibrosis (PF) often experience exacerbations of their disease, characterised by a rapid, severe deterioration in lung function that is associated with high mortality. Whilst the pathobiology of such exacerbations is poorly understood, virus infection is a trigger. The present study investigated virus-induced injury responses of alveolar and bronchial epithelial cells (AECs and BECs, respectively) from patients with PF and age-matched controls (Ctrls). Air-liquid interface (ALI) cultures of AECs, comprising type I and II pneumocytes or BECs were inoculated with influenza A virus (H1N1) at 0.1 multiplicity of infection (MOI). Levels of interleukin-6 (IL-6), IL-36γ and IL-1ß were elevated in cultures of AECs from PF patients (PF-AECs, n = 8-11), being markedly higher than Ctrl-AECs (n = 5-6), 48 h post inoculation (pi) (P<0.05); despite no difference in H1N1 RNA copy numbers 24 h pi. Furthermore, the virus-induced inflammatory responses of PF-AECs were greater than BECs (from either PF patients or controls), even though viral loads in the BECs were overall 2- to 3-fold higher than AECs. Baseline levels of the senescence and DNA damage markers, nuclear p21, p16 and H2AXγ were also significantly higher in PF-AECs than Ctrl-AECs and further elevated post-infection. Senescence induction using etoposide augmented virus-induced injuries in AECs (but not viral load), whereas selected senotherapeutics (rapamycin and mitoTEMPO) were protective. The present study provides evidence that senescence increases the susceptibility of AECs from PF patients to severe virus-induced injury and suggests targeting senescence may provide an alternative option to prevent or treat the exacerbations that worsen the underlying disease.


Asunto(s)
Células Epiteliales Alveolares , Subtipo H1N1 del Virus de la Influenza A , Fibrosis Pulmonar , Humanos , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Células Epiteliales Alveolares/virología , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/metabolismo , Fibrosis Pulmonar/virología , Fibrosis Pulmonar/patología , Masculino , Gripe Humana/virología , Gripe Humana/complicaciones , Gripe Humana/patología , Persona de Mediana Edad , Femenino , Células Cultivadas , Anciano , Senescencia Celular , Estudios de Casos y Controles , Citocinas/metabolismo
14.
J Virol ; 98(5): e0049324, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38578092

RESUMEN

CD4+ T cells play a key role in γ-herpesvirus infection control. However, the mechanisms involved are unclear. Murine herpesvirus type 4 (MuHV-4) allows relevant immune pathways to be dissected experimentally in mice. In the lungs, it colonizes myeloid cells, which can express MHC class II (MHCII), and type 1 alveolar epithelial cells (AEC1), which lack it. Nevertheless, CD4+ T cells can control AEC1 infection, and this control depends on MHCII expression in myeloid cells. Interferon-gamma (IFNγ) is a major component of CD4+ T cell-dependent MuHV-4 control. Here, we show that the action of IFNγ is also indirect, as CD4+ T cell-mediated control of AEC1 infection depended on IFNγ receptor (IFNγR1) expression in CD11c+ cells. Indirect control also depended on natural killer (NK) cells. Together, the data suggest that the activation of MHCII+ CD11c+ antigen-presenting cells is key to the CD4+ T cell/NK cell protection axis. By contrast, CD8+ T cell control of AEC1 infection appeared to operate independently. IMPORTANCE: CD4+ T cells are critical for the control of gamma-herpesvirus infection; they act indirectly, by recruiting natural killer (NK) cells to attack infected target cells. Here, we report that the CD4+ T cell/NK cell axis of gamma-herpesvirus control requires interferon-γ engagement of CD11c+ dendritic cells. This mechanism of CD4+ T cell control releases the need for the direct engagement of CD4+ T cells with virus-infected cells and may be a common strategy for host control of immune-evasive pathogens.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por Herpesviridae , Interferón gamma , Células Asesinas Naturales , Receptores de Interferón , Rhadinovirus , Animales , Linfocitos T CD4-Positivos/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Ratones , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Células Asesinas Naturales/inmunología , Receptores de Interferón/genética , Receptores de Interferón/metabolismo , Rhadinovirus/inmunología , Ratones Endogámicos C57BL , Receptor de Interferón gamma , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Células Epiteliales Alveolares/inmunología , Células Epiteliales Alveolares/virología , Linfocitos T CD8-positivos/inmunología , Antígeno CD11c/metabolismo , Antígeno CD11c/inmunología , Pulmón/inmunología , Pulmón/virología
15.
Cell Stem Cell ; 31(5): 657-675.e8, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38642558

RESUMEN

Alveolar epithelial type I cells (AT1s) line the gas exchange barrier of the distal lung and have been historically challenging to isolate or maintain in cell culture. Here, we engineer a human in vitro AT1 model system via directed differentiation of induced pluripotent stem cells (iPSCs). We use primary adult AT1 global transcriptomes to suggest benchmarks and pathways, such as Hippo-LATS-YAP/TAZ signaling, enriched in these cells. Next, we generate iPSC-derived alveolar epithelial type II cells (AT2s) and find that nuclear YAP signaling is sufficient to promote a broad transcriptomic shift from AT2 to AT1 gene programs. The resulting cells express a molecular, morphologic, and functional phenotype reminiscent of human AT1 cells, including the capacity to form a flat epithelial barrier producing characteristic extracellular matrix molecules and secreted ligands. Our results provide an in vitro model of human alveolar epithelial differentiation and a potential source of human AT1s.


Asunto(s)
Células Epiteliales Alveolares , Diferenciación Celular , Células Madre Pluripotentes Inducidas , Humanos , Células Epiteliales Alveolares/citología , Células Epiteliales Alveolares/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Células Cultivadas , Transcriptoma/genética , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo
16.
J Ethnopharmacol ; 330: 118230, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38643862

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ferulic acid (FA) has shown potential therapeutic applications in treating lung diseases. However, the underlying mechanisms by which FA ameliorates acute lung injury (ALI) have not been distinctly elucidated. AIM OF THE STUDY: The project aims to observe the therapeutic effects of FA on lipopolysaccharide-induced ALI and to elucidate its specific mechanisms in regulating epithelial sodium channel (ENaC), which majors in alveolar fluid clearance during ALI. MATERIALS AND METHODS: In this study, the possible pathways of FA were determined through network pharmacology analyses. The mechanisms of FA in ALI were verified by in vivo mouse model and in vitro studies, including primary alveolar epithelial type 2 cells and three-dimensional alveolar organoid models. RESULTS: FA ameliorated ALI by improving lung pathological changes, reducing pulmonary edema, and upregulating the α/γ-ENaC expression in C57BL/J male mice. Simultaneously, FA was observed to augment ENaC levels in both three-dimensional alveolar organoid and alveolar epithelial type 2 cells models. Network pharmacology techniques and experimental data from inhibition or knockdown of IkappaB kinase ß (IKKß) proved that FA reduced the phosphorylation of IKKß/nuclear factor-kappaB (NF-κB) and eliminated the lipopolysaccharide-inhibited expression of ENaC, which could be regulated by nuclear protein NF-κB p65 directly. CONCLUSIONS: FA could enhance the expression of ENaC at least in part by inhibiting the IKKß/NF-κB signaling pathway, which may potentially pave the way for promising treatment of ALI.


Asunto(s)
Lesión Pulmonar Aguda , Ácidos Cumáricos , Canales Epiteliales de Sodio , Lipopolisacáridos , Ratones Endogámicos C57BL , Farmacología en Red , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Ácidos Cumáricos/farmacología , Masculino , Canales Epiteliales de Sodio/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Sodio/metabolismo , Modelos Animales de Enfermedad , Transducción de Señal/efectos de los fármacos , Quinasa I-kappa B/metabolismo , FN-kappa B/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo
17.
Int Immunopharmacol ; 133: 112129, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652964

RESUMEN

Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.


Asunto(s)
Sistema de Transporte de Aminoácidos y+ , Ferroptosis , Lesión Pulmonar , Ratones Endogámicos C57BL , Mitocondrias , Especies Reactivas de Oxígeno , Sepsis , Animales , Humanos , Mitocondrias/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Sistema de Transporte de Aminoácidos y+/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lipopolisacáridos , Masculino , Factor Nuclear 3-alfa del Hepatocito/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/inmunología , Células Epiteliales Alveolares/metabolismo
18.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673850

RESUMEN

Changes during the production cycle of dairy cattle can leave these animals susceptible to oxidative stress and reduced antioxidant health. In particular, the periparturient period, when dairy cows must rapidly adapt to the sudden metabolic demands of lactation, is a period when the production of damaging free radicals can overwhelm the natural antioxidant systems, potentially leading to tissue damage and reduced milk production. Central to the protection against free radical damage and antioxidant defense is the transcription factor NRF2, which activates an array of genes associated with antioxidant functions and cell survival. The objective of this study was to evaluate the effect that two natural NRF2 modulators, the NRF2 agonist sulforaphane (SFN) and the antagonist brusatol (BRU), have on the transcriptome of immortalized bovine mammary alveolar cells (MACT) using both the RT-qPCR of putative NRF2 target genes, as well as RNA sequencing approaches. The treatment of cells with SFN resulted in the activation of many putative NRF2 target genes and the upregulation of genes associated with pathways involved in cell survival, metabolism, and antioxidant function while suppressing the expression of genes related to cellular senescence and DNA repair. In contrast, the treatment of cells with BRU resulted in the upregulation of genes associated with inflammation, cellular stress, and apoptosis while suppressing the transcription of genes involved in various metabolic processes. The analysis also revealed several novel putative NRF2 target genes in bovine. In conclusion, these data indicate that the treatment of cells with SFN and BRU may be effective at modulating the NRF2 transcriptional network, but additional effects associated with cellular stress and metabolism may complicate the effectiveness of these compounds to improve antioxidant health in dairy cattle via nutrigenomic approaches.


Asunto(s)
Isotiocianatos , Factor 2 Relacionado con NF-E2 , Cuassinas , Sulfóxidos , Transcriptoma , Animales , Bovinos , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Isotiocianatos/farmacología , Cuassinas/farmacología , Sulfóxidos/farmacología , Transcriptoma/efectos de los fármacos , Femenino , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/efectos de los fármacos , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Simulación por Computador , Estrés Oxidativo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
19.
Respir Res ; 25(1): 176, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658970

RESUMEN

BACKGROUND: Abnormal lipid metabolism has recently been reported as a crucial signature of idiopathic pulmonary fibrosis (IPF). However, the origin and biological function of the lipid and possible mechanisms of increased lipid content in the pathogenesis of IPF remains undetermined. METHODS: Oil-red staining and immunofluorescence analysis were used to detect lipid accumulation in mouse lung fibrosis frozen sections, Bleomycin-treated human type II alveolar epithelial cells (AECIIs) and lung fibroblast. Untargeted Lipid omics analysis was applied to investigate differential lipid species and identified LysoPC was utilized to treat human lung fibroblasts and mice. Microarray and single-cell RNA expression data sets identified lipid metabolism-related differentially expressed genes. Gain of function experiment was used to study the function of 3-hydroxy-3-methylglutaryl-Coa Synthase 2 (HMGCS2) in regulating AECIIs lipid metabolism. Mice with AECII-HMGCS2 high were established by intratracheally delivering HBAAV2/6-SFTPC- HMGCS2 adeno-associated virus. Western blot, Co-immunoprecipitation, immunofluorescence, site-directed mutation and flow cytometry were utilized to investigate the mechanisms of HMGCS2-mediated lipid metabolism in AECIIs. RESULTS: Injured AECIIs were the primary source of accumulated lipids in response to Bleomycin stimulation. LysoPCs released by injured AECIIs could activate lung fibroblasts, thus promoting the progression of pulmonary fibrosis. Mechanistically, HMGCS2 was decreased explicitly in AECIIs and ectopic expression of HMGCS2 in AECIIs using the AAV system significantly alleviated experimental mouse lung fibrosis progression via modulating lipid degradation in AECIIs through promoting CPT1A and CPT2 expression by interacting with PPARα. CONCLUSIONS: These data unveiled a novel etiological mechanism of HMGCS2-mediated AECII lipid metabolism in the genesis and development of pulmonary fibrosis and provided a novel target for clinical intervention.


Asunto(s)
Regulación hacia Abajo , Fibroblastos , Hidroximetilglutaril-CoA Sintasa , Metabolismo de los Lípidos , Ratones Endogámicos C57BL , Animales , Humanos , Masculino , Ratones , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/patología , Bleomicina/toxicidad , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Hidroximetilglutaril-CoA Sintasa/metabolismo , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/biosíntesis , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/genética , Metabolismo de los Lípidos/fisiología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/genética
20.
Mol Med ; 30(1): 54, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38649802

RESUMEN

BACKGROUND: Bleomycin, a potent antitumor agent, is limited in clinical use due to the potential for fatal pulmonary toxicity. The accelerated DNA damage and senescence in alveolar epithelial cells (AECs) is considered a key factor in the development of lung pathology. Understanding the mechanisms for bleomycin-induced lung injury is crucial for mitigating its adverse effects. METHODS: Human lung epithelial (A549) cells were exposed to bleomycin and subsequently assessed for cellular senescence, DNA damage, and double-strand break (DSB) repair. The impact of Rad51 overexpression on DSB repair and senescence in AECs was evaluated in vitro. Additionally, bleomycin was intratracheally administered in C57BL/6 mice to establish a pulmonary fibrosis model. RESULTS: Bleomycin exposure induced dose- and time-dependent accumulation of senescence hallmarks and DNA lesions in AECs. These effects are probably due to the inhibition of Rad51 expression, consequently suppressing homologous recombination (HR) repair. Mechanistic studies revealed that bleomycin-mediated transcriptional inhibition of Rad51 might primarily result from E2F1 depletion. Furthermore, the genetic supplement of Rad51 substantially mitigated bleomycin-mediated effects on DSB repair and senescence in AECs. Notably, decreased Rad51 expression was also observed in the bleomycin-induced mouse pulmonary fibrosis model. CONCLUSIONS: Our works suggest that the inhibition of Rad51 plays a pivotal role in bleomycin-induced AECs senescence and lung injury, offering potential strategies to alleviate the pulmonary toxicity of bleomycin.


Asunto(s)
Bleomicina , Senescencia Celular , Reparación del ADN , Recombinasa Rad51 , Bleomicina/efectos adversos , Recombinasa Rad51/metabolismo , Recombinasa Rad51/genética , Animales , Senescencia Celular/efectos de los fármacos , Senescencia Celular/genética , Humanos , Ratones , Reparación del ADN/efectos de los fármacos , Ratones Endogámicos C57BL , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Modelos Animales de Enfermedad , Regulación hacia Abajo/efectos de los fármacos , Células A549 , Daño del ADN/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Factor de Transcripción E2F1/metabolismo , Factor de Transcripción E2F1/genética , Células Epiteliales Alveolares/metabolismo , Células Epiteliales Alveolares/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...