Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.878
Filtrar
1.
Sci Rep ; 14(1): 9155, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644393

RESUMEN

Deep learning models (DLMs) have gained importance in predicting, detecting, translating, and classifying a diversity of inputs. In bioinformatics, DLMs have been used to predict protein structures, transcription factor-binding sites, and promoters. In this work, we propose a hybrid model to identify transcription factors (TFs) among prokaryotic and eukaryotic protein sequences, named Deep Regulation (DeepReg) model. Two architectures were used in the DL model: a convolutional neural network (CNN), and a bidirectional long-short-term memory (BiLSTM). DeepReg reached a precision of 0.99, a recall of 0.97, and an F1-score of 0.98. The quality of our predictions, the bias-variance trade-off approach, and the characterization of new TF predictions were evaluated and compared against those produced by DeepTFactor, as well as against experimental data from three model organisms. Predictions based on our DLM tended to exhibit less variance and bias than those from DeepTFactor, thus increasing reliability and decreasing overfitting.


Asunto(s)
Aprendizaje Profundo , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Biología Computacional/métodos , Células Procariotas/metabolismo , Redes Neurales de la Computación , Eucariontes/genética , Genoma , Células Eucariotas/metabolismo , Sitios de Unión
2.
Bioessays ; 46(5): e2300193, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38449346

RESUMEN

Inner membranes of mitochondria are extensively folded, forming cristae. The observed overall correlation between efficient eukaryotic ATP generation and the area of internal mitochondrial inner membranes both in unicellular organisms and metazoan tissues seems to explain why they evolved. However, the crucial use of molecular oxygen (O2) as final acceptor of the electron transport chain is still not sufficiently appreciated. O2 was an essential prerequisite for cristae development during early eukaryogenesis and could be the factor allowing cristae retention upon loss of mitochondrial ATP generation. Here I analyze illuminating bacterial and unicellular eukaryotic examples. I also discuss formative influences of intracellular O2 consumption on the evolution of the last eukaryotic common ancestor (LECA). These considerations bring about an explanation for the many genes coming from other organisms than the archaeon and bacterium merging at the start of eukaryogenesis.


Asunto(s)
Mitocondrias , Membranas Mitocondriales , Oxígeno , Oxígeno/metabolismo , Mitocondrias/metabolismo , Mitocondrias/genética , Membranas Mitocondriales/metabolismo , Animales , Eucariontes/metabolismo , Eucariontes/genética , Adenosina Trifosfato/metabolismo , Evolución Biológica , Células Eucariotas/metabolismo
3.
Biochem Soc Trans ; 52(2): 887-897, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38533838

RESUMEN

Transcription termination has evolved to proceed through diverse mechanisms. For several classes of terminators, multiple models have been debatably proposed. Recent single-molecule studies on bacterial terminators have resolved several long-standing controversies. First, termination mode or outcome is twofold rather than single. RNA is released alone before DNA or together with DNA from RNA polymerase (RNAP), i.e. with RNA release for termination, RNAP retains on or dissociates off DNA, respectively. The concomitant release, described in textbooks, results in one-step decomposition of transcription complexes, and this 'decomposing termination' prevails at ρ factor-dependent terminators. Contrastingly, the sequential release was recently discovered abundantly from RNA hairpin-dependent intrinsic terminations. RNA-only release allows RNAP to diffuse on DNA in both directions and recycle for reinitiation. This 'recycling termination' enables one-dimensional reinitiation, which would be more expeditious than three-dimensional reinitiation by RNAP dissociated at decomposing termination. Second, while both recycling and decomposing terminations occur at a hairpin-dependent terminator, four termination mechanisms compatibly operate at a ρ-dependent terminator with ρ in alternative modes and even intrinsically without ρ. RNA-bound catch-up ρ mediates recycling termination first and decomposing termination later, while RNAP-prebound stand-by ρ invokes only decomposing termination slowly. Without ρ, decomposing termination occurs slightly and sluggishly. These four mechanisms operate on distinct timescales, providing orderly fail-safes. The stand-by mechanism is benefited by terminational pause prolongation and modulated by accompanying riboswitches more greatly than the catch-up mechanisms. Conclusively, any mechanism alone is insufficient to perfect termination, and multiple mechanisms operate compatibly to achieve maximum possible efficiency under separate controls.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , Terminación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Transcripción Genética , ARN Bacteriano/metabolismo , ARN Bacteriano/genética , Bacterias/genética , Bacterias/metabolismo , Regiones Terminadoras Genéticas , Regulación Bacteriana de la Expresión Génica , Células Eucariotas/metabolismo , ADN Bacteriano/metabolismo , Eucariontes/genética , Eucariontes/metabolismo
4.
Cell ; 187(5): 1314-1314.e1, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38428399

RESUMEN

Ribosome production is essential for cell growth. Approximately 200 assembly factors drive this complicated pathway that starts in the nucleolus and ends in the cytoplasm. A large number of structural snapshots of the pre-60S pathway have revealed the principles behind large subunit synthesis. To view this SnapShot, open or download the PDF.


Asunto(s)
Nucléolo Celular , Células Eucariotas , Ribosomas , Nucléolo Celular/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Ribosomas/metabolismo , Células Eucariotas/química , Células Eucariotas/citología , Células Eucariotas/metabolismo
5.
Cell ; 187(6): 1490-1507.e21, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38452761

RESUMEN

Cell cycle progression relies on coordinated changes in the composition and subcellular localization of the proteome. By applying two distinct convolutional neural networks on images of millions of live yeast cells, we resolved proteome-level dynamics in both concentration and localization during the cell cycle, with resolution of ∼20 subcellular localization classes. We show that a quarter of the proteome displays cell cycle periodicity, with proteins tending to be controlled either at the level of localization or concentration, but not both. Distinct levels of protein regulation are preferentially utilized for different aspects of the cell cycle, with changes in protein concentration being mostly involved in cell cycle control and changes in protein localization in the biophysical implementation of the cell cycle program. We present a resource for exploring global proteome dynamics during the cell cycle, which will aid in understanding a fundamental biological process at a systems level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Células Eucariotas/metabolismo , Redes Neurales de la Computación , Proteoma/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Med Sci (Paris) ; 40(3): 267-274, 2024 Mar.
Artículo en Francés | MEDLINE | ID: mdl-38520102

RESUMEN

The characterization of the structural and functional organization of eukaryotic cells has revealed the membrane compartments and machinery required for vesicular protein transport. Most proteins essential for intercellular communication contain an N-terminal signal sequence enabling them to be incorporated into the biosynthetic or conventional secretory pathway, in which proteins are sequentially transported through the endoplasmic reticulum (ER) and the Golgi apparatus. However, major research studies have shown the existence of alternative secretory routes that are independent of the ER-Golgi and designated as unconventional secretory pathways. These pathways involve a large number of players that may divert specific compartments from their primary function in favor of secretory roles. The comprehensive description of these processes is therefore of utmost importance to unveil how proteins secreted through these alternative pathways control cell homeostasis or contribute to disease development.


Title: Sécrétion non conventionnelle - Nouvelles perspectives dans le trafic des protéines. Abstract: L'étude de l'organisation structurale et fonctionnelle des cellules eucaryotes a révélé les compartiments membranaires ainsi que la machinerie nécessaires au trafic vésiculaire des protéines. La plupart des protéines essentielles à la communication intercellulaire contiennent une séquence signal leur permettant d'être incorporées dans la voie de sécrétion conventionnelle, par laquelle les protéines sont transportées séquentiellement dans le réticulum endoplasmique (RE) puis l'appareil de Golgi. Cependant, les cellules eucaryotes sont également dotées de voies de sécrétion alternatives ou voies de sécrétion non conventionnelles, qui mettent en jeu de nombreux acteurs susceptibles de détourner certains compartiments de leurs fonctions principales au profit de fonctions sécrétoires.


Asunto(s)
Células Eucariotas , Proteínas , Humanos , Transporte de Proteínas , Proteínas/metabolismo , Células Eucariotas/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi , Vías Secretoras
7.
PLoS Comput Biol ; 20(2): e1011860, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38335232

RESUMEN

The complex eukaryotic cell resulted from a merger between simpler prokaryotic cells, yet the role of the mitochondrial endosymbiosis with respect to other eukaryotic innovations has remained under dispute. To investigate how the regulatory challenges associated with the endosymbiotic state impacted genome and network evolution during eukaryogenesis, we study a constructive computational model where two simple cells are forced into an obligate endosymbiosis. Across multiple in silico evolutionary replicates, we observe the emergence of different mechanisms for the coordination of host and symbiont cell cycles, stabilizing the endosymbiotic relationship. In most cases, coordination is implicit, without signaling between host and symbiont. Signaling only evolves when there is leakage of regulatory products between host and symbiont. In the fittest evolutionary replicate, the host has taken full control of the symbiont cell cycle through signaling, mimicking the regulatory dominance of the nucleus over the mitochondrion that evolved during eukaryogenesis.


Asunto(s)
Evolución Biológica , Simbiosis , Simbiosis/genética , Células Eucariotas/metabolismo , Células Procariotas/metabolismo , Eucariontes/genética , Filogenia
8.
Nat Commun ; 15(1): 1222, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336721

RESUMEN

To survive, cells must respond to changing environmental conditions. One way that eukaryotic cells react to harsh stimuli is by forming physiological, RNA-seeded subnuclear condensates, termed amyloid bodies (A-bodies). The molecular constituents of A-bodies induced by different stressors vary significantly, suggesting this pathway can tailor the cellular response by selectively aggregating a subset of proteins under a given condition. Here, we identify critical structural elements that regulate heat shock-specific amyloid aggregation. Our data demonstrates that manipulating structural pockets in constituent proteins can either induce or restrict their A-body targeting at elevated temperatures. We propose a model where selective aggregation within A-bodies is mediated by the thermal stability of a protein, with temperature-sensitive structural regions acting as an intrinsic form of post-translational regulation. This system would provide cells with a rapid and stress-specific response mechanism, to tightly control physiological amyloid aggregation or other cellular stress response pathways.


Asunto(s)
Amiloide , Proteínas Amiloidogénicas , Amiloide/metabolismo , Respuesta al Choque Térmico , Células Eucariotas/metabolismo , Temperatura
9.
Curr Opin Cell Biol ; 86: 102321, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38219525

RESUMEN

All eukaryotes can be traced back to a single shared ancestral lineage that emerged from interactions between different prokaryotic cells. Current models of eukaryogenesis describe various selective forces and evolutionary mechanisms that contributed to the formation of eukaryotic cells. Central to this process were significant changes in cellular structure, resulting in the configuration of a new cell type characterized by internal membrane compartments. Additionally, eukaryogenesis results in a life cycle that relies on cell-cell fusion. We discuss the potential roles of proteins involved in remodeling cellular membranes, highlighting two critical stages in the evolution of eukaryotes: the internalization of symbiotic partners and a scenario wherein the emergence of sexual reproduction is linked to a polyploid ancestor generated by cell-cell fusion.


Asunto(s)
Fusión de Membrana , Células Procariotas , Filogenia , Células Procariotas/metabolismo , Células Eucariotas/metabolismo , Eucariontes , Evolución Biológica
10.
Mol Cell ; 84(5): 981-989.e7, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38295803

RESUMEN

Coenzyme Q (CoQ) is a redox lipid that fulfills critical functions in cellular bioenergetics and homeostasis. CoQ is synthesized by a multi-step pathway that involves several COQ proteins. Two steps of the eukaryotic pathway, the decarboxylation and hydroxylation of position C1, have remained uncharacterized. Here, we provide evidence that these two reactions occur in a single oxidative decarboxylation step catalyzed by COQ4. We demonstrate that COQ4 complements an Escherichia coli strain deficient for C1 decarboxylation and hydroxylation and that COQ4 displays oxidative decarboxylation activity in the non-CoQ producer Corynebacterium glutamicum. Overall, our results substantiate that COQ4 contributes to CoQ biosynthesis, not only via its previously proposed structural role but also via the oxidative decarboxylation of CoQ precursors. These findings fill a major gap in the knowledge of eukaryotic CoQ biosynthesis and shed light on the pathophysiology of human primary CoQ deficiency due to COQ4 mutations.


Asunto(s)
Células Eucariotas , Ubiquinona , Humanos , Descarboxilación , Células Eucariotas/metabolismo , Oxidación-Reducción , Escherichia coli/genética , Escherichia coli/metabolismo , Estrés Oxidativo , Proteínas Mitocondriales/metabolismo
11.
Cell ; 187(2): 345-359.e16, 2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38181787

RESUMEN

Cells self-organize molecules in space and time to generate complex behaviors, but we lack synthetic strategies for engineering spatiotemporal signaling. We present a programmable reaction-diffusion platform for designing protein oscillations, patterns, and circuits in mammalian cells using two bacterial proteins, MinD and MinE (MinDE). MinDE circuits act like "single-cell radios," emitting frequency-barcoded fluorescence signals that can be spectrally isolated and analyzed using digital signal processing tools. We define how to genetically program these signals and connect their spatiotemporal dynamics to cell biology using engineerable protein-protein interactions. This enabled us to construct sensitive reporter circuits that broadcast endogenous cell signaling dynamics on a frequency-barcoded imaging channel and to build control signal circuits that synthetically pattern activities in the cell, such as protein condensate assembly and actin filamentation. Our work establishes a paradigm for visualizing, probing, and engineering cellular activities at length and timescales critical for biological function.


Asunto(s)
Proteínas Bacterianas , Células Eucariotas , Transducción de Señal , Animales , Mamíferos , Biología Sintética/métodos , Células Eucariotas/metabolismo
12.
Methods Mol Biol ; 2741: 183-194, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38217654

RESUMEN

Regulatory small RNAs (sRNAs) help the bacteria to survive harsh environmental conditions by posttranscriptional regulation of genes involved in various biological pathways including stress responses, homeostasis, and virulence. These sRNAs can be found carried by different membrane-bound vesicles like extracellular vesicles (EVs), membrane vesicles (MVs), or outer membrane vesicles (OMVs). OMVs provide myriad functions in bacterial cells including carrying a cargo of proteins, lipids, and nucleic acids including sRNAs. A few interesting studies have shown that these sRNAs can be transported to the host cell by membrane vesicles and can regulate the host immune system. Although there is evidence that sRNAs can be exported to host cells and sometimes can even cross the blood-brain barrier, the exact mechanism is still unknown. In this review, we investigated the new techniques implemented in various studies, to elucidate the crosstalks between bacterial cells and human immune systems by membrane vesicles carrying bacterial regulatory sRNAs.


Asunto(s)
Células Eucariotas , Vesículas Extracelulares , Humanos , Células Eucariotas/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Bacterias/genética , Bacterias/metabolismo , Sistema Inmunológico/metabolismo , Virulencia , Vesículas Extracelulares/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
13.
Nat Rev Genet ; 25(6): 416-430, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38263430

RESUMEN

Horizontal gene transfer (HGT), or lateral gene transfer, is the non-sexual movement of genetic information between genomes. It has played a pronounced part in bacterial and archaeal evolution, but its role in eukaryotes is less clear. Behaviours unique to eukaryotic cells - phagocytosis and endosymbiosis - have been proposed to increase the frequency of HGT, but nuclear genomes encode fewer HGTs than bacteria and archaea. Here, I review the existing theory in the context of the growing body of data on HGT in eukaryotes, which suggests that any increased chance of acquiring new genes through phagocytosis and endosymbiosis is offset by a reduced need for these genes in eukaryotes, because selection in most eukaryotes operates on variation not readily generated by HGT.


Asunto(s)
Transferencia de Gen Horizontal , Eucariontes/genética , Simbiosis/genética , Células Eucariotas/metabolismo , Animales , Fagocitosis/genética , Archaea/genética , Evolución Molecular , Modelos Genéticos
14.
Nature ; 625(7994): 393-400, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38030725

RESUMEN

One of the most critical steps of protein synthesis is coupled translocation of messenger RNA (mRNA) and transfer RNAs (tRNAs) required to advance the mRNA reading frame by one codon. In eukaryotes, translocation is accelerated and its fidelity is maintained by elongation factor 2 (eEF2)1,2. At present, only a few snapshots of eukaryotic ribosome translocation have been reported3-5. Here we report ten high-resolution cryogenic-electron microscopy (cryo-EM) structures of the elongating eukaryotic ribosome bound to the full translocation module consisting of mRNA, peptidyl-tRNA and deacylated tRNA, seven of which also contained ribosome-bound, naturally modified eEF2. This study recapitulates mRNA-tRNA2-growing peptide module progression through the ribosome, from the earliest states of eEF2 translocase accommodation until the very late stages of the process, and shows an intricate network of interactions preventing the slippage of the translational reading frame. We demonstrate how the accuracy of eukaryotic translocation relies on eukaryote-specific elements of the 80S ribosome, eEF2 and tRNAs. Our findings shed light on the mechanism of translation arrest by the anti-fungal eEF2-binding inhibitor, sordarin. We also propose that the sterically constrained environment imposed by diphthamide, a conserved eukaryotic posttranslational modification in eEF2, not only stabilizes correct Watson-Crick codon-anticodon interactions but may also uncover erroneous peptidyl-tRNA, and therefore contribute to higher accuracy of protein synthesis in eukaryotes.


Asunto(s)
Células Eucariotas , Biosíntesis de Proteínas , ARN Mensajero , Sistemas de Lectura , Ribosomas , Anticodón/genética , Anticodón/metabolismo , Codón/genética , Codón/metabolismo , Microscopía por Crioelectrón , Células Eucariotas/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Factor 2 de Elongación Peptídica/antagonistas & inhibidores , Factor 2 de Elongación Peptídica/metabolismo , Sistemas de Lectura/genética , Ribosomas/química , Ribosomas/metabolismo , Ribosomas/ultraestructura , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo
15.
J Vis Exp ; (201)2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38047568

RESUMEN

Microtubules, composed of α/ß-tubulin dimers, are a crucial component of the cytoskeleton in eukaryotic cells. These tube-like polymers exhibit dynamic instability as tubulin heterodimer subunits undergo repetitive polymerization and depolymerization. Precise control of microtubule stability and dynamics, achieved through tubulin post-translational modifications and microtubule-associated proteins, is essential for various cellular functions. Dysfunctions in microtubules are strongly implicated in pathogenesis, including neurodegenerative disorders. Ongoing research focuses on microtubule-targeting therapeutic agents that modulate stability, offering potential treatment options for these diseases and cancers. Consequently, understanding the dynamic state of microtubules is crucial for assessing disease progression and therapeutic effects. Traditionally, microtubule dynamics have been assessed in vitro or in cultured cells through rough fractionation or immunoassay, using antibodies targeting post-translational modifications of tubulin. However, accurately analyzing tubulin status in tissues using such procedures poses challenges. In this study, we developed a simple and innovative microtubule fractionation method to separate stable microtubules, labile microtubules, and free tubulin in mouse tissues. The procedure involved homogenizing dissected mouse tissues in a microtubule-stabilizing buffer at a 19:1 volume ratio. The homogenates were then fractionated through a two-step ultracentrifugation process following initial slow centrifugation (2,400 × g) to remove debris. The first ultracentrifugation step (100,000 × g) precipitated stable microtubules, while the resulting supernatant was subjected to a second ultracentrifugation step (500,000 × g) to fractionate labile microtubules and soluble tubulin dimers. This method determined the proportions of tubulin constituting stable or labile microtubules in the mouse brain. Additionally, distinct tissue variations in microtubule stability were observed that correlated with the proliferative capacity of constituent cells. These findings highlight the significant potential of this novel method for analyzing microtubule stability in physiological and pathological conditions.


Asunto(s)
Microtúbulos , Tubulina (Proteína) , Animales , Ratones , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Citoesqueleto/metabolismo , Células Eucariotas/metabolismo , Polímeros/metabolismo
16.
Cells ; 12(24)2023 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-38132143

RESUMEN

Mitochondria have been the prerequisite to eukaryote complexity since their likely endosymbiotic origin, allowing a remarkable expansion in the number of genes expressed [...].


Asunto(s)
Células Eucariotas , Mitocondrias , Humanos , Mitocondrias/metabolismo , Células Eucariotas/metabolismo , Eucariontes , Estrés Oxidativo
17.
Nat Commun ; 14(1): 6844, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891161

RESUMEN

Type IIA topoisomerases are essential DNA processing enzymes that must robustly and reliably relax DNA torsional stress. While cellular processes constantly create varying torsional stress, how this variation impacts type IIA topoisomerase function remains obscure. Using multiple single-molecule approaches, we examined the torsional dependence of eukaryotic topoisomerase II (topo II) activity on naked DNA and chromatin. We observed that topo II is ~50-fold more processive on buckled DNA than previously estimated. We further discovered that topo II relaxes supercoiled DNA prior to plectoneme formation, but with processivity reduced by ~100-fold. This relaxation decreases with diminishing torsion, consistent with topo II capturing transient DNA loops. Topo II retains high processivity on buckled chromatin (~10,000 turns) and becomes highly processive even on chromatin under low torsional stress (~1000 turns), consistent with chromatin's predisposition to readily form DNA crossings. This work establishes that chromatin is a major stimulant of topo II function.


Asunto(s)
ADN-Topoisomerasas de Tipo II , ADN , ADN-Topoisomerasas de Tipo II/metabolismo , Cromatina , ADN-Topoisomerasas de Tipo I/metabolismo , Células Eucariotas/metabolismo
18.
J Biochem ; 175(1): 9-15, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-37830942

RESUMEN

In eukaryotic cells, RNAs transcribed by RNA polymerase-II receive the modification at the 5' end. This structure is called the cap structure. The cap structure has a fundamental role for translation initiation by recruiting eukaryotic translation initiation factor 4F (eIF4F). The other important mediator of the cap structure is a nuclear cap-binding protein complex (CBC). CBC consists of two proteins, which are renamed as NCBP1 and NCBP2 (previously called as CBP80/NCBP and CBP20/NIP1, respectively). This review article discusses the multiple roles CBC mediates and co-ordinates in several gene expression steps in eukaryotes.


Asunto(s)
Caperuzas de ARN , ARN Polimerasa II , Caperuzas de ARN/química , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , ARN Polimerasa II/metabolismo , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/química , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Células Eucariotas/metabolismo
19.
Biol Chem ; 404(11-12): 1101-1121, 2023 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-37709756

RESUMEN

The cellular environment contains numerous ribonucleases that are dedicated to process mRNA transcripts that have been targeted for degradation. Here, we review the three dimensional structures of the ribonuclease complexes (Pan2-Pan3, Ccr4-Not, Xrn1, exosome) and the mRNA decapping enzymes (Dcp2, DcpS) that are involved in mRNA turnover. Structures of major parts of these proteins have been experimentally determined. These enzymes and factors do not act in isolation, but are embedded in interaction networks which regulate enzyme activity and ensure that the appropriate substrates are recruited. The structural details of the higher order complexes that form can, in part, be accurately deduced from known structural data of sub-complexes. Interestingly, many of the ribonuclease and decapping enzymes have been observed in structurally different conformations. Together with experimental data, this highlights that structural changes are often important for enzyme function. We conclude that the known structural data of mRNA decay factors provide important functional insights, but that static structural data needs to be complemented with information regarding protein motions to complete the picture of how transcripts are turned over. In addition, we highlight multiple aspects that influence mRNA turnover rates, but that have not been structurally characterized so far.


Asunto(s)
Biología , Estabilidad del ARN , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Células Eucariotas/química , Células Eucariotas/metabolismo
20.
Cell Host Microbe ; 31(9): 1469-1480.e4, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37567169

RESUMEN

In eukaryotic cells, serine/threonine protein kinases (StpKs) play important roles in limiting viral infections. StpKs are commonly activated upon infections, inhibiting the expression of genes central for viral replication. Here, we report that a eukaryotic-like StpK7 encoded by MSMEG_1200 in M. smegmatis is required for mycobacteriophage TM4 to escape bacterial defense. stpK7 is located within a gene island, MSMEG_1191-MSMEG_1200, containing multiple anti-phage genes resembling the BREX (bacteriophage exclusion) phage-resistance system. StpK7 negatively regulates the expression of this gene island. Following phage TM4 infection, StpK7 is induced, directly phosphorylating the transcriptional regulator MSMEG_1198 and inhibiting its positive regulatory activity, thus reducing the expression of multiple downstream genes in the BREX-like gene island. Further analysis showed that genes within this anti-phage island critically regulate mycobacterial lipid hemostasis and phage adsorption. Collectively, this work characterizes a regulatory network driven by StpK7, which is utilized by phage TM4 to escape from the host defense against mycobacteria.


Asunto(s)
Bacteriófagos , Mycobacterium , Bacteriófagos/genética , Bacteriófagos/metabolismo , Eucariontes , Proteínas Quinasas , Células Eucariotas/metabolismo , Mycobacterium/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Bacterianas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...