RESUMEN
Ionizing radiation has been shown to arrest spermatogenesis despite the presence of surviving stem spermatogonia, by blocking their differentiation. This block is a result of damage to the somatic environment and is reversed when gonadotropins and testosterone are suppressed, but the mechanisms are still unknown. We examined spermatogonial differentiation and Sertoli cell factors that regulate spermatogonia after irradiation, during hormone suppression, and after hormone suppression combined with Leydig cell elimination with ethane dimethane sulfonate. These results showed that the numbers and cytoplasmic structure of Sertoli cells are unaffected by irradiation, only a few type A undifferentiated (Aund) spermatogonia and even fewer type A1 spermatogonia remained, and immunohistochemical analysis showed that Sertoli cells still produced KIT ligand (KITLG) and glial cell line-derived neurotrophic factor (GDNF). Some of these cells expressed KIT receptor, demonstrating that the failure of differentiation was not a result of the absence of the KIT system. Hormone suppression resulted in an increase in Aund spermatogonia within 3 days, a gradual increase in KIT-positive spermatogonia, and differentiation mainly to A3 spermatogonia after 2 weeks. KITL (KITLG) protein expression did not change after hormone suppression, indicating that it is not a factor in the stimulation. However, GDNF increased steadily after hormone suppression, which was unexpected since GDNF is supposed to promote stem spermatogonial self-renewal and not differentiation. We conclude that the primary cause of the block in spermatogonial development is not due to Sertoli cell factors such (KITL\GDNF) or the KIT receptor. As elimination of Leydig cells in addition to hormone suppression resulted in differentiation to the A3 stage within 1 week, Leydig cell factors were not necessary for spermatogonial differentiation.
Asunto(s)
Diferenciación Celular/efectos de los fármacos , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Células Intersticiales del Testículo/metabolismo , Células de Sertoli/metabolismo , Espermatogénesis/fisiología , Espermatogonias/fisiología , Factor de Células Madre/metabolismo , Testosterona/farmacología , Andrógenos/farmacología , Animales , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Técnicas para Inmunoenzimas , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/efectos de la radiación , Masculino , Ratas , Células de Sertoli/efectos de los fármacos , Células de Sertoli/efectos de la radiación , Espermatogénesis/efectos de los fármacos , Espermatogénesis/efectos de la radiación , Espermatogonias/efectos de los fármacos , Espermatogonias/efectos de la radiaciónRESUMEN
The objective of this work was to study the changes that occur in the Leydig cells of rats exposed to continuous light. The laboratory rat is considered a non-photoperiodic species because exposure to short photoperiod has little or no effect on the reproductive status. However, exposure of adult female rats to constant light induces polycystic ovaries, indicating that extreme changes in the photoperiod affect the reproductive function seriously. Adult male rats were placed under continuous light conditions for a duration of 15 weeks. After this period, the animals were killed and testicles were dissected and processed by routine histologic protocols. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) serum levels were determined by radioimmunoassay (RIA). The visualization of antigens was achieved by the streptavidin-peroxidase immunohistochemical method. Antibodies against chromogranin A, S-100 protein, P substance, synaptofisin, neurofilament protein-200, gliofibrillary acidic protein and neurone-specific enolase were used. The mean LH serum concentration was significantly lower, while the mean FSH level was significantly higher in treated animals. The expression of S-100, NSE, CrA, SP and SYN was significantly lower in treated animals. In conclusion, the constant light exposure acting directly at the pituitary level decreases LH secretion. The increased FSH secretion may be due to a partial reduction of the negative androgen feedback in the pituitary gland. Moreover, the constant light exposure affects the expression of some immunomarkers in Leydig cells, possibly because of the changes found in the gonadotrophin level and feedback mechanism.