Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 846
Filtrar
1.
Am J Physiol Gastrointest Liver Physiol ; 326(6): G631-G642, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38593468

RESUMEN

Lysophosphatidic acid (LPA) is a bioactive lipid molecule that regulates a wide array of cellular functions, including proliferation, differentiation, and survival, via activation of cognate receptors. The LPA5 receptor is highly expressed in the intestinal epithelium, but its function in restoring intestinal epithelial integrity following injury has not been examined. Here, we use a radiation-induced injury model to study the role of LPA5 in regulating intestinal epithelial regeneration. Control mice (Lpar5f/f) and mice with an inducible, epithelial cell-specific deletion of Lpar5 in the small intestine (Lpar5IECKO) were subjected to 10 Gy total body X-ray irradiation and analyzed during recovery. Repair of the intestinal mucosa was delayed in Lpar5IECKO mice with reduced epithelial proliferation and increased crypt cell apoptosis. These effects were accompanied by reduced numbers of OLFM4+ intestinal stem cells (ISCs). The effects of LPA5 on ISCs were corroborated by studies using organoids derived from Lgr5-lineage tracking reporter mice with deletion of Lpar5 in Lgr5+-stem cells (Lgr5Cont or Lgr5ΔLpar5). Irradiation of organoids resulted in fewer numbers of Lgr5ΔLpar5 organoids retaining Lgr5+-derived progenitor cells compared with Lgr5Cont organoids. Finally, we observed that impaired regeneration in Lpar5IECKO mice was associated with reduced numbers of Paneth cells and decreased expression of Yes-associated protein (YAP), a critical factor for intestinal epithelial repair. Our study highlights a novel role for LPA5 in regeneration of the intestinal epithelium following irradiation and its effect on the maintenance of Paneth cells that support the stem cell niche.NEW & NOTEWORTHY We used mice lacking expression of the lysophosphatidic acid receptor 5 (LPA5) in intestinal epithelial cells and intestinal organoids to show that the LPA5 receptor protects intestinal stem cells and progenitors from radiation-induced injury. We show that LPA5 induces YAP signaling and regulates Paneth cells.


Asunto(s)
Proliferación Celular , Mucosa Intestinal , Receptores del Ácido Lisofosfatídico , Regeneración , Transducción de Señal , Proteínas Señalizadoras YAP , Animales , Receptores del Ácido Lisofosfatídico/metabolismo , Receptores del Ácido Lisofosfatídico/genética , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Ratones , Regeneración/efectos de la radiación , Proteínas Señalizadoras YAP/metabolismo , Proliferación Celular/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/metabolismo , Organoides/metabolismo , Organoides/efectos de la radiación , Ratones Noqueados , Apoptosis/efectos de la radiación , Lisofosfolípidos/metabolismo , Intestino Delgado/efectos de la radiación , Intestino Delgado/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Traumatismos Experimentales por Radiación/patología
2.
Sci Rep ; 14(1): 9444, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658667

RESUMEN

One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.


Asunto(s)
Fibroblastos , Luz , Especies Reactivas de Oxígeno , Humanos , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fibroblastos/citología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de la radiación , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Osteoblastos/citología , Células Cultivadas , Línea Celular , Células Madre/metabolismo , Células Madre/efectos de la radiación , Células Madre/citología , Glutatión/metabolismo
3.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546858

RESUMEN

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Pulpa Dental , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Odontogénesis , Osteogénesis , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/citología , Supervivencia Celular/efectos de la radiación , Odontogénesis/efectos de la radiación , Células Cultivadas , Luz Roja
4.
Radiother Oncol ; 190: 110028, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38007043

RESUMEN

BACKGROUND AND PURPOSE: Patients undergoing radiotherapy for head and neck cancer often experience a decline in their quality of life due to the co-irradiation of salivary glands. Radiation-induced cellular senescence is a key factor contributing to salivary gland dysfunction. Interestingly, mitochondrial dysfunction and cellular senescence have been reported to be strongly interconnected and thus implicated in several aging-related diseases. This study aims to investigate the role of mitochondrial dysfunction in senescence induction in salivary gland stem/progenitor cells after irradiation. MATERIALS AND METHODS: A dose of 7 Gy photons was used to irradiate mouse salivary gland organoids. Senescent markers and mitochondrial function were assessed using rt-qPCR, western blot analysis, SA-ß-Gal staining and flow cytometry analysis. Mitochondrial dynamics-related proteins were detected by western blot analysis while Mdivi-1 and MFI8 were used to modulate the mitochondrial fission process. To induce mitophagy, organoids were treated with Urolithin A and PMI and subsequently stem/progenitor cell self-renewal capacity was assessed as organoid forming efficiency. RESULTS: Irradiation led to increased senescence and accumulation of dysfunctional mitochondria. This was accompanied by a strong downregulation of mitochondrial fission-related proteins and mitophagy-related genes. After irradiation, treatment with the mitophagy inducer Urolithin A attenuated the senescent phenotype and improved organoid growth and stem/progenitor cell self-renewal capacity. CONCLUSION: This study shows the important interplay between senescence and mitochondrial dysfunction after irradiation. Importantly, activation of mitophagy improved salivary gland stem/progenitor cell function thereby providing a novel therapeutic strategy to restore the regenerative capacity of salivary glands following irradiation.


Asunto(s)
Enfermedades Mitocondriales , Calidad de Vida , Animales , Ratones , Senescencia Celular/efectos de la radiación , Enfermedades Mitocondriales/metabolismo , Mitofagia , Glándulas Salivales , Células Madre/efectos de la radiación
5.
Aesthetic Plast Surg ; 48(9): 1831-1845, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38155292

RESUMEN

BACKGROUND: Different types of alopecia have negative impacts on patients. Recently, some kinds of laser or light therapies have been reported to effectively alleviate hair loss. Carbon dioxide fractional laser (CO2FL) treatment is one of the most effective laser treatments, but its beneficial effects and exact mechanism in hair regrowth have not been reported in detail. The purpose of this study was to investigate the effect and molecular mechanism further. METHODS: C57 and Lgr5-Cre: Rosa-mTmG mouse models of hair regrowth were established by CO2FL treatment, and the parameters that induced the best effect were determined. Tissues were harvested on the day prior to the treatment day and on days 3, 5, 7, 10 and 14 after CO2FL. H&E and immunofluorescence staining, RNA sequencing (RNA-seq), quantitative real-time polymerase chain reaction (qPCR), Western blotting (WB) and related inhibitor were used to determine the molecular mechanism underlying the effect of CO2FL treatment on the hair cycle and hair regrowth. In clinical trial, five participants were treated three sessions at 1-month intervals to obverse the effects. RESULTS: Hair regrew and covered the treatment area on the tenth day after CO2FL treatment with the best parameters, while the control group showed signs of hair growth on the 14th day. H&E and immunofluorescence staining showed that the transition of hair follicles (HFs) from telogen to anagen was accelerated, and the rapid activation and proliferation of Lgr5+ hair follicle stem cells (HFSCs) were observed in the treatment group. The RNA-seq, qPCR and WB results indicated that the Wnt pathway was significantly activated after CO2FL treatment. Improvement achieved with CO2FL treatment in clinical trial. CONCLUSIONS: The results of this study suggest that CO2FL treatment can promote hair regrowth by activating Lgr5+ HFSCs and upregulating the Wnt/ß-catenin pathway. Clinical trial results demonstrated that CO2FL treatment will be a promising therapeutic regimen for alopecia. NO LEVEL ASSIGNED: This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Asunto(s)
Alopecia , Folículo Piloso , Láseres de Gas , Ratones Endogámicos C57BL , Receptores Acoplados a Proteínas G , Células Madre , Vía de Señalización Wnt , Animales , Láseres de Gas/uso terapéutico , Ratones , Vía de Señalización Wnt/fisiología , Alopecia/terapia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/efectos de la radiación , Humanos , Femenino , Folículo Piloso/efectos de la radiación , Masculino , Adulto , Modelos Animales de Enfermedad , Cabello/crecimiento & desarrollo , Cabello/efectos de la radiación , Distribución Aleatoria
6.
Int J Radiat Biol ; 99(10): 1503-1521, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36971595

RESUMEN

PURPOSE: Increasing epidemiological and biological evidence suggests that radiation exposure enhances cancer risk in a dose-dependent manner. This can be attributed to the 'dose-rate effect,' where the biological effect of low dose-rate radiation is lower than that of the same dose at a high dose-rate. This effect has been reported in epidemiological studies and experimental biology, although the underlying biological mechanisms are not completely understood. In this review, we aim to propose a suitable model for radiation carcinogenesis based on the dose-rate effect in tissue stem cells. METHODS: We surveyed and summarized the latest studies on the mechanisms of carcinogenesis. Next, we summarized the radiosensitivity of intestinal stem cells and the role of dose-rate in the modulation of stem-cell dynamics after irradiation. RESULTS: Consistently, driver mutations can be detected in most cancers from past to present, supporting the hypothesis that cancer progression is initiated by the accumulation of driver mutations. Recent reports demonstrated that driver mutations can be observed even in normal tissues, which suggests that the accumulation of mutations is a necessary condition for cancer progression. In addition, driver mutations in tissue stem cells can cause tumors, whereas they are not sufficient when they occur in non-stem cells. For non-stem cells, tissue remodeling induced by marked inflammation after the loss of tissue cells is important in addition to the accumulation of mutations. Therefore, the mechanism of carcinogenesis differs according to the cell type and magnitude of stress. In addition, our results indicated that non-irradiated stem cells tend to be eliminated from three-dimensional cultures of intestinal stem cells (organoids) composed of irradiated and non-irradiated stem cells, supporting the stem-cell competition. CONCLUSIONS: We propose a unique scheme in which the dose-rate dependent response of intestinal stem cells incorporates the concept of the threshold of stem-cell competition and context-dependent target shift from stem cells to whole tissue. The concept highlights four key issues that should be considered in radiation carcinogenesis: i.e. accumulation of mutations; tissue reconstitution; stem-cell competition; and environmental factors like epigenetic modifications.


Asunto(s)
Carcinogénesis , Exposición a la Radiación , Humanos , Relación Dosis-Respuesta en la Radiación , Células Madre/efectos de la radiación , Mutación
7.
Lasers Med Sci ; 37(9): 3681-3692, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36227520

RESUMEN

The effect of near infrared (NIR) laser irradiation on proliferation and osteogenic differentiation of buccal fat pad-derived stem cells and the role of transient receptor potential (TRP) channels was investigated in the current research. After stem cell isolation, a 940 nm laser with 0.1 W, 3 J/cm2 was used in pulsed and continuous mode for irradiation in 3 sessions once every 48 h. The cells were cultured in the following groups: non-osteogenic differentiation medium/primary medium (PM) and osteogenic medium (OM) groups with laser-irradiated (L +), without irradiation (L -), laser treated + Capsazepine inhibitor (L + Cap), and laser treated + Skf96365 inhibitor (L + Skf). Alizarin Red staining and RT-PCR were used to assess osteogenic differentiation and evaluate RUNX2, Osterix, and ALP gene expression levels. The pulsed setting showed the best viability results (P < 0.05) and was used for osteogenic differentiation evaluations. The results of Alizarin red staining were not statistically different between the four groups. Osterix and ALP expression increased in the (L +) group. This upregulation abrogated in the presence of Capsazepine, TRPV1 inhibitor (L + Cap); however, no significant effect was observed with Skf96365 (L + Skf).


Asunto(s)
Tejido Adiposo , Células Madre , Canales de Potencial de Receptor Transitorio , Humanos , Tejido Adiposo/efectos de la radiación , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Proliferación Celular/efectos de la radiación , Células Cultivadas , Osteogénesis/genética , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Canales de Potencial de Receptor Transitorio/metabolismo , Rayos Infrarrojos
8.
Radiat Prot Dosimetry ; 198(13-15): 1036-1046, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083756

RESUMEN

The uncertain cancer risk of protracted radiation exposure at low dose rates is an important issue in radiological protection. Tissue stem/progenitor cells are a supposed origin of cancer and may contribute to the dose-rate effect on carcinogenesis. The authors have shown that female rats subjected to continuous whole body γ irradiation as juveniles or young adults have a notably reduced incidence of mammary cancer as compared with those irradiated acutely. Experiments using the mammosphere formation assay suggested the presence of radioresistant progenitor cells. Cell sorting indicated that basal progenitor cells in rat mammary gland were more resistant than luminal progenitors to killing by acute radiation, especially at high doses. Thus, the evidence indicates a cell-type-dependent inactivation of mammary cells that manifests only at high acute doses, implying a link to the observed dose-rate effect on carcinogenesis.


Asunto(s)
Exposición a la Radiación , Protección Radiológica , Animales , Carcinogénesis , Transformación Celular Neoplásica , Femenino , Glándulas Mamarias Animales/efectos de la radiación , Células Madre/efectos de la radiación
9.
Radiat Prot Dosimetry ; 198(13-15): 1115-1119, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36083761

RESUMEN

Radiation response differs depending on the dose and dose rate in intestinal stem cells; however, the underlying mechanisms are not clear. To understand the effects of low-dose and low-dose-rate radiation, the authors established an organoid system that mimics the in vivo environment and sporadic low-dose-rate irradiation conditions in vitro. Organoid-forming potential and the number of stem cells in the organoids derived from 1 Gy-irradiated cells were lower than those from non-irradiated cells; however, the difference was not significant, although 1 Gy-irradiated stem cells exhibited significant growth disadvantage in the mixed-organoid with non-irradiated and irradiated stem cells. Furthermore, the authors irradiated a cell with X-ray microbeams and performed time-lapse observations and found that irradiated cells did not remain in the organoid. These results suggest that radiation-induced stem cell competition can occur in intestinal organoids and contribute to a low risk of cancers at low-dose-rate exposures.


Asunto(s)
Organoides , Células Madre , Células Madre/efectos de la radiación , Rayos X
10.
Photobiomodul Photomed Laser Surg ; 40(5): 334-342, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35559714

RESUMEN

Objective: In recent years, fractionated irradiation protocols, rather than a simple plan of exposure, have been proposed as a more effective method in the field of tissue regeneration. Thus, this study aimed at a comparative analysis of single versus double irradiation of an 808-nm diode laser, in terms of dental pulp stem cells' (DPSCs) viability and proliferation in vitro. Methods: Subcultured DPSCs were either irradiated, or not (control group), with energy densities of 3, 7, and 12 J·cm-2 in a single- or double-session manner (24 h apart). On 0, 12, 24, 48, and 72 h postirradiation, cell viability and proliferation were evaluated through Trypan Blue and alamarBlue assays, respectively. Results: During the first 48 h postirradiation, the highest rates of DPSC proliferation were assigned to double irradiation at 3 or single exposure to 7 J⋅cm-2, with no cytotoxic effects on cell viability. Inversely, single irradiation at 12, or a double session of exposure to 7 or 12 J⋅cm-2, led to a significant descent in the rates of proliferation and cell viability. Conclusions: Within the limitations of this study, evidence suggests a positive impact on the biological responses of DPSCs following double session of exposure to lower energy densities as well as a single irradiation at a higher energy dosage.


Asunto(s)
Terapia por Luz de Baja Intensidad , Proliferación Celular/efectos de la radiación , Pulpa Dental , Láseres de Semiconductores/uso terapéutico , Células Madre/efectos de la radiación
11.
Chin J Dent Res ; 25(1): 57-65, 2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293711

RESUMEN

OBJECTIVE: To determine the effect of different energy densities of near infrared diode lasers with wavelengths of 810 or 940 nm on the proliferation and survival of periodontal ligament derived stem cells (PDLSCs). METHODS: After isolation and characterisation, PDLSCs were cultured in clear 96-well plates. Each well was irradiated by either 810 nm (L1) or 940 nm (L2) lasers, with energy densities of 0.5, 1.5 and 2.5 J/cm2 and an output power of 100 mW. A non-irradiated well was used as a control. Cellular viability was measured 24 hours after irradiation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and proliferation was measured 24, 48 and 72 hours after irradiation using trypan blue staining and counting. Propidium iodide (PI) staining was used to identify any pyknotic nuclei or nuclear fragmentation 72 hours after irradiation. RESULTS: An increase in viability was observed only in the group with the 940 nm laser irradiation at energy density of 2.5 J/cm2 (P < 0.001). The proliferation of cells was significantly increased in the group with 940 nm laser irradiation at energy density of 2.5 J/cm2 at all the time points examined in comparison to other groups (P < 0.001). PI staining showed no change in cell nuclei in any of the groups. CONCLUSION: Irradiation of PDLSCs with a 940 nm laser at an energy density of 2.5 J/cm2 could promote efficient cell proliferation.


Asunto(s)
Terapia por Luz de Baja Intensidad , Ligamento Periodontal , Supervivencia Celular/efectos de la radiación , Láseres de Semiconductores/uso terapéutico , Células Madre/efectos de la radiación
12.
J Radiat Res ; 63(2): 166-173, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-34977948

RESUMEN

Intestinal organoids are an in vitro cultured tissue model generated from intestinal stem cells, and they contain a mixture of epithelial cell types. We previously established an efficient 'one cell/well' sorting method, and defined organoid-forming potential (OFP) as a useful index to evaluate the stemness of individual cells. In this study, we assessed the response to radiation dose and dose-rate by measuring both OFP and the percentage of stem cells in the crypts. After high-dose-rate (HDR, 0.5 Gy/min) irradiation in vivo, the percentage of stem cells in the harvested crypt cells decreased, and the replenishment of cycling stem cells originating from dormant cells was enhanced, but OFP increased in cells irradiated with a total dose of >1 Gy. In contrast, at a total dose of 0.1 Gy the percentage of stem cells reduced slightly, but neither replenishment rate nor OFP changed. Furthermore, the response to 1 Gy of low-dose-rate (LDR) irradiation was similar to the response to 0.1 Gy HDR irradiation. These results suggest that 0.1 Gy HDR irradiation or 1 Gy LDR irradiation does not alter stemness. Additionally, the OFP increase in the colon in response to irradiation was smaller than that in the duodenum, similar to the percentage of stem cells. Understanding the differences in the response of stem cells between the colon and the duodenum to radiation is important to clarify the mechanisms underlying the development of radiation-associated intestinal cancers.


Asunto(s)
Organoides , Radiación Ionizante , Relación Dosis-Respuesta en la Radiación , Intestinos , Dosis de Radiación , Células Madre/efectos de la radiación
13.
J Radiat Res ; 63(2): 149-157, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35021216

RESUMEN

Intestinal stem cells (ISCs) are essential for the regeneration of intestinal cells upon radiation or chemical agent damage. As for radiation-induced damage, the expression of AIM2, YAP, TLR3, PUMA or BVES can aggravate ISCs depletion, while the stimulation of TLR5, HGF/MET signaling, Ass1 gene, Slit/Robo signaling facilitate the radio-resistance of ISCs. Upon chemical agent treatment, the activation of TRAIL or p53/PUMA pathway exacerbate injury on ISCs, while the increased levels of IL-22, ß-arrestin1 can ease the damage. The transformation between reserve ISCs (rISCs) maintaining quiescent states and active ISCs (aISCs) that are highly proliferative has obtained much attention in recent years, in which ISCs expressing high levels of Hopx, Bmi1, mTert, Krt19 or Lrig1 are resistant to radiation injury, and SOX9, MSI2, clusterin, URI are essential for rISCs maintenance. The differentiated cells like Paneth cells and enteroendocrine cells can also obtain stemness driven by radiation injury mediated by Wnt or Notch signaling. Besides, Mex3a-expressed ISCs can survive and then proliferate into intestinal epithelial cells upon chemical agent damage. In addition, the modulation of symbiotic microbes harboring gastrointestinal (GI) tract is also a promising strategy to protect ISCs against radiation damage. Overall, the strategies targeting mechanisms modulating ISCs activities are conducive to alleviating GI injury of patients receiving chemoradiotherapy or victims of nuclear or chemical accident.


Asunto(s)
Mucosa Intestinal , Células Madre , Moléculas de Adhesión Celular/metabolismo , Diferenciación Celular , Proliferación Celular , Humanos , Mucosa Intestinal/citología , Intestinos/citología , Proteínas Musculares/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación
14.
Cancer Lett ; 524: 172-181, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34688844

RESUMEN

The influence of high-linear energy transfer (LET) particle radiation on the functionalities of mesenchymal stromal cells (MSCs) is largely unknown. Here, we analyzed the effects of proton (1H), helium (4He), carbon (12C) and oxygen (16O) ions on human bone marrow-MSCs. Cell cycle distribution and apoptosis induction were examined by flow cytometry, and DNA damage was quantified using γH2AX immunofluorescence and Western blots. Relative biological effectiveness values of MSCs amounted to 1.0-1.1 for 1H, 1.7-2.3 for 4He, 2.9-3.4 for 12C and 2.6-3.3 for 16O. Particle radiation did not alter the MSCs' characteristic surface marker pattern, and MSCs maintained their multi-lineage differentiation capabilities. Apoptosis rates ranged low for all radiation modalities. At 24 h after irradiation, particle radiation-induced ATM and CHK2 phosphorylation as well as γH2AX foci numbers returned to baseline levels. The resistance of human MSCs to high-LET irradiation suggests that MSCs remain functional after exposure to moderate doses of particle radiation as seen in normal tissues after particle radiotherapy or during manned space flights. In the future, in vivo models focusing on long-term consequences of particle irradiation on the bone marrow niche and MSCs are needed.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Quinasa de Punto de Control 2/genética , Histonas/genética , Células Madre Mesenquimatosas/efectos de la radiación , Células Madre/efectos de la radiación , Medicina Aeroespacial , Apoptosis/genética , Apoptosis/efectos de la radiación , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Células de la Médula Ósea/efectos de la radiación , Carbono/efectos adversos , Ciclo Celular/genética , Ciclo Celular/efectos de la radiación , Linaje de la Célula/genética , Linaje de la Célula/efectos de la radiación , Citometría de Flujo , Regulación de la Expresión Génica/efectos de la radiación , Helio/efectos adversos , Humanos , Células Madre Mesenquimatosas/metabolismo , Oxígeno/efectos adversos , Protones/efectos adversos , Vuelo Espacial , Células Madre/metabolismo
15.
Rev. ANACEM (Impresa) ; 16(1): 26-33, 2022. ilus, tab
Artículo en Español | LILACS | ID: biblio-1524207

RESUMEN

Antecedentes: Las células madres intestinales generan las distintas estirpes celulares a dicho nivel. Estas se regulan por interacciones entre el epitelio y las células del nicho celular anexo. Estas se pueden ver dañadas en tratamientos con radiación, generando el síndrome gastrointestinal inducido por radiación. Se ha visto que células madre mesenquimales (MSC) y macrófagos de médula ósea (BMM) tienen propiedades de regeneración tisular. Objetivos: Evaluar la expresión génica de IL-4, Wnt6, VEGF y bFGF, a partir de cultivos celulares primarios independientes de MSC derivadas de tejido adiposo y BMM de ratones C57BL/6, por medio de PCR en tiempo real (qRT-PCR). Diseño experimental: A partir de un análisis in silico, se confeccionaron primers para evaluar la expresión génica de las moléculas propuestas, en los cultivos primarios por medio de qRT-PCR y electroforesis. Resultados y proyecciones: IL-4 y Wnt6 no son expresadas en las muestras de BMM y MSC. VEGF y bFGF son expresadas por diferentes células, dando expresión diferenciada. A futuro, se deben evaluar las mismas estirpes celulares en un ambiente inflamatorio y su efecto en la expresión génica, en especial VEGF y bFGF. Limitaciones: El número de moléculas en estudio es limitado y la expresión se evalúo solo a nivel genético.


Background: Intestinal stem cell generates diferents cellular types in their niche. They're regulated by interactions between epithelium and niche's cells, and can be damaged by medical radiation treatments causing radiation-induced gastrointestinal syndrome. It has seen that mesenchymal stem cells (MSC) d and bone marrow-derived macrophages (BMM) have propierties of tissular regeneration. Objectives: Determinated genetic expression of IL-4, Wnt6, VEGF and bFGF, in primary cellular cultures of MSC derivated of adipose tissue and BMM of C57BL/6 mice, through real time PCR (qRT-PCR). Methods: By an in silico analysis, we created primers to evaluate the proposed molecules in the primary cellular cultives, with qRT-PCR and electrophoresis. Results and projections: IL-4 and Wnt6 were not expressed in the MSC and BMM samples. VEGF and bFGF were expressed by different cells, giving differential expression. In the future, the same samples should be analyzed in an inflammatory environment, especially VEGF and bFGF. Limitations: The number of molecules are limited and the expression of them is only in a genetic level.


Asunto(s)
Animales , Ratones , Traumatismos por Radiación , Factores Biológicos/genética , Interleucina-4/genética , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas Wnt/genética , Células Madre Mesenquimatosas/efectos de la radiación , Células Madre/efectos de la radiación
16.
Ann Biomed Eng ; 49(12): 3401-3411, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34704163

RESUMEN

Exogenous electrical fields have been explored in regenerative medicine to increase cellular expression of pro-regenerative growth factors. Adipose-derived stem cells (ASCs) are attractive for regenerative applications, specifically for neural repair. Little is known about the relationship between low-level electrical stimulation (ES) and ASC regenerative potentiation. In this work, patterns of ASC expression and secretion of growth factors (i.e., secretome) were explored across a range of ES parameters. ASCs were stimulated with low-level stimulation (20 mV/mm) at varied pulse frequencies, durations, and with alternating versus direct current. Frequency and duration had the most significant effects on growth factor expression. While a range of stimulation frequencies (1, 20, 1000 Hz) applied intermittently (1 h × 3 days) induced upregulation of general wound healing factors, neural-specific factors were only increased at 1 Hz. Moreover, the most optimal expression of neural growth factors was achieved when ASCs were exposed to 1 Hz pulses continuously for 24 h. In evaluation of secretome, apparent inconsistencies were observed across biological replications. Nonetheless, ASC secretome (from 1 Hz, 24 h ES) caused significant increase in neurite extension compared to non-stimulated control. Overall, ASCs are sensitive to ES parameters at low field strengths, notably pulse frequency and stimulation duration.


Asunto(s)
Adipocitos/citología , Estimulación Eléctrica , Células Madre/efectos de la radiación , Adipocitos/metabolismo , Células Cultivadas , Estimulación Eléctrica/métodos , Humanos , Factores de Crecimiento Nervioso/metabolismo , Neuritas/metabolismo , Secretoma/metabolismo , Células Madre/metabolismo
17.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575840

RESUMEN

Radiotherapy (RT) is one of the cornerstones in the current treatment paradigm for glioblastoma (GBM). However, little has changed in the management of GBM since the establishment of the current protocol in 2005, and the prognosis remains grim. Radioresistance is one of the hallmarks for treatment failure, and different therapeutic strategies are aimed at overcoming it. Among these strategies, nanomedicine has advantages over conventional tumor therapeutics, including improvements in drug delivery and enhanced antitumor properties. Radiosensitizing strategies using nanoparticles (NP) are actively under study and hold promise to improve the treatment response. We aim to describe the basis of nanomedicine for GBM treatment, current evidence in radiosensitization efforts using nanoparticles, and novel strategies, such as preoperative radiation, that could be synergized with nanoradiosensitizers.


Asunto(s)
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Nanomedicina , Nanopartículas , Nanotecnología , Animales , Neoplasias Encefálicas/patología , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos , Glioblastoma/patología , Humanos , Modelos Animales , Nanomedicina/métodos , Nanopartículas/química , Nanotecnología/métodos , Fármacos Sensibilizantes a Radiaciones/química , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Células Madre/efectos de la radiación
18.
Biochem Biophys Res Commun ; 575: 28-35, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34454177

RESUMEN

Small extracellular vesicles (sEV) facilitate signaling molecule transfer among cells. We examined the therapeutic efficacy of human dental pulp stem cell-derived sEV (hDPSC-sEV) against cellular senescence in an irradiated-submandibular gland mouse model. Seven-week-old mice were exposed to 25 Gy radiation and randomly assigned to control, phosphate-buffered saline (PBS), or hDPSC-sEV groups. At 18 days post-irradiation, saliva production was measured; histological and reverse transcription-quantitative PCR analyses of the submandibular glands were performed. The salivary flow rate did not differ significantly between the PBS and hDPSC-sEV groups. AQP5-expressing acinar cell numbers and AQP5 expression levels in the submandibular glands were higher in the hDPSC-sEV group than in the other groups. Furthermore, compared with non-irradiated mice, mice in the 25 Gy + PBS group showed a high senescence-associated-ß-galactosidase-positive cell number and upregulated senescence-related gene (p16INK4a, p19Arf, p21) and senescence-associated secretory phenotypic factor (MMP3, IL-6, PAI-1, NF-κB, and TGF-ß) expression, all of which were downregulated in the hDPSC-sEV group. Superoxide dismutase levels were lower in the PBS group than in the hDPSC-sEV group. In summary, hDPSC-sEV reduced inflammatory cytokine and senescence-related gene expression and reversed oxidative stress in submandibular cells, thereby preventing irradiation-induced cellular senescence. Based on these results, we hope to contribute to the development of innovative treatment methods for salivary gland dysfunction that develops after radiotherapy for head and neck cancer.


Asunto(s)
Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Inflamación/terapia , Células Madre/citología , Glándula Submandibular/efectos de la radiación , Animales , Senescencia Celular/efectos de la radiación , Pulpa Dental/metabolismo , Pulpa Dental/efectos de la radiación , Modelos Animales de Enfermedad , Vesículas Extracelulares/efectos de la radiación , Femenino , Rayos gamma , Humanos , Inflamación/etiología , Inflamación/metabolismo , Inflamación/patología , Ratones , Ratones Endogámicos ICR , Estrés Oxidativo/fisiología , Transducción de Señal , Células Madre/metabolismo , Células Madre/efectos de la radiación , Glándula Submandibular/efectos de los fármacos , Glándula Submandibular/patología
19.
Int J Mol Sci ; 22(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299021

RESUMEN

In this article, we provide an extensive review of the recent literature of the signaling pathways modulated by Pulsed Electromagnetic Fields (PEMFs) and PEMFs clinical application. A review of the literature was performed on two medical electronic databases (PubMed and Embase) from 3 to 5 March 2021. Three authors performed the evaluation of the studies and the data extraction. All studies for this review were selected following these inclusion criteria: studies written in English, studies available in full text and studies published in peer-reviewed journal. Molecular biology, identifying cell membrane receptors and pathways involved in bone healing, and studying PEMFs target of action are giving a solid basis for clinical applications of PEMFs. However, further biology studies and clinical trials with clear and standardized parameters (intensity, frequency, dose, duration, type of coil) are required to clarify the precise dose-response relationship and to understand the real applications in clinical practice of PEMFs.


Asunto(s)
Fracturas Óseas/radioterapia , Magnetoterapia/métodos , Osteogénesis/efectos de la radiación , Transducción de Señal/efectos de la radiación , Células Madre/efectos de la radiación , Bases de Datos Factuales , Campos Electromagnéticos , Humanos , Osteogénesis/genética , Transducción de Señal/genética , Células Madre/metabolismo
20.
J Dermatol Sci ; 103(3): 130-134, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34238637

RESUMEN

Human skin is a highly efficient self-renewing barrier that is critical to withstanding environmental insults. Undifferentiated keratinocyte stem cells reside in the basal layer of the epidermis and in hair follicles that continuously give rise to progenies ensuring epidermal turnover and renewal. Ultraviolet (UV) radiation is a proven cause of skin keratinocyte cancers, which preferentially occur at sun-exposed areas of the skin. Fortunately, melanocytes produce melanin that is packaged in specific organelles (termed melanosomes) that are then delivered to nearby keratinocytes, endowing the recipient cells with photoprotection. It has long been thought that melanosome transfer takes place stochastically from melanocytes to keratinocytes via an as-yet-unrecognized manner. However, recent studies have indicated that melanosomes are distributed regionally in the basal layer of the skin, affording localized intensive photoprotection for progenitor keratinocytes and stem cells that reside in the microenvironment of the basal epidermis. In this review, we summarize current knowledge about molecular and cellular mechanisms that are responsible for the selective transfer and exclusive degradation of melanosomes in the epidermis, emphasizing implications for skin carcinogenesis.


Asunto(s)
Epidermis/efectos de la radiación , Melanosomas/metabolismo , Células Madre/citología , Rayos Ultravioleta/efectos adversos , Carcinogénesis/efectos de la radiación , Células Cultivadas , Humanos , Queratinocitos/citología , Queratinocitos/metabolismo , Queratinocitos/efectos de la radiación , Envejecimiento de la Piel/efectos de la radiación , Células Madre/metabolismo , Células Madre/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...