Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 419
Filtrar
1.
Apoptosis ; 29(5-6): 898-919, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38411862

RESUMEN

The cytosolic sulfotransferases (SULTs) are phase II conjugating enzymes, which are widely expressed in the liver and mainly mediate the sulfation of numerous xenobiotics and endogenous compounds. However, the role of various SULTs genes has not been reported in hepatocellular carcinoma (HCC). This study aims to analyze the expression and potential functional roles of SULTs genes in HCC and to identify the role of SULT2A1 in HCC stemness as well as the possible mechanism. We found that all of the 12 SULTs genes were differentially expressed in HCC. Moreover, clinicopathological features and survival rates were also investigated. Multivariate regression analysis showed that SULT2A1 and SULT1C2 could be used as independent prognostic factors in HCC. SULT1C4, SULT1E1, and SULT2A1 were significantly associated with immune infiltration. SULT2A1 deficiency in HCC promoted chemotherapy resistance and stemness maintenance. Mechanistically, silencing of SULT2A1 activated the AKT signaling pathway, on the one hand, promoted the expression of downstream stemness gene c-Myc, on the other hand, facilitated the NRF2 expression to reduce the accumulation of ROS, and jointly increased HCC stemness. Moreover, knockdown NR1I3 was involved in the transcriptional regulation of SULT2A1 in stemness maintenance. In addition, SULT2A1 knockdown HCC cells promoted the proliferation and activation of hepatic stellate cells (HSCs), thereby exerting a potential stroma remodeling effect. Our study revealed the expression and role of SULTs genes in HCC and identified the contribution of SULT2A1 to the initiation and progression of HCC.


Asunto(s)
Carcinoma Hepatocelular , Regulación Neoplásica de la Expresión Génica , Neoplasias Hepáticas , Sulfotransferasas , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Sulfotransferasas/genética , Técnicas de Silenciamiento del Gen , Humanos , Animales , Ratones , Ratones Endogámicos BALB C , Mutación , Metilación de ADN , Resistencia a Antineoplásicos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Pronóstico , Línea Celular Tumoral
2.
Endocr Relat Cancer ; 30(10)2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37578265

RESUMEN

Gastrointestinal stromal tumors (GISTs) are mesenchymal neoplasms, believed to originate from the interstitial cells of Cajal (ICC), often caused by overexpression of tyrosine kinase receptors (TKR) KIT or PDGFRA. Here, we present evidence that the embryonic stem cell factor FOXD3, first identified as 'Genesis' and involved in both gastrointestinal and neural crest cell development, is implicated in GIST pathogenesis; its involvement is investigated both in vitro and in zebrafish and a mouse model of FOXD3 deficiency. Samples from a total of 58 patients with wild-type GISTs were used for molecular analyses, including Sanger sequencing, comparative genomic hybridization, and methylation analysis. Immunohistochemistry and western blot evaluation were used to assess FOXD3 expression. Additionally, we conducted in vitro functional studies in tissue samples and in transfected cells to confirm the pathogenicity of the identified genetic variants. Germline partially inactivating FOXD3 sequence variants (p.R54H and p.Ala88_Gly91del) were found in patients with isolated GISTs. Chromosome 1p loss was the most frequent chromosomal abnormality identified in tumors. In vitro experiments demonstrate the impairment of FOXD3 in the presence of those variants. Animal studies showed disruption of the GI neural network and changes in the number and distribution in the ICC. FOXD3 suppresses KIT expression in human cells; its inactivation led to an increase in ICC in zebrafish, as well as mice, providing evidence for a functional link between FOXD3 defects and KIT overexpression leading to GIST formation.


Asunto(s)
Neoplasias Gastrointestinales , Tumores del Estroma Gastrointestinal , Humanos , Animales , Ratones , Tumores del Estroma Gastrointestinal/genética , Pez Cebra/genética , Pez Cebra/metabolismo , Factor de Células Madre/genética , Hibridación Genómica Comparativa , Proteínas Proto-Oncogénicas c-kit/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Factores de Transcripción/genética , Células Madre Embrionarias/química , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Mutación , Neoplasias Gastrointestinales/genética , Factores de Transcripción Forkhead/genética
3.
Childs Nerv Syst ; 39(2): 359-368, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36595083

RESUMEN

INTRODUCTION: Intracranial germ cell tumor (iGCT) is a rare disorder and often occurs during childhood and adolescence. iGCTs are frequently localized in pineal region and hypothalamic-neurohypophyseal axis (HNA). In spite of well-established clinical and pathological entity, histogenesis of iGCTs remains unsettled. Current theories of histogenesis of iGCTs include germ cell theory (from primordial germ cells (PGCs) of aberrant migration) and stem cell theory (transformed embryonic stem (ES) cells). In order to comprehend the histogenesis, we revisit the origin, migration, and fate of the human PGCs, and their transformation processes to iGCT. DISCUSSION: In "germ cell theory," transformation of ectopic PGCs to iGCT is complex and involves multiple transcription factors. Germinoma is derived from ectopic PGCs and is considered a prototype of all GCTs. Non-germinomatous germ cell tumors (NGGCTs) develop from more differentiated counterparts of embryonic and extra-embryonic tissues. However, there is a distinct genomic/epigenomic landscape between germinoma and NGGCT. ES cells transformed from ectopic PGCs through molecular dysregulation or de-differentiation may become the source of iGCT. "Stem cell theory" is transformation of endogenous ES cells or primitive neural stem cell to iGCTs. It supports histological diversity of NGGCTs because of ES cell's pluripotency. However, neural stem cells are abundantly present along the subependymal zone; therefore, it does not explain why iGCTs almost exclusively occur in pineal and HNA locations. Also, the vast difference of methylation status between germinoma and NGGCT makes it difficult to theorize all iGCTs derive from the common cellular linage. CONCLUSION: Transformation of PGCs to ES cells is the most logical mechanism for histogenesis of iGCT. However, its detail remains an enigma and needs further investigations.


Asunto(s)
Neoplasias Encefálicas , Germinoma , Neoplasias de Células Germinales y Embrionarias , Adolescente , Humanos , Neoplasias Encefálicas/patología , Germinoma/patología , Células Madre Embrionarias/patología , Células Madre Embrionarias/fisiología
4.
Math Biosci Eng ; 19(12): 13949-13966, 2022 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-36654075

RESUMEN

Due to the exquisite ability of cancer stemness to facilitate tumor initiation, metastasis, and cancer therapy resistance, targeting cancer stemness is expected to have clinical implications for cancer treatment. Genes are fundamental for forming and maintaining stemness. Considering shared genetic programs and pathways between embryonic stem cells and cancer stem cells, we conducted a study analyzing transcriptomic data of embryonic stem cells for mining potential cancer stemness genes. Firstly, we integrated co-expression and regression models and predicted 820 stemness genes. Results of gene enrichment analysis confirmed the good prediction performance for enriched signatures in cancer stem cells. Secondly, we provided an application case using the predicted stemness genes to construct a breast cancer stemness network. Mining on the network identified CD44, SOX2, TWIST1, and DLG4 as potential regulators of breast cancer stemness. Thirdly, using the signature of 31,028 chemical perturbations and their correlation with stemness marker genes, we predicted 67 stemness inhibitors with reasonable accuracy of 78%. Two drugs, namely Rigosertib and Proscillaridin A, were first identified as potential stemness inhibitors for melanoma and colon cancer, respectively. Overall, mining embryonic stem cell data provides a valuable way to identify cancer stemness regulators.


Asunto(s)
Neoplasias de la Mama , Transcriptoma , Humanos , Femenino , Neoplasias de la Mama/genética , Perfilación de la Expresión Génica , Células Madre Embrionarias/patología , Genes Reguladores , Células Madre Neoplásicas/metabolismo
5.
Sci Rep ; 11(1): 20075, 2021 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-34625606

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that leads to dementia and behavioral changes. Extracellular deposition of amyloid plaques (Aß) and intracellular deposition of neurofibrillary tangles in neurons are the major pathogenicities of AD. However, drugs targeting these therapeutic targets are not effective. Therefore, novel targets for the treatment of AD urgently need to be identified. Expression of the mesoderm-specific transcript (Mest) is regulated by genomic imprinting, where only the paternal allele is active for transcription. We identified hypermethylation on the Mest promoter, which led to a reduction in Mest mRNA levels and activation of Wnt signaling in brain tissues of AD patients. Mest knockout (KO) using the CRIPSR/Cas9 system in mouse embryonic stem cells and P19 embryonic carcinoma cells leads to neuronal differentiation arrest. Depletion of Mest in primary hippocampal neurons via lentivirus expressing shMest or inducible KO system causes neurodegeneration. Notably, depletion of Mest in primary cortical neurons of rats leads to tau phosphorylation at the S199 and T231 sites. Overall, our data suggest that hypermethylation of the Mest promoter may cause or facilitate the progression of AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Metilación de ADN , Células Madre Embrionarias/patología , Neuronas/patología , Regiones Promotoras Genéticas , Proteínas/genética , Vía de Señalización Wnt , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Células Madre de Carcinoma Embrionario/metabolismo , Células Madre de Carcinoma Embrionario/patología , Células Madre Embrionarias/metabolismo , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Neuronas/metabolismo , Fosforilación , Proteínas/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
6.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445125

RESUMEN

Huntington's disease (HD) is an autosomal-dominant brain disorder caused by mutant huntingtin (mHtt). Although the detailed mechanisms remain unclear, the mutational expansion of polyglutamine in mHtt is proposed to induce protein aggregates and neuronal toxicity. Previous studies have shown that the decreased insulin sensitivity is closely related to mHtt-associated impairments in HD patients. However, how mHtt interferes with insulin signaling in neurons is still unknown. In the present study, we used a HD cell model to demonstrate that the miR-302 cluster, an embryonic stem cell-specific polycistronic miRNA, is significantly downregulated in mHtt-Q74-overexpressing neuronal cells. On the contrary, restoration of miR-302 cluster was shown to attenuate mHtt-induced cytotoxicity by improving insulin sensitivity, leading to a reduction of mHtt aggregates through the enhancement of autophagy. In addition, miR-302 also promoted mitophagy and stimulated Sirt1/AMPK-PGC1α pathway thereby preserving mitochondrial function. Taken together, these results highlight the potential role of miR-302 cluster in neuronal cells, and provide a novel mechanism for mHtt-impaired insulin signaling in the pathogenesis of HD.


Asunto(s)
Autofagia/genética , Proteína Huntingtina/genética , Enfermedad de Huntington/genética , Resistencia a la Insulina/genética , Insulina/genética , MicroARNs/genética , Transducción de Señal/genética , Células Cultivadas , Regulación hacia Abajo/genética , Células Madre Embrionarias/patología , Humanos , Mitocondrias/genética , Mitofagia/genética , Neuronas/patología
7.
Cancer Res ; 81(13): 3706-3716, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33941615

RESUMEN

Fanconi anemia is an inherited genome instability syndrome characterized by interstrand cross-link hypersensitivity, congenital defects, bone marrow failure, and cancer predisposition. Although DNA repair mediated by Fanconi anemia genes has been extensively studied, how inactivation of these genes leads to specific cellular phenotypic consequences associated with Fanconi anemia is not well understood. Here we report that Fanconi anemia stem cells in the C. elegans germline and in murine embryos display marked nonhomologous end joining (NHEJ)-dependent radiation resistance, leading to survival of progeny cells carrying genetic lesions. In contrast, DNA cross-linking does not induce generational genomic instability in Fanconi anemia stem cells, as widely accepted, but rather drives NHEJ-dependent apoptosis in both species. These findings suggest that Fanconi anemia is a stem cell disease reflecting inappropriate NHEJ, which is mutagenic and carcinogenic as a result of DNA misrepair, while marrow failure represents hematopoietic stem cell apoptosis. SIGNIFICANCE: This study finds that Fanconi anemia stem cells preferentially activate error-prone NHEJ-dependent DNA repair to survive irradiation, thereby conferring generational genomic instability that is instrumental in carcinogenesis.


Asunto(s)
Radioisótopos de Cesio/efectos adversos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Células Madre Embrionarias/patología , Proteínas del Grupo de Complementación de la Anemia de Fanconi/metabolismo , Anemia de Fanconi/patología , Inestabilidad Genómica , Animales , Apoptosis , Caenorhabditis elegans , Reparación del ADN , Células Madre Embrionarias/efectos de la radiación , Anemia de Fanconi/genética , Anemia de Fanconi/radioterapia , Proteínas del Grupo de Complementación de la Anemia de Fanconi/genética , Ratones
8.
Signal Transduct Target Ther ; 6(1): 129, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33785736

RESUMEN

Maintenance of genetic stability via proper DNA repair in stem and progenitor cells is essential for the tissue repair and regeneration, while preventing cell transformation after damage. Loss of PUMA dramatically increases the survival of mice after exposure to a lethal dose of ionizing radiation (IR), while without promoting tumorigenesis in the long-term survivors. This finding suggests that PUMA (p53 upregulated modulator of apoptosis) may have a function other than regulates apoptosis. Here, we identify a novel role of PUMA in regulation of DNA repair in embryonic or induced pluripotent stem cells (PSCs) and immortalized hematopoietic progenitor cells (HPCs) after IR. We found that PUMA-deficient PSCs and HPCs exhibited a significant higher double-strand break (DSB) DNA repair activity via Rad51-mediated homologous recombination (HR). This is because PUMA can be associated with early mitotic inhibitor 1 (EMI1) and Rad51 in the cytoplasm to facilitate EMI1-mediated cytoplasmic Rad51 ubiquitination and degradation, thereby inhibiting Rad51 nuclear translocation and HR DNA repair. Our data demonstrate that PUMA acts as a repressor for DSB DNA repair and thus offers a new rationale for therapeutic targeting of PUMA in regenerative cells in the context of DNA damage.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Células Madre Embrionarias/metabolismo , Células Madre Hematopoyéticas/metabolismo , Proteínas/genética , Recombinasa Rad51/genética , Proteínas Supresoras de Tumor/genética , Animales , Carcinogénesis/efectos de la radiación , Línea Celular Tumoral , Citoplasma/genética , Citoplasma/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Daño del ADN/genética , Daño del ADN/efectos de la radiación , Reparación del ADN/genética , Reparación del ADN/efectos de la radiación , Células Madre Embrionarias/patología , Células Madre Embrionarias/efectos de la radiación , Regulación del Desarrollo de la Expresión Génica/efectos de la radiación , Células Madre Hematopoyéticas/patología , Células Madre Hematopoyéticas/efectos de la radiación , Ratones , Radiación Ionizante , Reparación del ADN por Recombinación/efectos de la radiación , Regeneración/genética , Ubiquitinación/genética
9.
Genes (Basel) ; 12(2)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672414

RESUMEN

The adult mammalian kidney is a poorly regenerating organ that lacks the stem cells that could replenish functional homeostasis similarly to, e.g., skin or the hematopoietic system. Unlike a mature kidney, the embryonic kidney hosts at least three types of lineage-specific stem cells that give rise to (a) a ureter and collecting duct system, (b) nephrons, and (c) mesangial cells together with connective tissue of the stroma. Extensive interest has been raised towards these embryonic progenitor cells, which are normally lost before birth in humans but remain part of the undifferentiated nephrogenic rests in the pediatric renal cancer Wilms tumor. Here, we discuss the current understanding of kidney-specific embryonic progenitor regulation in the innate environment of the developing kidney and the types of disruptions in their balanced regulation that lead to the formation of Wilms tumor.


Asunto(s)
Desarrollo Embrionario/genética , Riñón/crecimiento & desarrollo , Organogénesis/genética , Tumor de Wilms/genética , Animales , Diferenciación Celular/genética , Niño , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Riñón/patología , Tumor de Wilms/patología
10.
J Assist Reprod Genet ; 38(5): 1215-1229, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33611676

RESUMEN

PURPOSE: The expansion of CAG (glutamine; Q) trinucleotide repeats (TNRs) predominantly occurs through male lineage in Huntington's disease (HD). As a result, offspring will have larger CAG repeats compared to their fathers, which causes an earlier onset of the disease called genetic anticipation. This study aims to develop a novel in vitro model to replicate CAG repeat instability in early spermatogenesis and demonstrate the biological process of genetic anticipation by using the HD stem cell model for the first time. METHODS: HD rhesus monkey embryonic stem cells (rESCs) were cultured in vitro for an extended period. Male rESCs were used to derive spermatogenic cells in vitro with a 10-day differentiation. The assessment of CAG repeat instability was performed by GeneScan and curve fit analysis. RESULTS: Spermatogenic cells derived from rESCs exhibit progressive expansion of CAG repeats with high daily expansion rates compared to the extended culture of rESCs. The expansion of CAG repeats is cell type-specific and size-dependent. CONCLUSIONS: Here, we report a novel stem cell model that replicates genome instability and CAG repeat expansion in in vitro derived HD monkey spermatogenic cells. The in vitro spermatogenic cell model opens a new opportunity for studying TNR instability and the underlying mechanism of genetic anticipation, not only in HD but also in other TNR diseases.


Asunto(s)
Células Madre Germinales Adultas/patología , Animales Modificados Genéticamente/genética , Células Madre Embrionarias/patología , Enfermedad de Huntington/genética , Animales , Diferenciación Celular/genética , Modelos Animales de Enfermedad , Inestabilidad Genómica/genética , Humanos , Enfermedad de Huntington/patología , Macaca mulatta/genética , Masculino , Inestabilidad de Microsatélites , Repeticiones de Trinucleótidos/genética
11.
Exp Cell Res ; 400(2): 112490, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33484747

RESUMEN

Tumor neovascularization may occur via both angiogenic and vasculogenic events. In order to investigate the vessel formation during tumor growth, we developed a novel experimental model that takes into account the differentiative and tumorigenic properties of Embryonic Stem cells (ESCs). Leukemia Inhibitory Factor-deprived murine ESCs were grafted on the top of the chick embryo chorionallantoic membrane (CAM) in ovo. Cell grafts progressively grew, forming a vascularized mass within 10 days. At this stage, the grafts are formed by cells with differentiative features representative of all three germ layers, thus originating teratomas, a germinal cell tumor. In addition, ESC supports neovascular events by recruiting host capillaries from surrounding tissue that infiltrates the tumor mass. Moreover, immunofluorescence studies demonstrate that perfused active blood vessels within the tumor are of both avian and murine origin because of the simultaneous occurrence of angiogenic and vasculogenic events. In conclusion, the chick embryo ESC/CAM-derived teratoma model may represent a useful approach to investigate both vasculogenic and angiogenic events during tumor growth and for the study of natural and synthetic modulators of the two processes.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/patología , Neovascularización Patológica , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/fisiología , Teratoma/irrigación sanguínea , Teratoma/patología , Animales , Embrión de Pollo , Membrana Corioalantoides , Células Madre Embrionarias/metabolismo , Ratones , Ratones Noqueados , Teratoma/metabolismo
12.
Sci Rep ; 10(1): 20675, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33244084

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a devastating incurable neurological disorder characterized by motor neuron (MN) death and muscle dysfunction leading to mean survival time after diagnosis of only 2-5 years. A potential ALS treatment is to delay the loss of MNs and disease progression by the delivery of trophic factors. Previously, we demonstrated that implanted mesoporous silica nanoparticles (MSPs) loaded with trophic factor peptide mimetics support survival and induce differentiation of co-implanted embryonic stem cell (ESC)-derived MNs. Here, we investigate whether MSP loaded with peptide mimetics of ciliary neurotrophic factor (Cintrofin), glial-derived neurotrophic factor (Gliafin), and vascular endothelial growth factor (Vefin1) injected into the cervical spinal cord of mutant SOD1 mice affect disease progression and extend survival. We also transplanted boundary cap neural crest stem cells (bNCSCs) which have been shown previously to have a positive effect on MN survival in vitro and in vivo. We show that mimetic-loaded MSPs and bNCSCs significantly delay disease progression and increase survival of mutant SOD1 mice, and also that empty particles significantly improve the condition of ALS mice. Our results suggest that intraspinal delivery of MSPs is a potential therapeutic approach for the treatment of ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/patología , Supervivencia Celular/efectos de los fármacos , Dióxido de Silicio/farmacología , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Células Cultivadas , Médula Cervical/efectos de los fármacos , Médula Cervical/metabolismo , Médula Cervical/patología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Femenino , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Ratones , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Cresta Neural/efectos de los fármacos , Cresta Neural/metabolismo , Cresta Neural/patología , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
13.
Oncogene ; 39(43): 6633-6646, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32943730

RESUMEN

Transcription factors (TFs) coordinate the on-and-off states of gene expression typically in a combinatorial fashion. Studies from embryonic stem cells and other cell types have revealed that a clique of self-regulated core TFs control cell identity and cell state. These core TFs form interconnected feed-forward transcriptional loops to establish and reinforce the cell-type-specific gene-expression program; the ensemble of core TFs and their regulatory loops constitutes core transcriptional regulatory circuitry (CRC). Here, we summarize recent progress in computational reconstitution and biologic exploration of CRCs across various human malignancies, and consolidate the strategy and methodology for CRC discovery. We also discuss the genetic basis and therapeutic vulnerability of CRC, and highlight new frontiers and future efforts for the study of CRC in cancer. Knowledge of CRC in cancer is fundamental to understanding cancer-specific transcriptional addiction, and should provide important insight to both pathobiology and therapeutics.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Neoplasias/genética , Factores de Transcripción/metabolismo , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Factores de Transcripción/antagonistas & inhibidores
14.
Nucleic Acids Res ; 48(17): 9505-9520, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32870263

RESUMEN

Rapid growth of single-cell transcriptomic data provides unprecedented opportunities for close scrutinizing of dynamical cellular processes. Through investigating epithelial-to-mesenchymal transition (EMT), we develop an integrative tool that combines unsupervised learning of single-cell transcriptomic data and multiscale mathematical modeling to analyze transitions during cell fate decision. Our approach allows identification of individual cells making transition between all cell states, and inference of genes that drive transitions. Multiscale extractions of single-cell scale outputs naturally reveal intermediate cell states (ICS) and ICS-regulated transition trajectories, producing emergent population-scale models to be explored for design principles. Testing on the newly designed single-cell gene regulatory network model and applying to twelve published single-cell EMT datasets in cancer and embryogenesis, we uncover the roles of ICS on adaptation, noise attenuation, and transition efficiency in EMT, and reveal their trade-off relations. Overall, our unsupervised learning method is applicable to general single-cell transcriptomic datasets, and our integrative approach at single-cell resolution may be adopted for other cell fate transition systems beyond EMT.


Asunto(s)
Células Madre Embrionarias/patología , Transición Epitelial-Mesenquimal/fisiología , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Modelos Biológicos , Animales , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Humanos , Ratones , Análisis de la Célula Individual , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
15.
Stem Cells Transl Med ; 9(10): 1121-1128, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32725800

RESUMEN

Heart diseases (HDs) are the leading cause of morbidity and mortality worldwide. Despite remarkable clinical progress made, current therapies cannot restore the lost myocardium, and the correlation of genotype to phenotype of many HDs is poorly modeled. In the past two decades, with the rapid developments of human pluripotent stem cell (hPSC) biology and technology that allow the efficient preparation of cardiomyocytes from individual patients, tremendous efforts have been made for using hPSC-derived cardiomyocytes in preclinical and clinical cardiac therapy as well as in dissection of HD mechanisms to develop new methods for disease prediction and treatment. However, their applications have been hampered by several obstacles. Here, we discuss recent advances, remaining challenges, and the potential solutions to advance this field.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Células Madre Embrionarias/patología , Cardiopatías/fisiopatología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/metabolismo , Diferenciación Celular , Humanos , Regeneración
16.
Stem Cell Rev Rep ; 16(5): 893-908, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32592162

RESUMEN

Reproductive health of men has declined in recent past with reduced sperm count and increased incidence of infertility and testicular cancers mainly attributed to endocrine disruption in early life. Present study aims to evaluate whether testicular stem cells including very small embryonic-like stem cells (VSELs) and spermatogonial stem cells (SSCs) get affected by endocrine disruption and result in pathologies in adult life. Effect of treatment on mice pups with estradiol (20 µg on days 5-7) and diethylstilbestrol (DES, 2 µg on days 1-5) was studied on VSELs, SSCs and spermatogonial cells in adult life. Treatment affected spermatogenesis, tubules in Stage VIII & sperm count were reduced along with reduction of meiotic (4n) cells and markers (Prohibitin, Scp3, Protamine). Enumeration of VSELs by flow cytometry (2-6 µm, 7AAD-, LIN-CD45-SCA-1+) and qRT-PCR using specific transcripts for VSELs (Oct-4a, Sox-2, Nanog, Stella, Fragilis), SSCs (tOct-4, Gfra-1, Gpr-125) and early germ cells (Mvh, Dazl) showed several-fold increase but transition from c-Kit negative to c-Kit positive spermatogonial cells was blocked on D100 after treatment. Transcripts specific for apoptosis (Bcl2, Bax) remained unaffected but tumor suppressor (p53) and epigenetic regulator (NP95) transcripts showed marked disruption. 9 of 10 mice exposed to DES showed tumor-like changes. To conclude, endocrine disruption resulted in a tilt towards excessive self-renewal of VSELs (leading to testicular cancer after DES treatment) and blocked differentiation (reduced numbers of c-Kit positive cells, meiosis, sperm count and fertility). Understanding the underlying basis for infertility and cancer initiation from endogenous stem cells through murine modelling will hopefully improve human therapies in future.


Asunto(s)
Envejecimiento/patología , Carcinogénesis/patología , Células Madre Embrionarias/patología , Disruptores Endocrinos/toxicidad , Fertilidad/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal/patología , Espermatogénesis/efectos de los fármacos , Testículo/patología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Carcinogénesis/genética , Dietilestilbestrol/toxicidad , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Femenino , Fertilidad/genética , Hormona Folículo Estimulante/genética , Hormona Folículo Estimulante/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Hormona Luteinizante/genética , Hormona Luteinizante/metabolismo , Masculino , Ratones , Modelos Biológicos , Tamaño de los Órganos/efectos de los fármacos , Ploidias , Embarazo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Proto-Oncogénicas c-kit/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factor de Transcripción SOX9/metabolismo , Espermatogénesis/genética
17.
J Alzheimers Dis ; 76(4): 1281-1296, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32597802

RESUMEN

Mesenchymal stem cells (MSCs) promote functional recoveries in pathological experimental models of the central nervous system and are currently being tested in clinical trials for neurological disorders. However, no studies have examined the various roles of embryonic stem cell derived (ES)-MSCs in eliciting therapeutic effects for Alzheimer's disease (AD). In the present study, we investigated the neuroprotective effect of ES-MSCs in cellular and animal models of AD, as well as the safety of the intra-arterial administration of ES-MSCs in an AD animal model. ES-MSCs displayed higher cell viability than that of bone marrow (BM)-MSCs in amyloid-ß (Aß)-induced cellular models. Moreover, the efficacy of autophagy induction in ES-MSCs was comparable to that of BM-MSCs; however, intracellular Aß levels were more significantly reduced in ES-MSCs than in BM-MSCs. In a rat model of AD, ES-MSCs significantly inhibited Aß-induced cell death in the hippocampus and promoted autophagolysosomal clearance of Aß, which was concomitantly followed by decreased levels of Aß in the hippocampus. Furthermore, ES-MSC treatment in Aß-treated rats featured a higher memory performance than that of rats injected solely with Aß. Finally, intra-arterial administration of an appropriate cell density of ES-MSCs was safe and free from in situ occlusion or cerebral ischemia. These data support the therapeutic potential of ES-MSCs and clinical applications of the intra-arterial route of ES-MSC administration in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/terapia , Células Madre Embrionarias/citología , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Péptidos beta-Amiloides/metabolismo , Animales , Modelos Animales de Enfermedad , Células Madre Embrionarias/patología , Estudios de Factibilidad , Femenino , Hipocampo/patología , Humanos , Masculino , Trasplante de Células Madre Mesenquimatosas/métodos , Fármacos Neuroprotectores , Ratas Sprague-Dawley
18.
Mol Cancer Res ; 18(1): 118-129, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31896605

RESUMEN

Cancer cells exhibit properties of cells in a less differentiated state than the adjacent normal cells in the tissue. We explored whether cancer cells can be converted to a differentiated normal-like state by restoring the gene regulatory network (GRN) of normal cells. Here, we report that colorectal cancer cells exhibit a range of developmental states from embryonic and intestinal stem-like cells to differentiated normal-like cells. To identify the transcription factors (TF) that commit stem-like colorectal cancer cells into a differentiated normal-like state, we reconstructed GRNs of normal colon mucosa and identified core TFs (CDX2, ELF3, HNF4G, PPARG, and VDR) that govern the cellular state. We further found that SET Domain Bifurcated 1 (SETDB1), a histone H3 lysine 9-specific methyltransferase, hinders the function of the identified TFs. SETDB1 depletion effectively converts stem-like colorectal cancer cells into postmitotic cells and restores normal morphology in patient-derived colorectal cancer organoids. RNA-sequencing analyses revealed that SETDB1 depletion recapitulates global gene expression profiles of normal differentiated cells by restoring the transcriptional activity of core TFs on their target genes. IMPLICATIONS: Our study provides insights into the molecular regulatory mechanism underlying the developmental hierarchy of colorectal cancer and suggests that induction of a postmitotic state may be a therapeutic alternative to destruction of cancer cells.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , N-Metiltransferasa de Histona-Lisina/genética , Células CACO-2 , Diferenciación Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/metabolismo , Células Madre Embrionarias/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Células HCT116 , N-Metiltransferasa de Histona-Lisina/metabolismo , Humanos , Células Madre Neoplásicas/patología , Transfección , Células Tumorales Cultivadas
19.
Int J Biochem Cell Biol ; 118: 105664, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31816404

RESUMEN

SALL4 and OCT4, along with other pluripotency-associated transcription factors, play critical roles in maintaining embryonic stem cell pluripotency and self-renewal. Ku80 is a component of the protein complex called DNA-dependent protein kinase, which mainly involved in DNA double-strand break repair. In this study, we show evidence that Ku80 physically interacted with SALL4. The interaction competitively disrupts the SALL4-OCT4 complex and result in OCT4 lysosomal degradation. Finally, Ku80 inhibits self-renewal and metastasis of hepatocellular carcinoma cells through breaking the SALL4-OCT4 interactions and down-regulating the expression of OCT4. Our study reveal novel function of Ku80 in stemness maintaining of cancer stem cells via its interaction with SALL4 and highlight the double-sidedness of Ku80 as an anti-cancer target.


Asunto(s)
Carcinoma Hepatocelular/genética , Autoantígeno Ku/genética , Neoplasias Hepáticas/genética , Factor 3 de Transcripción de Unión a Octámeros/genética , Factores de Transcripción/genética , Carcinoma Hepatocelular/patología , Autorrenovación de las Células/genética , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/patología , Regulación Neoplásica de la Expresión Génica/genética , Células Hep G2 , Humanos , Neoplasias Hepáticas/patología , Lisosomas/genética , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/patología , Proteolisis
20.
FEBS J ; 287(1): 108-121, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31361392

RESUMEN

Metabolic reprogramming, hallmarked by enhanced glycolysis and reduced mitochondrial activity, is a key event in the early phase of somatic cell reprogramming. Although extensive work has been conducted to identify the mechanisms of mitochondrial remodeling in reprogramming, many questions remain. In this regard, different laboratories have proposed a role in this process for either canonical (ATG5-dependent) autophagy-mediated mitochondrial degradation (mitophagy), noncanonical (ULK1-dependent, ATG5-independent) mitophagy, mitochondrial fission or reduced biogenesis due to mTORC1 suppression. Clarifying these discrepancies is important for providing a comprehensive picture of metabolic changes in reprogramming. Yet, the comparison among these studies is difficult because they use different reprogramming conditions and mitophagy detection/quantification methods. Here, we have systematically explored mitochondrial remodeling in reprogramming using different culture media and reprogramming factor cocktails, together with appropriate quantification methods and thorough statistical analysis. Our experiments show lack of evidence for mitophagy in mitochondrial remodeling in reprogramming, and further confirm that the suppression of the mTORC1-PGC1 pathway drives this process. Our work helps to clarify the complex interplay between metabolic changes and nutrient sensing pathways in reprogramming, which may also shed light on other contexts such as development, aging and cancer.


Asunto(s)
Reprogramación Celular , Células Madre Embrionarias/patología , Fibroblastos/patología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Mitocondrias/patología , Mitofagia , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Células Cultivadas , Células Madre Embrionarias/metabolismo , Fibroblastos/metabolismo , Glucólisis , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Ratones , Ratones Endogámicos ICR , Mitocondrias/metabolismo , Dinámicas Mitocondriales , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA