Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.153
Filtrar
1.
Brief Bioinform ; 25(3)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38739758

RESUMEN

The complicated process of neuronal development is initiated early in life, with the genetic mechanisms governing this process yet to be fully elucidated. Single-cell RNA sequencing (scRNA-seq) is a potent instrument for pinpointing biomarkers that exhibit differential expression across various cell types and developmental stages. By employing scRNA-seq on human embryonic stem cells, we aim to identify differentially expressed genes (DEGs) crucial for early-stage neuronal development. Our focus extends beyond simply identifying DEGs. We strive to investigate the functional roles of these genes through enrichment analysis and construct gene regulatory networks to understand their interactions. Ultimately, this comprehensive approach aspires to illuminate the molecular mechanisms and transcriptional dynamics governing early human brain development. By uncovering potential links between these DEGs and intelligence, mental disorders, and neurodevelopmental disorders, we hope to shed light on human neurological health and disease. In this study, we have used scRNA-seq to identify DEGs involved in early-stage neuronal development in hESCs. The scRNA-seq data, collected on days 26 (D26) and 54 (D54), of the in vitro differentiation of hESCs to neurons were analyzed. Our analysis identified 539 DEGs between D26 and D54. Functional enrichment of those DEG biomarkers indicated that the up-regulated DEGs participated in neurogenesis, while the down-regulated DEGs were linked to synapse regulation. The Reactome pathway analysis revealed that down-regulated DEGs were involved in the interactions between proteins located in synapse pathways. We also discovered interactions between DEGs and miRNA, transcriptional factors (TFs) and DEGs, and between TF and miRNA. Our study identified 20 significant transcription factors, shedding light on early brain development genetics. The identified DEGs and gene regulatory networks are valuable resources for future research into human brain development and neurodevelopmental disorders.


Asunto(s)
Biomarcadores , Encéfalo , Redes Reguladoras de Genes , Células Madre Embrionarias Humanas , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Encéfalo/metabolismo , Encéfalo/embriología , Encéfalo/citología , Biomarcadores/metabolismo , Neuronas/metabolismo , Neuronas/citología , Diferenciación Celular/genética , RNA-Seq , Neurogénesis/genética , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica , Análisis de Secuencia de ARN/métodos , Análisis de Expresión Génica de una Sola Célula
2.
Stem Cell Reports ; 19(5): 729-743, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38701777

RESUMEN

Embryonic stem cells (ESCs) are defined as stem cells with self-renewing and differentiation capabilities. These unique properties are tightly regulated and controlled by complex genetic and molecular mechanisms, whose understanding is essential for both basic and translational research. A large number of studies have mostly focused on understanding the molecular mechanisms governing pluripotency and differentiation of ESCs, while the regulation of proliferation has received comparably less attention. Here, we investigate the role of ZZZ3 (zinc finger ZZ-type containing 3) in human ESCs homeostasis. We found that knockdown of ZZZ3 negatively impacts ribosome biogenesis, translation, and mTOR signaling, leading to a significant reduction in cell proliferation. This process occurs without affecting pluripotency, suggesting that ZZZ3-depleted ESCs enter a "dormant-like" state and that proliferation and pluripotency can be uncoupled also in human ESCs.


Asunto(s)
Proliferación Celular , Homeostasis , Células Madre Embrionarias Humanas , Ribosomas , Transducción de Señal , Serina-Treonina Quinasas TOR , Humanos , Serina-Treonina Quinasas TOR/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Ribosomas/metabolismo , Diferenciación Celular/genética , Biosíntesis de Proteínas
3.
J Extracell Vesicles ; 13(5): e12445, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711334

RESUMEN

Small extracellular vesicles (sEV) derived from various cell sources have been demonstrated to enhance cardiac function in preclinical models of myocardial infarction (MI). The aim of this study was to compare different sources of sEV for cardiac repair and determine the most effective one, which nowadays remains limited. We comprehensively assessed the efficacy of sEV obtained from human primary bone marrow mesenchymal stromal cells (BM-MSC), human immortalized MSC (hTERT-MSC), human embryonic stem cells (ESC), ESC-derived cardiac progenitor cells (CPC), human ESC-derived cardiomyocytes (CM), and human primary ventricular cardiac fibroblasts (VCF), in in vitro models of cardiac repair. ESC-derived sEV (ESC-sEV) exhibited the best pro-angiogenic and anti-fibrotic effects in vitro. Then, we evaluated the functionality of the sEV with the most promising performances in vitro, in a murine model of MI-reperfusion injury (IRI) and analysed their RNA and protein compositions. In vivo, ESC-sEV provided the most favourable outcome after MI by reducing adverse cardiac remodelling through down-regulating fibrosis and increasing angiogenesis. Furthermore, transcriptomic, and proteomic characterizations of sEV derived from hTERT-MSC, ESC, and CPC revealed factors in ESC-sEV that potentially drove the observed functions. In conclusion, ESC-sEV holds great promise as a cell-free treatment for promoting cardiac repair following MI.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , Infarto del Miocardio , Miocitos Cardíacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Humanos , Animales , Ratones , Infarto del Miocardio/terapia , Infarto del Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Fibroblastos/metabolismo , Masculino , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Modelos Animales de Enfermedad , Neovascularización Fisiológica , Células Cultivadas
4.
Stem Cell Res Ther ; 15(1): 133, 2024 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-38704588

RESUMEN

BACKGROUND: Human hematopoietic organoids have a wide application value for modeling human bone marrow diseases, such as acute hematopoietic radiation injury. However, the manufacturing of human hematopoietic organoids is an unaddressed challenge because of the complexity of hematopoietic tissues. METHODS: To manufacture hematopoietic organoids, we obtained CD34+ hematopoietic stem and progenitor cells (HSPCs) from human embryonic stem cells (hESCs) using stepwise induction and immunomagnetic bead-sorting. We then mixed these CD34+ HSPCs with niche-related cells in Gelatin-methacryloyl (GelMA) to form a three-dimensional (3D) hematopoietic organoid. Additionally, we investigated the effects of radiation damage and response to granulocyte colony-stimulating factor (G-CSF) in hematopoietic organoids. RESULTS: The GelMA hydrogel maintained the undifferentiated state of hESCs-derived HSPCs by reducing intracellular reactive oxygen species (ROS) levels. The established hematopoietic organoids in GelMA with niche-related cells were composed of HSPCs and multilineage blood cells and demonstrated the adherence of hematopoietic cells to niche cells. Notably, these hematopoietic organoids exhibited radiation-induced hematopoietic cell injury effect, including increased intracellular ROS levels, γ-H2AX positive cell percentages, and hematopoietic cell apoptosis percentages. Moreover, G-CSF supplementation in the culture medium significantly improved the survival of HSPCs and enhanced myeloid cell regeneration in these hematopoietic organoids after radiation. CONCLUSIONS: These findings substantiate the successful manufacture of a preliminary 3D hematopoietic organoid from hESCs-derived HSPCs, which was utilized for modeling hematopoietic radiation injury and assessing the radiation-mitigating effects of G-CSF in vitro. Our study provides opportunities to further aid in the standard and scalable production of hematopoietic organoids for disease modeling and drug testing.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos , Células Madre Hematopoyéticas , Organoides , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/citología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Regeneración/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Antígenos CD34/metabolismo
5.
PLoS One ; 19(5): e0298274, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38753762

RESUMEN

The membrane peroxisomal proteins PEX11, play a crucial role in peroxisome proliferation by regulating elongation, membrane constriction, and fission of pre-existing peroxisomes. In this study, we evaluated the function of PEX11B gene in neural differentiation of human embryonic stem cell (hESC) by inducing shRNAi-mediated knockdown of PEX11B expression. Our results demonstrate that loss of PEX11B expression led to a significant decrease in the expression of peroxisomal-related genes including ACOX1, PMP70, PEX1, and PEX7, as well as neural tube-like structures and neuronal markers. Inhibition of SIRT1 using pharmacological agents counteracted the effects of PEX11B knockdown, resulting in a relative increase in PEX11B expression and an increase in differentiated neural tube-like structures. However, the neuroprotective effects of SIRT1 were eliminated by PPAR inhibition, indicating that PPARÉ£ may mediate the interaction between PEX11B and SIRT1. Our findings suggest that both SIRT1 and PPARÉ£ have neuroprotective effects, and also this study provides the first indication for a potential interaction between PEX11B, SIRT1, and PPARÉ£ during hESC neural differentiation.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias Humanas , Proteínas de la Membrana , PPAR gamma , Sirtuina 1 , Humanos , Sirtuina 1/metabolismo , Sirtuina 1/genética , PPAR gamma/metabolismo , PPAR gamma/genética , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Neuronas/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Línea Celular , Peroxisomas/metabolismo
6.
Genome Biol ; 25(1): 122, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741214

RESUMEN

BACKGROUND: Pluripotent states of embryonic stem cells (ESCs) with distinct transcriptional profiles affect ESC differentiative capacity and therapeutic potential. Although single-cell RNA sequencing has revealed additional subpopulations and specific features of naive and primed human pluripotent stem cells (hPSCs), the underlying mechanisms that regulate their specific transcription and that control their pluripotent states remain elusive. RESULTS: By single-cell analysis of high-resolution, three-dimensional (3D) genomic structure, we herein demonstrate that remodeling of genomic structure is highly associated with the pluripotent states of human ESCs (hESCs). The naive pluripotent state is featured with specialized 3D genomic structures and clear chromatin compartmentalization that is distinct from the primed state. The naive pluripotent state is achieved by remodeling the active euchromatin compartment and reducing chromatin interactions at the nuclear center. This unique genomic organization is linked to enhanced chromatin accessibility on enhancers and elevated expression levels of naive pluripotent genes localized to this region. In contradistinction, the primed state exhibits intermingled genomic organization. Moreover, active euchromatin and primed pluripotent genes are distributed at the nuclear periphery, while repressive heterochromatin is densely concentrated at the nuclear center, reducing chromatin accessibility and the transcription of naive genes. CONCLUSIONS: Our data provide insights into the chromatin structure of ESCs in their naive and primed states, and we identify specific patterns of modifications in transcription and chromatin structure that might explain the genes that are differentially expressed between naive and primed hESCs. Thus, the inversion or relocation of heterochromatin to euchromatin via compartmentalization is related to the regulation of chromatin accessibility, thereby defining pluripotent states and cellular identity.


Asunto(s)
Células Madre Pluripotentes , Análisis de la Célula Individual , Humanos , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Genoma Humano , Eucromatina/genética , Eucromatina/metabolismo , Cromatina/metabolismo , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Heterocromatina/metabolismo , Células Madre Embrionarias/metabolismo , Ensamble y Desensamble de Cromatina
7.
Exp Eye Res ; 242: 109883, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561106

RESUMEN

Corneal transplantation represents the primary therapeutic approach for managing corneal endothelial dysfunction, but corneal donors remain scarce. Anterior chamber cell injection emerges as a highly promising alternative strategy for corneal transplantation, with pluripotent stem cells (PSC) demonstrating considerable potential as an optimal cell source. Nevertheless, only a few studies have explored the differentiation of functional corneal endothelial-like cells originating from PSC. In this investigation, a chemical-defined protocol was successfully developed for the differentiation of functional corneal endothelial-like cells derived from human embryonic stem cells (hESC). The application of nicotinamide (NAM) exhibited a remarkable capability in suppressing the fibrotic phenotype, leading to the generation of more homogeneous and well-distinctive differentiated cells. Furthermore, NAM effectively suppressed the expression of genes implicated in endothelial cell migration and extracellular matrix synthesis. Notably, NAM also facilitated the upregulation of surface marker genes specific to functional corneal endothelial cells (CEC), including CD26 (-) CD44 (-∼+-) CD105 (-) CD133 (-) CD166 (+) CD200 (-). Moreover, in vitro functional assays were performed, revealing intact barrier properties and Na+/K+-ATP pump functionality in the differentiated cells treated with NAM. Consequently, our findings provide robust evidence supporting the capacity of NAM to enhance the differentiation of functional CEC originating from hESC, offering potential seed cells for therapeutic interventions of corneal endothelial dysfunction.


Asunto(s)
Diferenciación Celular , Endotelio Corneal , Células Madre Embrionarias Humanas , Niacinamida , Humanos , Diferenciación Celular/efectos de los fármacos , Niacinamida/farmacología , Endotelio Corneal/metabolismo , Endotelio Corneal/citología , Endotelio Corneal/efectos de los fármacos , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células Cultivadas , Complejo Vitamínico B/farmacología , Citometría de Flujo , Movimiento Celular/efectos de los fármacos , Antígenos CD/metabolismo , Antígenos CD/genética
8.
Nat Cell Biol ; 26(5): 719-730, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38594587

RESUMEN

During embryonic development, blood cells emerge from specialized endothelial cells, named haemogenic endothelial cells (HECs). As HECs are rare and only transiently found in early developing embryos, it remains difficult to distinguish them from endothelial cells. Here we performed transcriptomic analysis of 28- to 32-day human embryos and observed that the expression of Fc receptor CD32 (FCGR2B) is highly enriched in the endothelial cell population that contains HECs. Functional analyses using human embryonic and human pluripotent stem cell-derived endothelial cells revealed that robust multilineage haematopoietic potential is harboured within CD32+ endothelial cells and showed that 90% of CD32+ endothelial cells are bona fide HECs. Remarkably, these analyses indicated that HECs progress through different states, culminating in FCGR2B expression, at which point cells are irreversibly committed to a haematopoietic fate. These findings provide a precise method for isolating HECs from human embryos and human pluripotent stem cell cultures, thus allowing the efficient generation of haematopoietic cells in vitro.


Asunto(s)
Desarrollo Embrionario , Receptores de IgG , Humanos , Desarrollo Embrionario/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Hemangioblastos/metabolismo , Hemangioblastos/citología , Diferenciación Celular , Células Endoteliales/metabolismo , Células Endoteliales/citología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Linaje de la Célula , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Hematopoyesis , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Transcriptoma , Perfilación de la Expresión Génica , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/citología
9.
Nucleic Acids Res ; 52(9): 4935-4949, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38421638

RESUMEN

TGF-ß signaling family plays an essential role to regulate fate decisions in pluripotency and lineage specification. How the action of TGF-ß family signaling is intrinsically executed remains not fully elucidated. Here, we show that HBO1, a MYST histone acetyltransferase (HAT) is an essential cell intrinsic determinant for TGF-ß signaling in human embryonic stem cells (hESCs). HBO1-/- hESCs fail to response to TGF-ß signaling to maintain pluripotency and spontaneously differentiate into neuroectoderm. Moreover, HBO1 deficient hESCs show complete defect in mesendoderm specification in BMP4-triggered gastruloids or teratomas. Molecularly, HBO1 interacts with SMAD4 and co-binds the open chromatin labeled by H3K14ac and H3K4me3 in undifferentiated hESCs. Upon differentiation, HBO1/SMAD4 co-bind and maintain the mesoderm genes in BMP4-triggered mesoderm cells while lose chromatin occupancy in neural cells induced by dual-SMAD inhibition. Our data reveal an essential role of HBO1, a chromatin factor to determine the action of SMAD in both human pluripotency and mesendoderm specification.


Asunto(s)
Diferenciación Celular , Mesodermo , Transducción de Señal , Proteína Smad4 , Humanos , Mesodermo/metabolismo , Mesodermo/citología , Diferenciación Celular/genética , Proteína Smad4/metabolismo , Proteína Smad4/genética , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Células Madre Embrionarias Humanas/metabolismo , Células Madre Embrionarias Humanas/citología , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Cromatina/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Endodermo/citología , Endodermo/metabolismo , Línea Celular , Histonas/metabolismo
10.
Cell Biol Int ; 48(6): 835-847, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38419492

RESUMEN

Pluripotent stem cells (PSCs) hold enormous potential for treating multiple diseases owing to their ability to self-renew and differentiate into any cell type. Albeit possessing such promising potential, controlling their differentiation into a desired cell type continues to be a challenge. Recent studies suggest that PSCs respond to different substrate stiffness and, therefore, can differentiate towards some lineages via Hippo pathway. Human PSCs can also differentiate and self-organize into functional cells, such as organoids. Traditionally, human PSCs are differentiated on stiff plastic or glass plates towards definitive endoderm and then into functional pancreatic progenitor cells in the presence of soluble growth factors. Thus, whether stiffness plays any role in differentiation towards definitive endoderm from human pluripotent stem cells (hPSCs) remains unclear. Our study found that the directed differentiation of human embryonic stem cells towards endodermal lineage on the varying stiffness did not differ from the differentiation on stiff plastic dishes. We also observed no statistical difference between the expression of yes-associated protein (YAP) and phosphorylated YAP. Furthermore, we demonstrate that lysophosphatidic acid, a YAP activator, enhanced definitive endoderm formation, whereas verteporfin, a YAP inhibitor, did not have the significant effect on the differentiation. In summary, our results suggest that human embryonic stem cells may not differentiate in response to changes in stiffness, and that such cues may not have as significant impact on the level of YAP. Our findings indicate that more research is needed to understand the direct relationship between biophysical forces and hPSCs differentiation.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Endodermo , Células Madre Embrionarias Humanas , Humanos , Diferenciación Celular/fisiología , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Endodermo/citología , Endodermo/metabolismo , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción/metabolismo
11.
Stem Cells Dev ; 33(9-10): 201-213, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38390839

RESUMEN

Because derivation of retinal organoids (ROs) and transplantation are frequently split between geographically distant locations, we developed a special shipping device and protocol capable of the organoids' delivery to any location. Human embryonic stem cell (hESC)-derived ROs were differentiated from the hESC line H1 (WA01), shipped overnight to another location, and then transplanted into the subretinal space of blind immunodeficient retinal degeneration (RD) rats. Development of transplants was monitored by spectral-domain optical coherence tomography. Visual function was accessed by optokinetic tests and superior colliculus (SC) electrophysiology. Cryostat sections through transplants were stained with hematoxylin and eosin; or processed for immunohistochemistry to label human donor cells, retinal cell types, and synaptic markers. After transplantation, ROs integrated into the host RD retina, formed functional photoreceptors, and improved vision in rats with advanced RD. The survival and vision improvement are comparable with our previous results of hESC-ROs without a long-distance delivery. Furthermore, for the first time in the stem cell transplantation field, we demonstrated that the response heatmap on the SC showed a similar shape to the location of the transplant in the host retina, which suggested the point-to-point projection of the transplant from the retina to SC. In conclusion, our results showed that using our special device and protocol, the hESC-derived ROs can be shipped over long distance and are capable of survival and visual improvement after transplantation into the RD rats. Our data provide a proof-of-concept for stem cell replacement as a therapy for RD patients.


Asunto(s)
Células Madre Embrionarias Humanas , Organoides , Retina , Degeneración Retiniana , Animales , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/trasplante , Degeneración Retiniana/terapia , Degeneración Retiniana/patología , Humanos , Organoides/citología , Organoides/trasplante , Ratas , Retina/citología , Retina/patología , Diferenciación Celular , Trasplante de Células Madre/métodos , Supervivencia Celular , Tomografía de Coherencia Óptica
12.
Nature ; 626(8000): 881-890, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38297124

RESUMEN

The pace of human brain development is highly protracted compared with most other species1-7. The maturation of cortical neurons is particularly slow, taking months to years to develop adult functions3-5. Remarkably, such protracted timing is retained in cortical neurons derived from human pluripotent stem cells (hPSCs) during in vitro differentiation or upon transplantation into the mouse brain4,8,9. Those findings suggest the presence of a cell-intrinsic clock setting the pace of neuronal maturation, although the molecular nature of this clock remains unknown. Here we identify an epigenetic developmental programme that sets the timing of human neuronal maturation. First, we developed a hPSC-based approach to synchronize the birth of cortical neurons in vitro which enabled us to define an atlas of morphological, functional and molecular maturation. We observed a slow unfolding of maturation programmes, limited by the retention of specific epigenetic factors. Loss of function of several of those factors in cortical neurons enables precocious maturation. Transient inhibition of EZH2, EHMT1 and EHMT2 or DOT1L, at progenitor stage primes newly born neurons to rapidly acquire mature properties upon differentiation. Thus our findings reveal that the rate at which human neurons mature is set well before neurogenesis through the establishment of an epigenetic barrier in progenitor cells. Mechanistically, this barrier holds transcriptional maturation programmes in a poised state that is gradually released to ensure the prolonged timeline of human cortical neuron maturation.


Asunto(s)
Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Embrionarias Humanas , Células-Madre Neurales , Neurogénesis , Neuronas , Adulto , Animales , Humanos , Ratones , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/antagonistas & inhibidores , N-Metiltransferasa de Histona-Lisina/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/citología , Neuronas/metabolismo , Factores de Tiempo , Transcripción Genética
14.
Stem Cell Rev Rep ; 19(8): 2980-2990, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37702917

RESUMEN

Embryonic development is a continuum in vivo. Transcriptional analysis can separate established human embryonic stem cells (hESC) into at least four distinct developmental pluripotent stages, two naïve and two primed, early and late relative to the intact epiblast. In this study we primarily show that exposure of frozen human blastocysts to an inhibitor of checkpoint kinase 1 (CHK1) upon thaw greatly enhances establishment of karyotypically normal late naïve hESC cultures. These late naïve cells are plastic and can be toggled back to early naïve and forward to early primed pluripotent stages. The early primed cells are transcriptionally equivalent to the post inner cell mass intermediate (PICMI) stage seen one day following transfer of human blastocysts into in vitro culture and are stable at an earlier stage than conventional primed hESC.


Asunto(s)
Técnicas de Cultivo de Célula , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Células Madre Embrionarias Humanas , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/efectos de los fármacos , Humanos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Blastocisto/citología , Células Madre Pluripotentes/citología
15.
Nature ; 622(7983): 562-573, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37673118

RESUMEN

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Células Madre Embrionarias Humanas , Humanos , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Fertilización , Gastrulación , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Trofoblastos/citología , Saco Vitelino/citología , Saco Vitelino/embriología , Células Gigantes/citología
16.
Nature ; 620(7975): 863-872, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37587336

RESUMEN

Cells undergo a major epigenome reconfiguration when reprogrammed to human induced pluripotent stem cells (hiPS cells). However, the epigenomes of hiPS cells and human embryonic stem (hES) cells differ significantly, which affects hiPS cell function1-8. These differences include epigenetic memory and aberrations that emerge during reprogramming, for which the mechanisms remain unknown. Here we characterized the persistence and emergence of these epigenetic differences by performing genome-wide DNA methylation profiling throughout primed and naive reprogramming of human somatic cells to hiPS cells. We found that reprogramming-induced epigenetic aberrations emerge midway through primed reprogramming, whereas DNA demethylation begins early in naive reprogramming. Using this knowledge, we developed a transient-naive-treatment (TNT) reprogramming strategy that emulates the embryonic epigenetic reset. We show that the epigenetic memory in hiPS cells is concentrated in cell of origin-dependent repressive chromatin marked by H3K9me3, lamin-B1 and aberrant CpH methylation. TNT reprogramming reconfigures these domains to a hES cell-like state and does not disrupt genomic imprinting. Using an isogenic system, we demonstrate that TNT reprogramming can correct the transposable element overexpression and differential gene expression seen in conventional hiPS cells, and that TNT-reprogrammed hiPS and hES cells show similar differentiation efficiencies. Moreover, TNT reprogramming enhances the differentiation of hiPS cells derived from multiple cell types. Thus, TNT reprogramming corrects epigenetic memory and aberrations, producing hiPS cells that are molecularly and functionally more similar to hES cells than conventional hiPS cells. We foresee TNT reprogramming becoming a new standard for biomedical and therapeutic applications and providing a novel system for studying epigenetic memory.


Asunto(s)
Reprogramación Celular , Epigénesis Genética , Células Madre Pluripotentes Inducidas , Humanos , Cromatina/genética , Cromatina/metabolismo , Desmetilación del ADN , Metilación de ADN , Elementos Transponibles de ADN , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Lamina Tipo B
17.
Nature ; 622(7983): 584-593, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369347

RESUMEN

The human embryo undergoes morphogenetic transformations following implantation into the uterus, but our knowledge of this crucial stage is limited by the inability to observe the embryo in vivo. Models of the embryo derived from stem cells are important tools for interrogating developmental events and tissue-tissue crosstalk during these stages1. Here we establish a model of the human post-implantation embryo, a human embryoid, comprising embryonic and extraembryonic tissues. We combine two types of extraembryonic-like cell generated by overexpression of transcription factors with wild-type embryonic stem cells and promote their self-organization into structures that mimic several aspects of the post-implantation human embryo. These self-organized aggregates contain a pluripotent epiblast-like domain surrounded by extraembryonic-like tissues. Our functional studies demonstrate that the epiblast-like domain robustly differentiates into amnion, extraembryonic mesenchyme and primordial germ cell-like cells in response to bone morphogenetic protein cues. In addition, we identify an inhibitory role for SOX17 in the specification of anterior hypoblast-like cells2. Modulation of the subpopulations in the hypoblast-like compartment demonstrates that extraembryonic-like cells influence epiblast-like domain differentiation, highlighting functional tissue-tissue crosstalk. In conclusion, we present a modular, tractable, integrated3 model of the human embryo that will enable us to probe key questions of human post-implantation development, a critical window during which substantial numbers of pregnancies fail.


Asunto(s)
Implantación del Embrión , Embrión de Mamíferos , Desarrollo Embrionario , Modelos Biológicos , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Proteínas Morfogenéticas Óseas , Diferenciación Celular , Embrión de Mamíferos/citología , Embrión de Mamíferos/embriología , Cuerpos Embrioides/citología , Estratos Germinativos/citología , Estratos Germinativos/embriología , Células Madre Embrionarias Humanas/citología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Pluripotentes/citología
18.
Nature ; 622(7983): 574-583, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37369348

RESUMEN

Investigating human development is a substantial scientific challenge due to the technical and ethical limitations of working with embryonic samples. In the face of these difficulties, stem cells have provided an alternative to experimentally model inaccessible stages of human development in vitro1-13. Here we show that human pluripotent stem cells can be triggered to self-organize into three-dimensional structures that recapitulate some key spatiotemporal events of early human post-implantation embryonic development. Our system reproducibly captures spontaneous differentiation and co-development of embryonic epiblast-like and extra-embryonic hypoblast-like lineages, establishes key signalling hubs with secreted modulators and undergoes symmetry breaking-like events. Single-cell transcriptomics confirms differentiation into diverse cell states of the perigastrulating human embryo14,15 without establishing placental cell types, including signatures of post-implantation epiblast, amniotic ectoderm, primitive streak, mesoderm, early extra-embryonic endoderm, as well as initial yolk sac induction. Collectively, our system captures key features of human embryonic development spanning from Carnegie stage16 4-7, offering a reproducible, tractable and scalable experimental platform to understand the basic cellular and molecular mechanisms that underlie human development, including new opportunities to dissect congenital pathologies with high throughput.


Asunto(s)
Linaje de la Célula , Implantación del Embrión , Desarrollo Embrionario , Células Madre Pluripotentes , Femenino , Humanos , Embarazo , Diferenciación Celular , Estratos Germinativos/citología , Estratos Germinativos/enzimología , Células Madre Embrionarias Humanas/citología , Placenta/citología , Células Madre Pluripotentes/citología , Línea Primitiva/citología , Línea Primitiva/embriología , Saco Vitelino/citología , Saco Vitelino/embriología
19.
Curr Opin Genet Dev ; 81: 102066, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37356343

RESUMEN

The totipotent embryo initiates transcription during zygotic or embryonic genome activation (EGA, ZGA). ZGA occurs at the 8-cell stage in humans and its failure leads to developmental arrest. Understanding the molecular pathways underlying ZGA and totipotency is essential to comprehend human development. Recently, human 8-cell-like cells (8CLCs) have been discovered in vitro that resemble the 8-cell embryo. 8CLCs exist among naive pluripotent stem cells and can be induced genetically or chemically. Their ZGA-like transcriptome, transposable element activation, 8-cell embryo-specific protein expression, and developmental properties make them an exceptional model system to study early embryonic cell-state transitions and human totipotency programs in vitro.


Asunto(s)
Células Madre Pluripotentes , Humanos , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Cigoto , Genoma Humano
20.
Mol Cell Neurosci ; 120: 103727, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35367590

RESUMEN

POGZ is a pogo transposable element derived protein with multiple zinc finger domains. Many de novo loss-of-function (LoF) variants of the POGZ gene are associated with autism and other neurodevelopmental disorders. However, the role of POGZ in human cortical development remains poorly understood. Here we generated multiple POGZ LoF lines in H9 human embryonic stem cells (hESCs) using CRISPR/CAS9 genome editing. These lines were then differentiated into neural structures, similar to those found in early to mid-fetal human brain, a critical developmental stage for studying disease mechanisms of neurodevelopmental disorders. We found that the loss of POGZ reduced neural stem cell proliferation in excitatory cortex-patterned neural rosettes, structures analogous to the cortical ventricular zone in human fetal brain. As a result, fewer intermediate progenitor cells and early born neurons were generated. In addition, neuronal migration from the apical center to the basal surface of neural rosettes was perturbed due to the loss of POGZ. Furthermore, cortical-like excitatory neurons derived from multiple POGZ homozygous knockout lines exhibited a more simplified dendritic architecture compared to wild type lines. Our findings demonstrate how POGZ regulates early neurodevelopment in the context of human cells, and provide further understanding of the cellular pathogenesis of neurodevelopmental disorders associated with POGZ variants.


Asunto(s)
Células Madre Embrionarias Humanas , Células-Madre Neurales , Transposasas , Trastorno Autístico/genética , Diferenciación Celular , Células Madre Embrionarias Humanas/citología , Células Madre Embrionarias Humanas/metabolismo , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Transposasas/genética , Transposasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...