Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 675
Filtrar
1.
J Exp Med ; 219(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36048017

RESUMEN

Hematopoietic stem cells (HSCs) and multipotent progenitors (MPPs) generate all cells of the blood system. Despite their multipotency, MPPs display poorly understood lineage bias. Here, we examine whether lineage-specifying transcription factors, such as the B-lineage determinant EBF1, regulate lineage preference in early progenitors. We detect low-level EBF1 expression in myeloid-biased MPP3 and lymphoid-biased MPP4 cells, coinciding with expression of the myeloid determinant C/EBPα. Hematopoietic deletion of Ebf1 results in enhanced myelopoiesis and reduced HSC repopulation capacity. Ebf1-deficient MPP3 and MPP4 cells exhibit an augmented myeloid differentiation potential and a transcriptome with an enriched C/EBPα signature. Correspondingly, EBF1 binds the Cebpa enhancer, and the deficiency and overexpression of Ebf1 in MPP3 and MPP4 cells lead to an up- and downregulation of Cebpa expression, respectively. In addition, EBF1 primes the chromatin of B-lymphoid enhancers specifically in MPP3 cells. Thus, our study implicates EBF1 in regulating myeloid/lymphoid fate bias in MPPs by constraining C/EBPα-driven myelopoiesis and priming the B-lymphoid fate.


Asunto(s)
Células Madre Hematopoyéticas , Transactivadores/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ratones , Células Madre Multipotentes/fisiología , Mielopoyesis/genética , Transactivadores/genética , Factores de Transcripción/metabolismo
2.
PLoS Comput Biol ; 18(1): e1009779, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35030198

RESUMEN

Cellular differentiation during hematopoiesis is guided by gene regulatory networks (GRNs) comprising transcription factors (TFs) and the effectors of cytokine signaling. Based largely on analyses conducted at steady state, these GRNs are thought to be organized as a hierarchy of bistable switches, with antagonism between Gata1 and PU.1 driving red- and white-blood cell differentiation. Here, we utilize transient gene expression patterns to infer the genetic architecture-the type and strength of regulatory interconnections-and dynamics of a twelve-gene GRN including key TFs and cytokine receptors. We trained gene circuits, dynamical models that learn genetic architecture, on high temporal-resolution gene-expression data from the differentiation of an inducible cell line into erythrocytes and neutrophils. The model is able to predict the consequences of gene knockout, knockdown, and overexpression experiments and the inferred interconnections are largely consistent with prior empirical evidence. The inferred genetic architecture is densely interconnected rather than hierarchical, featuring extensive cross-antagonism between genes from alternative lineages and positive feedback from cytokine receptors. The analysis of the dynamics of gene regulation in the model reveals that PU.1 is one of the last genes to be upregulated in neutrophil conditions and that the upregulation of PU.1 and other neutrophil genes is driven by Cebpa and Gfi1 instead. This model inference is confirmed in an independent single-cell RNA-Seq dataset from mouse bone marrow in which Cebpa and Gfi1 expression precedes the neutrophil-specific upregulation of PU.1 during differentiation. These results demonstrate that full PU.1 upregulation during neutrophil development involves regulatory influences extrinsic to the Gata1-PU.1 bistable switch. Furthermore, although there is extensive cross-antagonism between erythroid and neutrophil genes, it does not have a hierarchical structure. More generally, we show that the combination of high-resolution time series data and data-driven dynamical modeling can uncover the dynamics and causality of developmental events that might otherwise be obscured.


Asunto(s)
Diferenciación Celular/genética , Redes Reguladoras de Genes/genética , Células Madre Hematopoyéticas/fisiología , Células Madre Multipotentes , Animales , Biología Computacional , Ciencia de los Datos , Células Madre Hematopoyéticas/citología , Ratones , Células Madre Multipotentes/citología , Células Madre Multipotentes/fisiología
3.
Development ; 148(21)2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739030

RESUMEN

Vertebrate skeletal muscle is composed of multinucleate myofibers that are surrounded by muscle connective tissue. Following injury, muscle is able to robustly regenerate because of tissue-resident muscle stem cells, called satellite cells. In addition, efficient and complete regeneration depends on other cells resident in muscle - including fibro-adipogenic progenitors (FAPs). Increasing evidence from single-cell analyses and genetic and transplantation experiments suggests that satellite cells and FAPs are heterogeneous cell populations. Here, we review our current understanding of the heterogeneity of satellite cells, their myogenic derivatives and FAPs in terms of gene expression, anatomical location, age and timing during the regenerative process - each of which have potentially important functional consequences.


Asunto(s)
Células Madre Multipotentes/fisiología , Músculo Esquelético/fisiología , Regeneración/genética , Células Satélite del Músculo Esquelético/fisiología , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Expresión Génica , Heterogeneidad Genética , Homeostasis , Células Madre Multipotentes/citología , Desarrollo de Músculos , Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/citología
4.
Cancer Sci ; 112(10): 3935-3944, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34251718

RESUMEN

Homeostasis of the hematopoietic system is achieved in a hierarchy, with hematopoietic stem cells at the pinnacle. Because only hematopoietic stem cells (HSCs) can self-renew, the size of the hematopoietic system is strictly controlled. In hematopoietic reconstitution experiments, 1 HSC can reconstitute the entire hematopoietic system, whereas 50 multipotent progenitors cannot. This indicates that only HSCs self-renew, whereas non-HSC hematopoietic progenitors are programmed to differentiate or senesce. Oncogenic mutations of the mixed lineage leukemia gene (MLL) overcome this "programmed differentiation" by conferring the self-renewing ability to non-HSC hematopoietic progenitors. In leukemia, mutated MLL proteins constitutively activate a broad range of previously transcribed CpG-rich promoters by an MLL-mediated transcriptional activation system. This system promotes self-renewal by replicating an expression profile similar to that of the mother cell in its daughter cells. In this transcriptional activation system, MLL binds to unmethylated CpG-rich promoters and recruits RNA polymerase II. MLL recruits p300/CBP through its transcriptional activation domain, which acetylates histone H3 at lysines 9, 18, and 27. The AF4 family/ENL family/P-TEFb complex (AEP) binds to acetylated H3K9/18/27 to activate transcription. Gene rearrangements of MLL with AEP- or CBP/p300-complex components generate constitutively active transcriptional machinery of this transcriptional activation system, which causes aberrant self-renewal of leukemia stem cells. Inhibitors of the components of this system effectively decrease their leukemogenic potential.


Asunto(s)
Autorrenovación de las Células/fisiología , Células Madre Hematopoyéticas/fisiología , N-Metiltransferasa de Histona-Lisina/genética , Leucemia/etiología , Proteína de la Leucemia Mieloide-Linfoide/genética , Activación Transcripcional/fisiología , Acetilación , Diferenciación Celular , Autorrenovación de las Células/genética , Senescencia Celular , Islas de CpG/genética , Proteínas de Unión al ADN/metabolismo , Proteína p300 Asociada a E1A/metabolismo , Reordenamiento Génico , Hematopoyesis/fisiología , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Humanos , Leucemia/prevención & control , Lisina/metabolismo , Células Madre Multipotentes/fisiología , Mutación , Proteína de la Leucemia Mieloide-Linfoide/metabolismo , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , ARN Polimerasa II/metabolismo , Factores de Elongación Transcripcional/metabolismo
5.
Nat Immunol ; 22(6): 723-734, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958784

RESUMEN

Continuous supply of immune cells throughout life relies on the delicate balance in the hematopoietic stem cell (HSC) pool between long-term maintenance and meeting the demands of both normal blood production and unexpected stress conditions. Here we identified distinct subsets of human long-term (LT)-HSCs that responded differently to regeneration-mediated stress: an immune checkpoint ligand CD112lo subset that exhibited a transient engraftment restraint (termed latency) before contributing to hematopoietic reconstitution and a primed CD112hi subset that responded rapidly. This functional heterogeneity and CD112 expression are regulated by INKA1 through direct interaction with PAK4 and SIRT1, inducing epigenetic changes and defining an alternative state of LT-HSC quiescence that serves to preserve self-renewal and regenerative capacity upon regeneration-mediated stress. Collectively, our data uncovered the molecular intricacies underlying HSC heterogeneity and self-renewal regulation and point to latency as an orchestrated physiological response that balances blood cell demands with preserving a stem cell reservoir.


Asunto(s)
Autorrenovación de las Células/inmunología , Células Madre Hematopoyéticas/fisiología , Reconstitución Inmune , Células Madre Multipotentes/fisiología , Estrés Fisiológico/inmunología , Adulto , Animales , Autorrenovación de las Células/genética , Células Cultivadas , Epigénesis Genética/inmunología , Femenino , Sangre Fetal/citología , Citometría de Flujo , Técnicas de Silenciamiento del Gen , Hematopoyesis , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Humanos , Separación Inmunomagnética , Recién Nacido , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Nectinas/metabolismo , Cultivo Primario de Células , RNA-Seq , Análisis de la Célula Individual , Sirtuina 1/metabolismo , Estrés Fisiológico/genética , Trasplante Heterólogo , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
6.
Neuromolecular Med ; 23(3): 339-343, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33893971

RESUMEN

Traditionally, the primary role of the meninges is thought to be structural, i.e., to act as a surrounding membrane that contains and cushions the brain with cerebrospinal fluid. During development, the meninges is formed by both mesenchymal and neural crest cells. There is now emerging evidence that subsets of undifferentiated stem cells might persist in the adult meninges. In this mini-review, we survey representative studies of brain-meningeal interactions and discuss the hypothesis that the meninges are not just protective membranes, but instead contain multiplex stem cell subsets that may contribute to central nervous system (CNS) homeostasis. Further investigations into meningeal multipotent cells may reveal a "hidden" target for promoting neurovascular remodeling and repair after CNS injury and disease.


Asunto(s)
Meninges/citología , Células Madre Multipotentes/fisiología , Adapaleno/análisis , Células Madre Adultas/fisiología , Animales , Isquemia Encefálica/fisiopatología , Sistema Nervioso Central/lesiones , Sistema Nervioso Central/fisiopatología , Enfermedades del Sistema Nervioso Central/terapia , Sistema Glinfático/citología , Homeostasis , Humanos , Masculino , Meninges/embriología , Cresta Neural/citología , Células-Madre Neurales/fisiología , Ratas , Ratas Sprague-Dawley , Regeneración/fisiología
7.
J Anat ; 239(2): 336-350, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33641201

RESUMEN

Muscle stem cells (MSCs) are a promising tool for cell-based therapy and tissue regeneration in veterinary medicine. Evaluation of MSCs from muscles of different origins improves our understanding of their regenerative potential. The present study compared the stemness, cell proliferation, migration potential, myogenic differentiation (MD), and multipotency of MSCs for four developmentally different muscles of ovine origin. MSCs were isolated from the hind limb (HL), diaphragm (DI), extraocular (EO), and masseter (MS) muscles. Cell proliferation, migration, and stemness were examined using sulforhodamine B, and colony formation assays. Evaluation of multipotency was examined using histological and morphometric analyses, alkaline phosphatase (ALP) activity, and the expression of myogenic, adipogenic, and osteogenic markers using RT-qPCR. Data were statistically analysed using analysis of variance. The results revealed that all experimental groups expressed stem cell markers paired box transcription factor Pax7, α7-integrin, CD90, and platelet-derived growth factor receptor alpha. DI and HL muscle cells displayed higher proliferation, migration, and colony formation capacities compared to the EO and MS muscle cells. HL and DI muscle cells showed increased MD, as indicated by myotube formation and relative expression of MyoD at day 7 and Myogenin at day 14. Although MS and EO muscle cells displayed impaired MD, these cells were more prone to adipogenic differentiation, as indicated by Oil Red O staining and upregulated fatty acid-binding protein 4 and peroxisome proliferator-activated receptor gamma expression. DI muscle cells demonstrated a higher osteogenic differentiation capability, as shown by the upregulation of osteopontin expression and an elevated ALP activity. Our data indicate that ovine HL and DI MSCs have a higher regenerative and multipotent potential than the EO and MS muscle cells. These results could be valuable for regional muscle biopsies and cell-based therapies.


Asunto(s)
Células Madre Multipotentes/fisiología , Músculos/citología , Animales , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Masculino , Ovinos
8.
Antioxid Redox Signal ; 35(3): 204-216, 2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33167666

RESUMEN

Significance: Tissue-resident stem cells are essential for normal organ homeostasis as well as for functional tissue regeneration after severe injury. Herein, mesenchymal stem cells, also designated as mesenchymal stromal cells (MSCs), contribute to the maintenance of organ integrity by their ability to replace dysfunctional cells or secrete cytokines locally and thus support the repair and healing processes of affected tissues. Recent Advances: Besides epithelial stem and progenitor cells, substantial evidence exists that tissue-resident multipotent stem cells of mesenchymal nature also exist in adult human lungs. These lung MSCs may function to regulate pulmonary tissue repair and/or regeneration, inflammation, fibrosis, and tumor formation. Critical Issues: Although therapeutically applied MSCs turned out to be a valuable therapeutic option for the prevention of lung diseases and/or the regeneration of diseased lung tissue, the true function of tissue-resident MSCs within the lung, and identification of their niche, which presumably dictates function, remain elusive. Future Directions: A detailed understanding of lung MSC localization (in the potential vascular stem cell niche) as well as of the signaling pathways controlling stem cell fate is prerequisite to unravel how (i) endogenous MSCs contribute to lung diseases, (ii) exogenous MSCs affect the proliferation of endogenous stem cells to repair damaged tissue, and (iii) a potential on-site manipulation of these cells directly within their endogenous niche could be used for therapeutic benefits. This review focuses on the central role of lung-resident MSCs, which are closely associated with the pulmonary vasculature, in a variety of chronic and acute lung diseases. Antioxid. Redox Signal. 35, 204-216.


Asunto(s)
Fenómenos Fisiológicos Celulares , Pulmón/citología , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Células Madre Multipotentes/citología , Células Madre Multipotentes/fisiología , Animales , Diferenciación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Especificidad de Órganos , Trasplante de Células Madre
9.
Phys Biol ; 18(1): 011002, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33181489

RESUMEN

Cell fate decision-making events involve the interplay of many molecular processes, ranging from signal transduction to genetic regulation, as well as a set of molecular and physiological feedback loops. Each aspect offers a rich field of investigation in its own right, but to understand the whole process, even in simple terms, we need to consider them together. Here we attempt to characterise this process by focussing on the roles of noise during cell fate decisions. We use a range of recent results to develop a view of the sequence of events by which a cell progresses from a pluripotent or multipotent to a differentiated state: chromatin organisation, transcription factor stoichiometry, and cellular signalling all change during this progression, and all shape cellular variability, which becomes maximal at the transition state.


Asunto(s)
Diferenciación Celular/fisiología , Transducción de Señal , Cromatina/fisiología , Células Madre Multipotentes/fisiología , Células Madre Pluripotentes/fisiología , Factores de Transcripción/metabolismo
10.
Int J Dev Biol ; 64(7-8-9): 433-443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33063837

RESUMEN

The neural crest (NC) is a transitory embryonic structure of vertebrates that gives rise to an astonishing variety of derivatives, encompassing both neural and mesenchymal cell types. Neural crest cells (NCCs) are an excellent model to study how environmental factors modulate features such as cell multipotentiality and differentiation. Tests with multifunctional substrates that allow NCCs to express their full potential, while promoting cell subcloning, are needed to advance knowledge about NCC self-renewal and to foster future biotechnological approaches. Here we show that a self-assembled peptide named PuraMatrixTM is an excellent substrate that allows the differentiation of NCCs based on the identification of seven different cell types. Depending on the PuraMatrixTM concentration employed, different frequencies and quantities of a given cell type were obtained. It is noteworthy that an enormous quantity and diversity of mesenchymal phenotypes, such as chondrocytes, could be observed. The quantity of adipocytes and osteocytes also increased with the use of mesenchymal differentiation factors (MDF), but PuraMatrixTM alone can support the appearance of these mesenchymal cell types. PuraMatrixTM will promote advances in studies related to multipotentiality, self-renewal and control of NCC differentiation, since it is an extremely simple and versatile material which can be employed for both in vivo and in vitro experiments.


Asunto(s)
Diferenciación Celular/fisiología , Autorrenovación de las Células/fisiología , Células Madre Mesenquimatosas/fisiología , Cresta Neural/fisiología , Péptidos/metabolismo , Adipocitos/citología , Adipocitos/fisiología , Animales , Células Cultivadas , Condrocitos/citología , Condrocitos/fisiología , Embrión no Mamífero/citología , Embrión no Mamífero/embriología , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/fisiología , Cresta Neural/citología , Osteocitos/citología , Osteocitos/fisiología , Codorniz/embriología , Codorniz/metabolismo , Vertebrados/embriología , Vertebrados/metabolismo
12.
Hum Cell ; 33(3): 490-501, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32180208

RESUMEN

Mesenchymal stem cells are a highly promising source of cells for regeneration therapy because of their multilineage differentiation potential. However, distinct markers for mesenchymal stem cells are not well-established. To identify new candidate marker genes for multipotent human dental pulp stem cells, we analyzed the characteristics and gene expression profiles of cell clones obtained from a single dental pulp specimen derived from an 11-year-old female patient. Fifty colony-forming single cell-derived clones were separately cultured until the cessation of growth. These clones varied in their proliferation abilities and surface marker (STRO-1 and CD146) expression patterns, as well as their odontogenic, adipogenic, and chondrogenic differentiation potentials. Four clones maintained their original differentiation potentials during long-term culture. Gene expression profile by DNA microarray analysis of five representative clones identified 1227 genes that were related to multipotency. Ninety of these 1227 genes overlapped with genes reportedly involved in 'stemness or differentiation'. Based on the predicted locations of expressed protein products and large changes in expression levels, 14 of the 90 genes were selected as candidate dental pulp stem cell markers, particularly in relation to their multipotency characteristics. This characterization of cell clones obtained from a single specimen of human dental pulp provided information regarding new candidate marker genes for multipotent dental pulp stem cells, which could facilitate efficient analysis or enrichment of multipotent stem cells.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Pulpa Dental/citología , Expresión Génica , Células Madre Multipotentes/fisiología , Células Cultivadas , Niño , Células Clonales , Femenino , Humanos
13.
Sci Rep ; 10(1): 1112, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980678

RESUMEN

The classical development hierarchy of pancreatic cell fate commitments describes that multipotent progenitors (MPs) first bifurcate into tip cells and trunk cells, and then these cells give rise to acinar cells and endocrine/ductal cells separately. However, lineage tracings reveal that pancreatic progenitors are highly heterogeneous in tip and trunk domains in embryonic pancreas. The progenitor fate commitments from multipotency to unipotency during early pancreas development is insufficiently characterized. In pursuing a mechanistic understanding of the complexity in progenitor fate commitments, we construct a core endogenous network for pancreatic lineage decisions based on genetic regulations and quantified its intrinsic dynamic properties using dynamic modeling. The dynamics reveal a developmental landscape with high complexity that has not been clarified. Not only well-characterized pancreatic cells are reproduced, but also previously unrecognized progenitors-tip progenitor (TiP), trunk progenitor (TrP), later endocrine progenitor (LEP), and acinar progenitors (AciP/AciP2) are predicted. Further analyses show that TrP and LEP mediate endocrine lineage maturation, while TiP, AciP, AciP2 and TrP mediate acinar and ductal lineage maturation. The predicted cell fate commitments are validated by analyzing single-cell RNA sequencing (scRNA-seq) data. Significantly, this is the first time that a redefined hierarchy with detailed early pancreatic progenitor fate commitment is obtained.


Asunto(s)
Diferenciación Celular/genética , Linaje de la Célula/genética , Regulación del Desarrollo de la Expresión Génica , Células Madre Multipotentes/fisiología , Organogénesis/genética , Páncreas/citología , Páncreas/embriología , Secuencia de Bases , Humanos
14.
Proc Natl Acad Sci U S A ; 117(1): 464-471, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31852821

RESUMEN

Metabolites are increasingly appreciated for their roles as signaling molecules. To dissect the roles of metabolites, it is essential to understand their signaling pathways and their enzymatic regulations. From an RNA interference (RNAi) screen for regulators of intestinal stem cell (ISC) activity in the Drosophila midgut, we identified adenosine receptor (AdoR) as a top candidate gene required for ISC proliferation. We demonstrate that Ras/MAPK and Protein Kinase A (PKA) signaling act downstream of AdoR and that Ras/MAPK mediates the major effect of AdoR on ISC proliferation. Extracellular adenosine, the ligand for AdoR, is a small metabolite that can be released by various cell types and degraded in the extracellular space by secreted adenosine deaminase. Interestingly, down-regulation of adenosine deaminase-related growth factor A (Adgf-A) from enterocytes is necessary for extracellular adenosine to activate AdoR and induce ISC overproliferation. As Adgf-A expression and its enzymatic activity decrease following tissue damage, our study provides important insights into how the enzymatic regulation of extracellular adenosine levels under tissue-damage conditions facilitates ISC proliferation.


Asunto(s)
Adenosina Desaminasa/metabolismo , Proteínas de Drosophila/metabolismo , Enterocitos/fisiología , Células Madre Multipotentes/fisiología , Receptores Purinérgicos P1/metabolismo , Adenosina/metabolismo , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Proliferación Celular , Regulación hacia Abajo , Drosophila , Proteínas de Drosophila/genética , Técnicas de Sustitución del Gen , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/genética , Interferencia de ARN , Receptores Purinérgicos P1/genética
15.
Development ; 146(24)2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31784460

RESUMEN

Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.


Asunto(s)
Linaje de la Célula/genética , Células Madre Multipotentes/fisiología , Cresta Neural/citología , Células-Madre Neurales/fisiología , Proteínas Nucleares/fisiología , Factor B de Elongación Transcripcional Positiva/fisiología , Factores de Transcripción/fisiología , Proteínas de Pez Cebra/fisiología , Animales , Animales Modificados Genéticamente , Tipificación del Cuerpo/genética , Diferenciación Celular/genética , Quinasa 9 Dependiente de la Ciclina/genética , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Células Madre Multipotentes/citología , Complejos Multiproteicos/genética , Complejos Multiproteicos/fisiología , Cresta Neural/fisiología , Células-Madre Neurales/citología , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , Factor B de Elongación Transcripcional Positiva/antagonistas & inhibidores , Factor B de Elongación Transcripcional Positiva/metabolismo , ARN Polimerasa II/metabolismo , Factores de Transcripción/genética , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
16.
J Transl Med ; 17(1): 211, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31238964

RESUMEN

BACKGROUND: Extracellular vesicles from bone marrow-derived multipotent mesenchymal stromal cells (BMSC-EVs) can play important roles in the repair of injured tissues. However, no reports have investigated the role and underlying mechanisms of BMSCs-EVs in the tendon repair process. We hypothesized that BMSC-EVs may play a role in modulating inflammation during tendon healing and improving tendon repair in a rat model of patellar tendon injury. METHODS: First, we created window defects in the patellar tendons of Sprague-Dawley rats. Rats (n = 16) were then randomly assigned to three groups: BMSC-EVs group, Fibrin group, and control group. Rats in the BMSC-EVs group were treated with BMSC-EVs and fibrin glue (25 µg in 10 µL). Rats in the fibrin group were treated with fibrin only, and those in the control group received no treatment. Histopathology, immunohistochemistry, and gene expression analyses were performed at 2 and 4 weeks after surgery. RESULTS: At 4 weeks, tendons treated with BMSC-EVs showed regularly aligned and compact collagen fibers as compared with the disrupted scar-like healing in rats in the fibrin and control groups. The expression of genes related to tendon matrix formation and tenogenic differentiation: collagen (COL)-1a1, scleraxis (SCX), and tenomodulin (TNMD) was significantly higher in the BMSC-EVs group than in the other two groups. With histopathology, we observed significantly higher numbers of CD146+ tendon stem cells and fewer numbers of apoptotic cells and C-C chemokine receptor type 7 (CCR7)-positive proinflammatory macrophages in the BMSC-EVs group. BMSC-EVs treatment also led to an increase in the expression of anti-inflammatory mediators (IL-10 and IL-4) at 2 weeks after surgery. CONCLUSIONS: Overall, our findings show that the local administration of BMSC-EVs promotes tendon healing by suppressing inflammation and apoptotic cell accumulation and increasing the proportion of tendon-resident stem/progenitor cells. These findings provide a basis for the potential clinical use of BMSC-EVs in tendon repair.


Asunto(s)
Células de la Médula Ósea/fisiología , Vesículas Extracelulares/fisiología , Inflamación/prevención & control , Células Madre Mesenquimatosas/fisiología , Traumatismos de los Tendones/fisiopatología , Tendones/fisiología , Cicatrización de Heridas/fisiología , Animales , Diferenciación Celular/fisiología , Micropartículas Derivadas de Células/fisiología , Células Cultivadas , Masculino , Células Madre Multipotentes/fisiología , Ratas , Ratas Sprague-Dawley , Regeneración/fisiología
17.
Yakugaku Zasshi ; 139(6): 853-859, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31155525

RESUMEN

In most mammalian species, adult neurogenesis appears to occur only in the olfactory bulb and hippocampal dentate gyrus, where neural stem/progenitor cells exist to create new neurons. The discovery of multi-potential neural stem/progenitor cells (NPCs) in the adult brain has precipitated a novel therapeutic strategy for harnessing these endogenous cells to aid in recovery from neurodegenerative disorders. During neurodegeneration, a plethora of endogenous factors, including cytokines, chemokines, neurotransmitters, blood-derived factors, and reactive oxygen species, are released by the activation of resident microglia, astrocytes, and infiltrating peripheral macrophages. It is interesting that these endogenous factors affect the proliferation, migration, differentiation, and survival of newly generated cells involved in the incorporation of newly generated neurons into the brain's circuitry. The unique profile of these endogenous factors can vary the degree of neuroregeneration after neurodegeneration. We show that adult neurogenesis-activating signals are regulated by endogenous factors produced during neurodegeneration.


Asunto(s)
Diferenciación Celular/genética , Diferenciación Celular/fisiología , Terapia Molecular Dirigida , Células Madre Multipotentes/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Neurogénesis/genética , Neurogénesis/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Animales , Encéfalo/citología , Quimiocinas/fisiología , Citocinas/fisiología , Humanos , Ratones , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Neurotransmisores/fisiología , Especies Reactivas de Oxígeno
18.
Methods Mol Biol ; 2045: 93-105, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31020633

RESUMEN

Cellular senescence is a tumor suppressor mechanism that removes potentially neoplastic cells from the proliferative pool. Senescent cells naturally accumulate with advancing age; however, excessive/aberrant accumulation of senescent cells can disrupt normal tissue function. Multipotent mesenchymal stromal cells (MSCs), which are actively evaluated as cell-based therapy, can undergo replicative senescence or stress-induced premature senescence. The molecular characterization of MSCs senescence can be useful not only for understanding the clinical correlations between MSCs biology and human age or age-related diseases but also for identifying competent MSCs for therapeutic applications. Because MSCs are involved in regulating the hematopoietic stem cell niche, and MSCs dysfunction has been implicated in age-related diseases, the identification and selective removal of senescent MSC may represent a potential therapeutic target. Cellular senescence is generally defined by senescence-associated (SA) permanent proliferation arrest (SAPA) accompanied by persistent DNA damage response (DDR) signaling emanating from persistent DNA lesions including damaged telomeres. Alongside SA cell cycle arrest and DDR signaling, a plethora of phenotypic hallmarks help define the overall senescent phenotype including a potent SA secretory phenotype (SASP) with many microenvironmental functions. Due to the complexity of the senescence phenotype, no single hallmark is alone capable of identifying senescent MSCs. This protocol highlights strategies to validate MSCs senescence through the measurements of several key SA hallmarks including lysosomal SA Beta-galactosidase activity (SA-ßgal), cell cycle arrest, persistent DDR signaling, and the inflammatory SASP.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Senescencia Celular/fisiología , Células Madre Mesenquimatosas/metabolismo , Células Madre Multipotentes/metabolismo , Puntos de Control del Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular/genética , Células Cultivadas , Senescencia Celular/genética , Citocinas/metabolismo , Daño del ADN , Desoxiuridina/análogos & derivados , Desoxiuridina/metabolismo , Ensayo de Inmunoadsorción Enzimática , Técnica del Anticuerpo Fluorescente , Humanos , Inflamación/metabolismo , Células Madre Mesenquimatosas/enzimología , Células Madre Mesenquimatosas/fisiología , Células Madre Mesenquimatosas/efectos de la radiación , Células Madre Multipotentes/enzimología , Células Madre Multipotentes/fisiología , Células Madre Multipotentes/efectos de la radiación , Fenotipo , Transducción de Señal/genética , Telómero/genética , Telómero/metabolismo , Flujo de Trabajo , beta-Galactosidasa/metabolismo
20.
Stem Cells Dev ; 28(8): 528-542, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30767605

RESUMEN

There is compelling evidence that the mature central nervous system (CNS) harbors stem cell populations outside conventional neurogenic regions. We previously demonstrated that brain pericytes (PCs) in both mouse and human exhibit multipotency to differentiate into various neural lineages following cerebral ischemia. PCs are found throughout the CNS, including cerebellum, but it remains unclear whether cerebellar PCs also form ischemia-induced multipotent stem cells (iSCs). In this study, we demonstrate that putative iSCs can be isolated from poststroke human cerebellum (cerebellar iSCs [cl-iSCs]). These cl-iSCs exhibited multipotency and differentiated into electrophysiologically active neurons. Neurogenic potential was also confirmed in single-cell suspensions. DNA microarray analysis revealed highly similar gene expression patterns between PCs and cl-iSCs, suggesting PC origin. Global gene expression comparison with cerebral iSCs revealed general similarity, but cl-iSCs differentially expressed certain cerebellum-specific genes. Thus, putative iSCs are present in poststroke cerebellum and possess region-specific traits, suggesting potential capacity to regenerate functional cerebellar neurons following ischemic stroke.


Asunto(s)
Isquemia Encefálica/patología , Cerebelo/patología , Células-Madre Neurales/patología , Células-Madre Neurales/fisiología , Accidente Cerebrovascular/patología , Anciano de 80 o más Años , Encéfalo/patología , Isquemia Encefálica/rehabilitación , Diferenciación Celular/fisiología , Separación Celular , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Multipotentes/patología , Células Madre Multipotentes/fisiología , Neurogénesis/fisiología , Pericitos/patología , Rehabilitación de Accidente Cerebrovascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...