Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.662
Filtrar
1.
Sheng Li Xue Bao ; 76(2): 233-246, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38658373

RESUMEN

The high-order cognitive and executive functions are necessary for an individual to survive. The densely bidirectional innervations between the medial prefrontal cortex (mPFC) and the mediodorsal thalamus (MD) play a vital role in regulating high-order functions. Pyramidal neurons in mPFC have been classified into several subclasses according to their morphological and electrophysiological properties, but the properties of the input-specific pyramidal neurons in mPFC remain poorly understood. The present study aimed to profile the morphological and electrophysiological properties of mPFC pyramidal neurons innervated by MD. In the past, the studies for characterizing the morphological and electrophysiological properties of neurons mainly relied on the electrophysiological recording of a large number of neurons and their morphologic reconstructions. But, it is a low efficient method for characterizing the circuit-specific neurons. The present study combined the advantages of traditional morphological and electrophysiological methods with machine learning to address the shortcomings of the past method, to establish a classification model for the morphological and electrophysiological properties of mPFC pyramidal neurons, and to achieve more accurate and efficient identification of the properties from a small size sample of neurons. We labeled MD-innervated pyramidal neurons of mPFC using the trans-synaptic neural circuitry tracing method and obtained their morphological properties using whole-cell patch-clamp recording and morphologic reconstructions. The results showed that the classification model established in the present study could predict the electrophysiological properties of MD-innervated pyramidal neurons based on their morphology. MD-innervated pyramidal neurons exhibit larger basal dendritic length but lower apical dendrite complexity compared to non-MD-innervated neurons in the mPFC. The morphological characteristics of the two subtypes (ET-1 and ET-2) of mPFC pyramidal neurons innervated by MD are different, with the apical dendrites of ET-1 neurons being longer and more complex than those of ET-2 neurons. These results suggest that the electrophysiological properties of MD- innervated pyramidal neurons within mPFC correlate with their morphological properties, indicating that the different roles of these two subclasses in local circuits within PFC, as well as in PFC-cortical/subcortical brain region circuits.


Asunto(s)
Corteza Prefrontal , Células Piramidales , Células Piramidales/fisiología , Células Piramidales/citología , Corteza Prefrontal/fisiología , Corteza Prefrontal/citología , Animales , Ratas , Núcleo Talámico Mediodorsal/fisiología , Núcleo Talámico Mediodorsal/citología , Masculino , Fenómenos Electrofisiológicos , Vías Nerviosas/fisiología , Vías Nerviosas/citología , Aprendizaje Automático , Ratas Sprague-Dawley , Técnicas de Placa-Clamp
2.
Nature ; 617(7962): 769-776, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37138089

RESUMEN

Sensory processing in the neocortex requires both feedforward and feedback information flow between cortical areas1. In feedback processing, higher-level representations provide contextual information to lower levels, and facilitate perceptual functions such as contour integration and figure-ground segmentation2,3. However, we have limited understanding of the circuit and cellular mechanisms that mediate feedback influence. Here we use long-range all-optical connectivity mapping in mice to show that feedback influence from the lateromedial higher visual area (LM) to the primary visual cortex (V1) is spatially organized. When the source and target of feedback represent the same area of visual space, feedback is relatively suppressive. By contrast, when the source is offset from the target in visual space, feedback is relatively facilitating. Two-photon calcium imaging data show that this facilitating feedback is nonlinearly integrated in the apical tuft dendrites of V1 pyramidal neurons: retinotopically offset (surround) visual stimuli drive local dendritic calcium signals indicative of regenerative events, and two-photon optogenetic activation of LM neurons projecting to identified feedback-recipient spines in V1 can drive similar branch-specific local calcium signals. Our results show how neocortical feedback connectivity and nonlinear dendritic integration can together form a substrate to support both predictive and cooperative contextual interactions.


Asunto(s)
Dendritas , Retroalimentación Fisiológica , Corteza Visual , Vías Visuales , Animales , Ratones , Calcio/metabolismo , Dendritas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Vías Visuales/citología , Vías Visuales/fisiología , Retroalimentación Fisiológica/fisiología , Corteza Visual Primaria/citología , Corteza Visual Primaria/fisiología , Células Piramidales/citología , Células Piramidales/fisiología , Optogenética , Señalización del Calcio
3.
Cells ; 11(3)2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35159260

RESUMEN

Excitatory-inhibitory imbalance (E/I) is a fundamental mechanism underlying autism spectrum disorders (ASD). TRIM32 is a risk gene genetically associated with ASD. The absence of TRIM32 causes impaired generation of inhibitory GABAergic interneurons, neural network hyperexcitability, and autism-like behavior in mice, emphasizing the role of TRIM32 in maintaining E/I balance, but despite the description of TRIM32 in regulating proliferation and differentiation of cultured mouse neural progenitor cells (NPCs), the role of TRIM32 in cerebral cortical development, particularly in the production of excitatory pyramidal neurons, remains unknown. The present study observed that TRIM32 deficiency resulted in decreased numbers of distinct layer-specific cortical neurons and decreased radial glial cell (RGC) and intermediate progenitor cell (IPC) pool size. We further demonstrated that TRIM32 deficiency impairs self-renewal of RGCs and IPCs as indicated by decreased proliferation and mitosis. A TRIM32 deficiency also affects or influences the formation of cortical neurons. As a result, TRIM32-deficient mice showed smaller brain size. At the molecular level, RNAseq analysis indicated reduced Notch signalling in TRIM32-deficient mice. Therefore, the present study indicates a role for TRIM32 in pyramidal neuron generation. Impaired generation of excitatory pyramidal neurons may explain the hyperexcitability observed in TRIM32-deficient mice.


Asunto(s)
Corteza Cerebral , Células-Madre Neurales , Células Piramidales , Ubiquitina-Proteína Ligasas , Animales , Corteza Cerebral/citología , Ratones , Células-Madre Neurales/citología , Neurogénesis/genética , Neuronas/citología , Células Piramidales/citología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
4.
Sci Rep ; 12(1): 1362, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35079030

RESUMEN

Encoding of information by hippocampal neurons is defined by the number and the timing of action potentials generated relative to ongoing network oscillations in the theta (5-14 Hz), gamma (30-80 Hz) and ripple frequency range (150-200 Hz). The exact mechanisms underlying the temporal coupling of action potentials of hippocampal cells to the phase of rhythmic network activity are not fully understood. One critical determinant of action potential timing is synaptic inhibition provided by a complex network of Gamma-amino-hydroxy-butyric acid releasing (GABAergic) interneurons. Among the various GABAergic cell types, particularly Parvalbumin-expressing cells are powerful regulators of neuronal activity. Here we silenced Parvalbumin-expressing interneurons in hippocampal areas CA1 and the dentate gyrus in freely moving mice using the optogenetic silencing tool eNpHR to determine their influence on spike timing in principal cells. During optogenetic inhibition of Parvalbumin-expressing cells, local field potential recordings revealed no change in power or frequency of CA1 or dentate gyrus network oscillations. However, CA1 pyramidal neurons exhibited significantly reduced spike-phase coupling to CA1 theta, but not gamma or ripple oscillations. These data suggest that hippocampal Parvalbumin-expressing interneurons are particularly important for an intact theta-based temporal coding scheme of hippocampal principal cell populations.


Asunto(s)
Hipocampo/citología , Células Piramidales/citología , Potenciales de Acción , Animales , Femenino , Masculino , Ratones , Ritmo Teta
5.
Neurosci Lett ; 769: 136422, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34968722

RESUMEN

The serine protease tissue plasminogen activator (tPA), encoded by the gene Plat, exerts a wide range of proteolysis-dependent and proteolysis-independent functions. In the developing brain, tPA is involved in neuronal development via the modulation of the proteolytic degradation of the extracellular matrix (ECM). Both lack of and excessive tPA are associated with neurodevelopmental disorders and with brain pathology. Astrocytes play a major role in neurite outgrowth of developing neurons as they are major producers of ECM proteins and ECM proteases. In this study we investigated the expression of Plat in developing and mature hippocampal and cortical astrocytes of Aldh1l1-EGFP-Rpl10a mice in vivo following Translating Ribosome Affinity Purification (TRAP) and the role of tPA in modulating astrocyte-mediated neurite outgrowth in an in vitro astrocyte-neuron co-culture system. We show that Plat is highly enriched in astrocytes in the developing, but not in the mature, hippocampus and cortex. Both the silencing of tPA expression in astrocytes and astrocyte exposure to recombinant tPA reduce neuritogenesis in co-cultured hippocampal neurons. These results suggest that astrocyte tPA is involved in modulating neuronal development and that tight control of astrocyte tPA expression is important for normal neuronal development, with both experimentally elevated and reduced levels of this proteolytic enzyme impairing neurite outgrowth. These results are consistent with the hypothesis that the ECM, by serving as adhesive substrate, enables neurite outgrowth, but that controlled proteolysis of the ECM is needed for growth cone advancement.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Proyección Neuronal , Activadores Plasminogénicos/metabolismo , Células Piramidales/citología , Animales , Encéfalo/embriología , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Hipocampo/citología , Hipocampo/metabolismo , Activadores Plasminogénicos/genética , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley
6.
PLoS Comput Biol ; 17(11): e1009558, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34727124

RESUMEN

The output of neocortical layer 5 pyramidal cells (L5PCs) is expressed by a train of single spikes with intermittent bursts of multiple spikes at high frequencies. The bursts are the result of nonlinear dendritic properties, including Na+, Ca2+, and NMDA spikes, that interact with the ~10,000 synapses impinging on the neuron's dendrites. Output spike bursts are thought to implement key dendritic computations, such as coincidence detection of bottom-up inputs (arriving mostly at the basal tree) and top-down inputs (arriving mostly at the apical tree). In this study we used a detailed nonlinear model of L5PC receiving excitatory and inhibitory synaptic inputs to explore the conditions for generating bursts and for modulating their properties. We established the excitatory input conditions on the basal versus the apical tree that favor burst and show that there are two distinct types of bursts. Bursts consisting of 3 or more spikes firing at < 200 Hz, which are generated by stronger excitatory input to the basal versus the apical tree, and bursts of ~2-spikes at ~250 Hz, generated by prominent apical tuft excitation. Localized and well-timed dendritic inhibition on the apical tree differentially modulates Na+, Ca2+, and NMDA spikes and, consequently, finely controls the burst output. Finally, we explored the implications of different burst classes and respective dendritic inhibition for regulating synaptic plasticity.


Asunto(s)
Células Piramidales/citología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Calcio/metabolismo , N-Metilaspartato/metabolismo , Sodio/metabolismo
7.
Nature ; 600(7888): 274-278, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34759318

RESUMEN

The biophysical properties of neurons are the foundation for computation in the brain. Neuronal size is a key determinant of single neuron input-output features and varies substantially across species1-3. However, it is unknown whether different species adapt neuronal properties to conserve how single neurons process information4-7. Here we characterize layer 5 cortical pyramidal neurons across 10 mammalian species to identify the allometric relationships that govern how neuronal biophysics change with cell size. In 9 of the 10 species, we observe conserved rules that control the conductance of voltage-gated potassium and HCN channels. Species with larger neurons, and therefore a decreased surface-to-volume ratio, exhibit higher membrane ionic conductances. This relationship produces a conserved conductance per unit brain volume. These size-dependent rules result in large but predictable changes in somatic and dendritic integrative properties. Human neurons do not follow these allometric relationships, exhibiting much lower voltage-gated potassium and HCN conductances. Together, our results in layer 5 neurons identify conserved evolutionary principles for neuronal biophysics in mammals as well as notable features of the human cortex.


Asunto(s)
Biofisica , Tamaño de la Célula , Corteza Cerebral/citología , Mamíferos , Células Piramidales/citología , Células Piramidales/fisiología , Animales , Corteza Cerebral/anatomía & histología , Corteza Cerebral/fisiología , Dendritas/fisiología , Conductividad Eléctrica , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Masculino , Canales de Potasio con Entrada de Voltaje/metabolismo , Especificidad de la Especie
8.
Nature ; 598(7879): 182-187, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34616069

RESUMEN

Diverse types of glutamatergic pyramidal neurons mediate the myriad processing streams and output channels of the cerebral cortex1,2, yet all derive from neural progenitors of the embryonic dorsal telencephalon3,4. Here we establish genetic strategies and tools for dissecting and fate-mapping subpopulations of pyramidal neurons on the basis of their developmental and molecular programs. We leverage key transcription factors and effector genes to systematically target temporal patterning programs in progenitors and differentiation programs in postmitotic neurons. We generated over a dozen temporally inducible mouse Cre and Flp knock-in driver lines to enable the combinatorial targeting of major progenitor types and projection classes. Combinatorial strategies confer viral access to subsets of pyramidal neurons defined by developmental origin, marker expression, anatomical location and projection targets. These strategies establish an experimental framework for understanding the hierarchical organization and developmental trajectory of subpopulations of pyramidal neurons that assemble cortical processing networks and output channels.


Asunto(s)
Corteza Cerebral/citología , Regulación de la Expresión Génica/genética , Ácido Glutámico/metabolismo , Células Piramidales/citología , Células Piramidales/metabolismo , Animales , Linaje de la Célula/genética , Corteza Cerebral/metabolismo , Masculino , Ratones , Células Piramidales/clasificación , Factores de Transcripción/metabolismo
9.
J Neurosci ; 41(47): 9742-9755, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34649954

RESUMEN

The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed "hotspots." In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were ∼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast "driver" function. Together, the results reveal a nested interaction in which pgACC ("conflict/social monitoring") terminals converge with the broader sgACC ("salience") terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting "internal arousal" states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.


Asunto(s)
Amígdala del Cerebelo/citología , Giro del Cíngulo/citología , Vías Nerviosas/citología , Neuronas Aferentes/citología , Células Piramidales/citología , Amígdala del Cerebelo/fisiología , Animales , Nivel de Alerta/fisiología , Giro del Cíngulo/fisiología , Macaca fascicularis , Masculino , Vías Nerviosas/fisiología , Neuronas Aferentes/fisiología , Células Piramidales/fisiología
10.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34508001

RESUMEN

Disinhibition is an obligatory initial step in the remodeling of cortical circuits by sensory experience. Our investigation on disinhibitory mechanisms in the classical model of ocular dominance plasticity uncovered an unexpected form of experience-dependent circuit plasticity. In the layer 2/3 of mouse visual cortex, monocular deprivation triggers a complete, "all-or-none," elimination of connections from pyramidal cells onto nearby parvalbumin-positive interneurons (Pyr→PV). This binary form of circuit plasticity is unique, as it is transient, local, and discrete. It lasts only 1 d, and it does not manifest as widespread changes in synaptic strength; rather, only about half of local connections are lost, and the remaining ones are not affected in strength. Mechanistically, the deprivation-induced loss of Pyr→PV is contingent on a reduction of the protein neuropentraxin2. Functionally, the loss of Pyr→PV is absolutely necessary for ocular dominance plasticity, a canonical model of deprivation-induced model of cortical remodeling. We surmise, therefore, that this all-or-none loss of local Pyr→PV circuitry gates experience-dependent cortical plasticity.


Asunto(s)
Predominio Ocular , Interneuronas/fisiología , Inhibición Neural , Plasticidad Neuronal , Parvalbúminas/metabolismo , Células Piramidales/fisiología , Corteza Visual/fisiología , Animales , Proteína C-Reactiva/metabolismo , Interneuronas/citología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/metabolismo , Células Piramidales/citología , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo
11.
EMBO J ; 40(18): e107100, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34337766

RESUMEN

Adult neurogenesis enables the life-long addition of functional neurons to the hippocampus and is regulated by both cell-intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult-born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up-regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus-dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.


Asunto(s)
Diferenciación Celular/genética , Metilación de ADN , Hipocampo/fisiología , Neurogénesis/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Animales , Células Cultivadas , Epigénesis Genética , Regulación de la Expresión Génica , Ratones
12.
Biomolecules ; 11(8)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34439901

RESUMEN

Because of their abilities to catalyze generation of toxic free radical species, free concentrations of the redox reactive metals iron and copper are highly regulated. Importantly, desired neurobiological effects of these redox reactive metal cations occur within very narrow ranges of their local concentrations. For example, synaptic release of free copper acts locally to modulate NMDA receptor-mediated neurotransmission. Moreover, within the developing brain, iron is critical to hippocampal maturation and the differentiation of parvalbumin-expressing neurons, whose soma and dendrites are surrounded by perineuronal nets (PNNs). The PNNs are a specialized component of brain extracellular matrix, whose polyanionic character supports the fast-spiking electrophysiological properties of these parvalbumin-expressing GABAergic interneurons. In addition to binding cations and creation of the Donnan equilibrium that support the fast-spiking properties of this subset of interneurons, the complex architecture of PNNs also binds metal cations, which may serve a protective function against oxidative damage, especially of these fast-spiking neurons. Data suggest that pathological disturbance of the population of fast-spiking, parvalbumin-expressing GABAergic inhibitory interneurons occur in at least some clinical presentations, which leads to disruption of the synchronous oscillatory output of assemblies of pyramidal neurons. Increased expression of the GluN2A NMDA receptor subunit on parvalbumin-expressing interneurons is linked to functional maturation of both these neurons and the perineuronal nets that surround them. Disruption of GluN2A expression shows increased susceptibility to oxidative stress, reflected in redox dysregulation and delayed maturation of PNNs. This may be especially relevant to neurodevelopmental disorders, including autism spectrum disorder. Conceivably, binding of metal redox reactive cations by the perineuronal net helps to maintain safe local concentrations, and also serves as a reservoir buffering against second-to-second fluctuations in their concentrations outside of a narrow physiological range.


Asunto(s)
Cationes , Metales/química , Trastornos del Neurodesarrollo/metabolismo , Animales , Trastorno del Espectro Autista/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Cobre/química , Matriz Extracelular/metabolismo , Homeostasis , Humanos , Interneuronas/metabolismo , Iones , Hierro/química , Ratones , Neuronas/metabolismo , Oscilometría , Oxidación-Reducción , Estrés Oxidativo , Parvalbúminas/metabolismo , Fosfolípidos/química , Células Piramidales/citología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica
13.
Nat Commun ; 12(1): 4527, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34312384

RESUMEN

Optogenetic manipulation of neuronal activity through excitatory and inhibitory opsins has become an indispensable experimental strategy in neuroscience research. For many applications bidirectional control of neuronal activity allowing both excitation and inhibition of the same neurons in a single experiment is desired. This requires low spectral overlap between the excitatory and inhibitory opsin, matched photocurrent amplitudes and a fixed expression ratio. Moreover, independent activation of two distinct neuronal populations with different optogenetic actuators is still challenging due to blue-light sensitivity of all opsins. Here we report BiPOLES, an optogenetic tool for potent neuronal excitation and inhibition with light of two different wavelengths. BiPOLES enables sensitive, reliable dual-color neuronal spiking and silencing with single- or two-photon excitation, optical tuning of the membrane voltage, and independent optogenetic control of two neuronal populations using a second, blue-light sensitive opsin. The utility of BiPOLES is demonstrated in worms, flies, mice and ferrets.


Asunto(s)
Membrana Celular/fisiología , Opsinas/metabolismo , Optogenética/métodos , Células Piramidales/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Células Cultivadas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Hurones/genética , Hurones/metabolismo , Células HEK293 , Hipocampo/citología , Humanos , Masculino , Potenciales de la Membrana/fisiología , Ratones Transgénicos , Opsinas/genética , Técnicas de Placa-Clamp/métodos , Células Piramidales/citología , Células Piramidales/metabolismo , Ratas Wistar , Reproducibilidad de los Resultados
14.
Nat Commun ; 12(1): 4509, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34301949

RESUMEN

The capacity of the brain to encode multiple types of sensory input is key to survival. Yet, how neurons integrate information from multiple sensory pathways and to what extent this influences behavior is largely unknown. Using two-photon Ca2+ imaging, optogenetics and electrophysiology in vivo and in vitro, we report the influence of auditory input on sensory encoding in the somatosensory cortex and show its impact on goal-directed behavior. Monosynaptic input from the auditory cortex enhanced dendritic and somatic encoding of tactile stimulation in layer 2/3 (L2/3), but not layer 5 (L5), pyramidal neurons in forepaw somatosensory cortex (S1). During a tactile-based goal-directed task, auditory input increased dendritic activity and reduced reaction time, which was abolished by photoinhibition of auditory cortex projections to forepaw S1. Taken together, these results indicate that dendrites of L2/3 pyramidal neurons encode multisensory information, leading to enhanced neuronal output and reduced response latency during goal-directed behavior.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Auditiva/fisiología , Dendritas/fisiología , Células Piramidales/fisiología , Corteza Somatosensorial/fisiología , Animales , Corteza Auditiva/citología , Estimulación Eléctrica , Electromiografía/métodos , Objetivos , Ratones Endogámicos C57BL , Ratones Transgénicos , Optogenética/métodos , Técnicas de Placa-Clamp , Células Piramidales/citología , Corteza Somatosensorial/citología , Tacto/fisiología
15.
Sci Rep ; 11(1): 12695, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34135352

RESUMEN

Caspase-6 (Casp6) is implicated in Alzheimer disease (AD) cognitive impairment and pathology. Hippocampal atrophy is associated with cognitive impairment in AD. Here, a rare functional exonic missense CASP6 single nucleotide polymorphism (SNP), causing the substitution of asparagine with threonine at amino acid 73 in Casp6 (Casp6N73T), was associated with hippocampal subfield CA1 volume preservation. Compared to wild type Casp6 (Casp6WT), recombinant Casp6N73T altered Casp6 proteolysis of natural substrates Lamin A/C and α-Tubulin, but did not alter cleavage of the Ac-VEID-AFC Casp6 peptide substrate. Casp6N73T-transfected HEK293T cells showed elevated Casp6 mRNA levels similar to Casp6WT-transfected cells, but, in contrast to Casp6WT, did not accumulate active Casp6 subunits nor show increased Casp6 enzymatic activity. Electrophysiological and morphological assessments showed that Casp6N73T recombinant protein caused less neurofunctional damage and neurodegeneration in hippocampal CA1 pyramidal neurons than Casp6WT. Lastly, CASP6 mRNA levels were increased in several AD brain regions confirming the implication of Casp6 in AD. These studies suggest that the rare Casp6N73T variant may protect against hippocampal atrophy due to its altered catalysis of natural protein substrates and intracellular instability thus leading to less Casp6-mediated damage to neuronal structure and function.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Caspasa 6/genética , Caspasa 6/metabolismo , Polimorfismo de Nucleótido Simple , Transmisión Sináptica , Enfermedad de Alzheimer/enzimología , Sustitución de Aminoácidos , Encéfalo/enzimología , Encéfalo/patología , Caspasa 1/genética , Caspasa 1/metabolismo , Caspasa 6/química , Precursores Enzimáticos/metabolismo , Células HEK293 , Hipocampo , Humanos , Lamina Tipo A/metabolismo , Mutación Missense , Degeneración Nerviosa , Células Piramidales/citología , Células Piramidales/fisiología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Tubulina (Proteína)/metabolismo
16.
Commun Biol ; 4(1): 662, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34079054

RESUMEN

Pathological impulsivity is a debilitating symptom of multiple psychiatric diseases with few effective treatment options. To identify druggable receptors with anti-impulsive action we developed a systematic target discovery approach combining behavioural chemogenetics and gene expression analysis. Spatially restricted inhibition of three subdivisions of the prefrontal cortex of mice revealed that the anterior cingulate cortex (ACC) regulates premature responding, a form of motor impulsivity. Probing three G-protein cascades with designer receptors, we found that the activation of Gi-signalling in layer-5 pyramidal cells (L5-PCs) of the ACC strongly, reproducibly, and selectively decreased challenge-induced impulsivity. Differential gene expression analysis across murine ACC cell-types and 402 GPCRs revealed that - among Gi-coupled receptor-encoding genes - Grm2 is the most selectively expressed in L5-PCs while alternative targets were scarce. Validating our approach, we confirmed that mGluR2 activation reduced premature responding. These results suggest Gi-coupled receptors in ACC L5-PCs as therapeutic targets for impulse control disorders.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/fisiología , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Células Piramidales/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/efectos de los fármacos , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Expresión Génica/efectos de los fármacos , Giro del Cíngulo/efectos de los fármacos , Humanos , Conducta Impulsiva/efectos de los fármacos , Conducta Impulsiva/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Células Piramidales/citología , Células Piramidales/efectos de los fármacos , Receptores de Glutamato Metabotrópico/efectos de los fármacos , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/fisiología , Transducción de Señal
17.
Sci Rep ; 11(1): 11725, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083623

RESUMEN

New neurons continuously arise from neural progenitor cells in the dentate gyrus of the adult hippocampus to support ongoing learning and memory formation. To generate functional adult-born neurons, neural progenitor cells proliferate to expand the precursor cell pool and differentiate into neurons. Newly generated cells then undergo postmitotic maturation to migrate to their final destination and develop elaborate dendritic branching, which allows them to receive input signals. Little is known about factors that regulate neuronal differentiation, migration, and dendrite maturation during adult hippocampal neurogenesis. Here, we show that the transcriptional repressor protein capicua (CIC) exhibits dynamic expression in the adult dentate gyrus. Conditional deletion of Cic from the mouse dentate gyrus compromises the adult neural progenitor cell pool without altering their proliferative potential. We further demonstrate that the loss of Cic impedes neuronal lineage development and disrupts dendritic arborization and migration of adult-born neurons. Our study uncovers a previously unrecognized role of CIC in neurogenesis of the adult dentate gyrus.


Asunto(s)
Hipocampo/citología , Neurogénesis/genética , Células Piramidales/citología , Células Piramidales/metabolismo , Proteínas Represoras/genética , Animales , Diferenciación Celular , Giro Dentado/citología , Ratones , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo
18.
Nat Commun ; 12(1): 2605, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33972521

RESUMEN

Brain-body interactions are thought to be essential in emotions but their physiological basis remains poorly understood. In mice, regular 4 Hz breathing appears during freezing after cue-fear conditioning. Here we show that the olfactory bulb (OB) transmits this rhythm to the dorsomedial prefrontal cortex (dmPFC) where it organizes neural activity. Reduction of the respiratory-related 4 Hz oscillation, via bulbectomy or optogenetic perturbation of the OB, reduces freezing. Behavioural modelling shows that this is due to a specific reduction in freezing maintenance without impacting its initiation, thus dissociating these two phenomena. dmPFC LFP and firing patterns support the region's specific function in freezing maintenance. In particular, population analysis reveals that network activity tracks 4 Hz power dynamics during freezing and reaches a stable state at 4 Hz peak that lasts until freezing termination. These results provide a potential mechanism and a functional role for bodily feedback in emotions and therefore shed light on the historical James-Cannon debate.


Asunto(s)
Miedo/fisiología , Bulbo Olfatorio/fisiología , Corteza Prefrontal/fisiología , Respiración , Potenciales de Acción/fisiología , Animales , Antitiroideos/administración & dosificación , Antitiroideos/farmacología , Electrofisiología , Interneuronas/citología , Interneuronas/fisiología , Masculino , Cadenas de Markov , Metimazol/administración & dosificación , Metimazol/farmacología , Ratones , Ratones Endogámicos C57BL , Modelos Psicológicos , Optogenética , Periodicidad , Células Piramidales/citología , Células Piramidales/fisiología , Respiración/efectos de los fármacos
19.
Behav Brain Res ; 410: 113352, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-33979657

RESUMEN

High-frequency repeated transcranial magnetic stimulation (HF-rTMS) is a safe non-invasive neuromodulatory technique and there is a body of evidence shows that it can modulate plasticity in different brain areas. One of the most interesting application of HF-rTMS is the modulation of plasticity in primary motor cortex (M1) to promote recovery after brain injuries. However, the underlying mechanism by which HF-rTMS modulates motor cortex plasticity remain to be investigated. In this study, we investigated the effects of HF-rTMS treatment on morphological plasticity of pyramidal neurons in layer II/III (L2/3) of the primary motor cortex in mice. Our results show that the treatment did not increase anxiety in mice in the open field test and the elevated plus-maze test. Treated mice displayed increased total spine density in apical and basal dendrites, with a predominance of thin spines. The treatment also increased dendritic complexity, as assessed by Sholl analysis at both apical and basal dendrites. Collectively, the results show that HF-rTMS induced remarkable changes in dendritic complexity in primary motor cortex L2/3 connections which may strengthen corticocortical connections increasing integration of information across cortical areas. The data support the use of HF-rTMS as a circuit-targeting neuromodulation strategy.


Asunto(s)
Conducta Animal , Dendritas , Corteza Motora , Plasticidad Neuronal , Células Piramidales , Estimulación Magnética Transcraneal , Animales , Conducta Animal/fisiología , Dendritas/fisiología , Masculino , Ratones , Ratones de la Cepa 129 , Corteza Motora/anatomía & histología , Corteza Motora/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/citología , Células Piramidales/fisiología
20.
STAR Protoc ; 2(2): 100427, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33899014

RESUMEN

Dendritic spinules are fine membranous protrusions of neuronal spines that play a role in synaptic plasticity, but their nanoscale requires resolution beyond conventional confocal microscopy, hindering live studies. Here, we describe how to track individual spinules in live dissociated cortical pyramidal neurons utilizing fluorescence labeling, optimized confocal imaging parameters, and post-acquisition iterative 3D deconvolution, employing NIS Elements software. This approach enables investigations of spinule structural dynamics and function without using super-resolution microscopy, which involves special fluorophores and/or high laser power. For complete details on the use and execution of this protocol, please refer to Zaccard et al. (2020).


Asunto(s)
Espinas Dendríticas/fisiología , Microscopía Confocal/métodos , Células Piramidales/citología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...