Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Thromb Haemost ; 113(4): 792-805, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25518736

RESUMEN

Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterised by microthrombocytopenia, complex immunodeficiency, autoimmunity, and haematologic malignancies. It is caused by mutations in the gene encoding WAS protein (WASP), a regulator of actin cytoskeleton and chromatin structure in various blood cell lineages. The molecular mechanisms underlying microthrombocytopenia caused by WASP mutations remain elusive. Murine models of WASP deficiency exhibited only mild thrombocytopenia with normal-sized platelets. Here we report on the successful generation of induced pluripotent stem cell (iPSC) lines from two patients with different mutations in WASP (c.1507T>A and c.55C>T). When differentiated into early CD34+ haematopoietic and megakaryocyte progenitors, the WAS-iPSC lines were indistinguishable from the wild-type iPSCs. However, all WAS-iPSC lines exhibited defects in platelet productionin vitro. WAS-iPSCs produced platelets with more irregular shapes and smaller sizes. Immunofluorescence and electron micrograph showed defects in cytoskeletal rearrangement, F-actin distribution, and proplatelet formation. Proplatelet defects were more pronounced when using culture systems with stromal feeders comparing to feeder-free culture condition. Overexpression of WASP in the WAS-iPSCs using a lentiviral vector improved proplatelet structures and increased the platelet size. Our findings substantiate the use of iPSC technology to elucidate the disease mechanisms of WAS in thrombopoiesis.


Asunto(s)
Plaquetas/metabolismo , Citoesqueleto/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Trombopoyesis , Síndrome de Wiskott-Aldrich/metabolismo , Actinas/metabolismo , Antígenos CD34/metabolismo , Plaquetas/ultraestructura , Linaje de la Célula , Forma de la Célula , Tamaño de la Célula , Técnicas de Cocultivo , Citoesqueleto/ultraestructura , Células Nutrientes , Predisposición Genética a la Enfermedad , Humanos , Células Madre Pluripotentes Inducidas/ultraestructura , Células Progenitoras de Megacariocitos/ultraestructura , Megacariocitos/ultraestructura , Mutación , Fenotipo , Trombopoyesis/genética , Transfección , Síndrome de Wiskott-Aldrich/sangre , Síndrome de Wiskott-Aldrich/diagnóstico , Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/genética , Proteína del Síndrome de Wiskott-Aldrich/metabolismo
2.
Blood ; 118(6): 1641-52, 2011 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-21566095

RESUMEN

Megakaryocytes generate platelets by remodeling their cytoplasm first into proplatelets and then into preplatelets, which undergo fission to generate platelets. Although the functions of microtubules and actin during platelet biogenesis have been defined, the role of the spectrin cytoskeleton is unknown. We investigated the function of the spectrin-based membrane skeleton in proplatelet and platelet production in murine megakaryocytes. Electron microscopy revealed that, like circulating platelets, proplatelets have a dense membrane skeleton, the main fibrous component of which is spectrin. Unlike other cells, megakaryocytes and their progeny express both erythroid and nonerythroid spectrins. Assembly of spectrin into tetramers is required for invaginated membrane system maturation and proplatelet extension, because expression of a spectrin tetramer-disrupting construct in megakaryocytes inhibits both processes. Incorporation of this spectrin-disrupting fragment into a novel permeabilized proplatelet system rapidly destabilizes proplatelets, causing blebbing and swelling. Spectrin tetramers also stabilize the "barbell shapes" of the penultimate stage in platelet production, because addition of the tetramer-disrupting construct converts these barbell shapes to spheres, demonstrating that membrane skeletal continuity maintains the elongated, pre-fission shape. The results of this study provide evidence for a role for spectrin in different steps of megakaryocyte development through its participation in the formation of invaginated membranes and in the maintenance of proplatelet structure.


Asunto(s)
Plaquetas/metabolismo , Citoesqueleto/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Megacariocitos/metabolismo , Espectrina/metabolismo , Actinas/metabolismo , Animales , Plaquetas/citología , Plaquetas/ultraestructura , Western Blotting , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Cultivadas , Citoesqueleto/ultraestructura , Células Eritroides/metabolismo , Células Progenitoras de Megacariocitos/citología , Células Progenitoras de Megacariocitos/ultraestructura , Megacariocitos/citología , Megacariocitos/ultraestructura , Ratones , Microscopía Electrónica , Microtúbulos/metabolismo , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerización de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Espectrina/química , Espectrina/genética
3.
Exp Hematol ; 36(12): 1714-27, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19007685
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA