Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros










Intervalo de año de publicación
1.
Trends Immunol ; 45(5): 381-396, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38697871

RESUMEN

Recent studies have uncovered a new role for sensory neurons in influencing mammalian host immunity, challenging conventional notions of the nervous and immune systems as separate entities. In this review we delve into this groundbreaking paradigm of neuroimmunology and discuss recent scientific evidence for the impact of sensory neurons on host responses against a wide range of pathogens and diseases, encompassing microbial infections and cancers. These valuable insights enhance our understanding of the interactions between the nervous and immune systems, and also pave the way for developing candidate innovative therapeutic interventions in immune-mediated diseases highlighting the importance of this interdisciplinary research field.


Asunto(s)
Células Receptoras Sensoriales , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/fisiología , Neuroinmunomodulación , Inmunidad , Interacciones Huésped-Patógeno/inmunología , Neoplasias/inmunología , Neoplasias/terapia
2.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38653601

RESUMEN

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Asunto(s)
Células Receptoras Sensoriales , Piel , Humanos , Animales , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Piel/inmunología , Neuropéptidos/metabolismo , Neuropéptidos/inmunología , Células Dendríticas/inmunología , Neuroinmunomodulación , Receptores de Neuropéptido/metabolismo , Receptores de Neuropéptido/inmunología
3.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884907

RESUMEN

Endometriosis (EM) is an estrogen-dependent disease characterized by the presence of epithelial, stromal, and smooth muscle cells outside the uterine cavity. It is a chronic and debilitating condition affecting ~10% of women. EM is characterized by infertility and pain, such as dysmenorrhea, chronic pelvic pain, dyspareunia, dysuria, and dyschezia. Although EM was first described in 1860, its aetiology and pathogenesis remain uncertain. Recent evidence demonstrates that the peripheral nervous system plays an important role in the pathophysiology of this disease. Sensory nerves, which surround and innervate endometriotic lesions, not only drive the chronic and debilitating pain associated with EM but also contribute to a growth phenotype by secreting neurotrophic factors and interacting with surrounding immune cells. Here we review the role that peripheral nerves play in driving and maintaining endometriotic lesions. A better understanding of the role of this system, as well as its interactions with immune cells, will unearth novel disease-relevant pathways and targets, providing new therapeutics and better-tailored treatment options.


Asunto(s)
Endometriosis/inmunología , Factores de Crecimiento Nervioso/metabolismo , Inflamación Neurogénica/etiología , Endometriosis/complicaciones , Femenino , Regulación de la Expresión Génica , Humanos , Inflamación Neurogénica/inmunología , Dolor Pélvico/etiología , Dolor Pélvico/inmunología , Células Receptoras Sensoriales/inmunología
4.
Int J Mol Sci ; 22(22)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34830245

RESUMEN

Although histamine is a well-known itch mediator, histamine H1-receptor blockers often lack efficacy in chronic itch. Recent molecular and cellular based studies have shown that non-histaminergic mediators, such as proteases, neuropeptides and cytokines, along with their cognate receptors, are involved in evocation and modulation of itch sensation. Many of these molecules are produced and secreted by immune cells, which act on sensory nerve fibers distributed in the skin to cause itching and sensitization. This understanding of the connections between immune cell-derived mediators and sensory nerve fibers has led to the development of new treatments for itch. This review summarizes current knowledge of immune cell-derived itch mediators and neuronal response mechanisms, and discusses therapeutic agents that target these systems.


Asunto(s)
Antiinflamatorios/uso terapéutico , Histamina/inmunología , Factores Inmunológicos/uso terapéutico , Prurito/inmunología , Receptores Histamínicos H1/inmunología , Células Receptoras Sensoriales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Citocinas/antagonistas & inhibidores , Citocinas/inmunología , Citocinas/metabolismo , Expresión Génica , Histamina/metabolismo , Antagonistas de los Receptores Histamínicos/uso terapéutico , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/inmunología , Linfocitos/patología , Células Mieloides/efectos de los fármacos , Células Mieloides/inmunología , Células Mieloides/patología , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/inmunología , Neuropéptidos/metabolismo , Péptido Hidrolasas/inmunología , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/uso terapéutico , Prurito/tratamiento farmacológico , Prurito/genética , Prurito/patología , Receptores Histamínicos H1/genética , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/patología , Piel/efectos de los fármacos , Piel/inmunología , Piel/inervación , Piel/patología
5.
J Neuroimmunol ; 361: 577757, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34768040

RESUMEN

Antibodies against FGFR3 define a subgroup of sensory neuropathy (SN). The aim of this study was to identify the epitope(s) of anti-FGFR3 autoantibodies and potential epitope-dependent clinical subtypes. Using SPOT methodology, five specific candidate epitopes, three in the juxtamembrane domain (JMD) and two in the tyrosine kinase domain (TKD), were screened with 68 anti-FGFR3-positive patients and 35 healthy controls. The identified epitopes cover 6/15 functionally relevant sites of the protein. Four patients reacted with the JMD and 11 with the TKD, partly even in a phosphorylation-state dependent manner. The epitope could not be identified in the others. Patients with antibodies recognizing TKD exhibited a more severe clinical and electrophysiological impairment than others.


Asunto(s)
Autoanticuerpos/inmunología , Autoantígenos/inmunología , Enfermedades Autoinmunes del Sistema Nervioso/inmunología , Epítopos/inmunología , Proteínas del Tejido Nervioso/inmunología , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/inmunología , Trastornos de la Sensación/inmunología , Adulto , Autoanticuerpos/sangre , Autoantígenos/química , Femenino , Ganglios Espinales/inmunología , Humanos , Masculino , Persona de Mediana Edad , Fosforilación , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/química , Células Receptoras Sensoriales/inmunología
6.
J Neuroinflammation ; 18(1): 227, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34645458

RESUMEN

BACKGROUND: Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants. METHODS: After protecting the head of C57BL/6J mice with lead caps, they were irradiated and transplanted with bone-marrow-derived cells from GFP transgenic mice. The infraorbital nerve of a branch of the trigeminal nerve of wild-type mice was ligated or the infraorbital nerve of GFP-positive bone-marrow-cell-transplanted mice was transected. After immunostaining the trigeminal ganglion, the structures of the ganglionic macrophages, neurons, and satellite glial cells were analyzed using two-dimensional or three-dimensional images. RESULTS: The number of damaged neurons in the trigeminal ganglion increased from day 1 after infraorbital nerve ligation. Ganglionic macrophages proliferated from days 3 to 5. Furthermore, the numbers of macrophages increased from days 3 to 15. Bone-marrow-derived macrophages increased on day 7 after the infraorbital nerve was transected in the trigeminal ganglion of GFP-positive bone-marrow-cell-transplanted mice but most of the ganglionic macrophages were composed of tissue-resident cells. On day 7 after infraorbital nerve ligation, ganglionic macrophages increased in volume, extended their processes between the neurons and satellite glial cells, and contacted these neurons. Most of the ganglionic macrophages showed an M2 phenotype when contact was observed, and little neuronal cell death occurred. CONCLUSION: Most of the macrophages that appear after a nerve injury are tissue-resident, and these make direct contact with damaged neurons that act in a tissue-protective manner in the M2 phenotype. These results imply that tissue-resident macrophages signal to neurons directly through physical contact.


Asunto(s)
Trasplante de Médula Ósea/métodos , Aumento de la Célula , Ganglios Sensoriales/patología , Macrófagos/patología , Traumatismos de los Nervios Periféricos/patología , Células Receptoras Sensoriales/patología , Animales , Ganglios Sensoriales/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Traumatismos de los Nervios Periféricos/inmunología , Traumatismos de los Nervios Periféricos/terapia , Células Receptoras Sensoriales/inmunología
7.
Free Radic Res ; 55(7): 757-775, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34238089

RESUMEN

The mechanistic interactions among redox status of leukocytes, muscle, and exercise in pain regulation are still poorly understood and limit targeted treatment. Exercise benefits are numerous, including the treatment of chronic pain. However, unaccustomed exercise may be reported as undesirable as it may contribute to pain. The aim of the present review is to evaluate the relationship between oxidative metabolism and acute exercise-induced pain, and as to whether improved antioxidant capacity underpins the analgesic effects of regular exercise. Preclinical and clinical studies addressing relevant topics on mechanisms by which exercise modulates the nociceptive activity and how redox status can outline pain and analgesia are discussed, in sense of translating into refined outcomes. Emerging evidence points to the role of oxidative stress-induced signaling in sensitizing nociceptor sensory neurons. In response to acute exercise, there is an increase in oxidative metabolism, and consequently, pain. Instead, regular exercise can modulate redox status in favor of antioxidant capacity and repair mechanisms, which have consequently increased resistance to oxidative stress, damage, and pain. Data indicate that acute sessions of unaccustomed prolonged and/or intense exercise increase oxidative metabolism and regulate exercise-induced pain in the post-exercise recovery period. Further, evidence demonstrates regular exercise improves antioxidant status, indicating its therapeutic utility for chronic pain disorders. An improved comprehension of the role of redox status in exercise can provide helpful insights into immune-muscle communication during pain modulatory effects of exercise and support new therapeutic efforts and rationale for the promotion of exercise.


Asunto(s)
Analgesia/efectos adversos , Ejercicio Físico , Músculo Esquelético/patología , Nociceptores/patología , Estrés Oxidativo , Dolor/patología , Células Receptoras Sensoriales/patología , Humanos , Músculo Esquelético/metabolismo , Nociceptores/inmunología , Nociceptores/metabolismo , Oxidación-Reducción , Dolor/etiología , Dolor/metabolismo , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo
8.
Front Immunol ; 12: 644664, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34135889

RESUMEN

Alphaherpesviruses (α-HV) are a large family of double-stranded DNA viruses which cause many human and animal diseases. There are three human α-HVs: Herpes Simplex Viruses (HSV-1 and HSV-2) and Varicella Zoster Virus (VZV). All α-HV have evolved multiple strategies to suppress or exploit host cell innate immune signaling pathways to aid in their infections. All α-HVs initially infect epithelial cells (primary site of infection), and later spread to infect innervating sensory neurons. As with all herpesviruses, α-HVs have both a lytic (productive) and latent (dormant) stage of infection. During the lytic stage, the virus rapidly replicates in epithelial cells before it is cleared by the immune system. In contrast, latent infection in host neurons is a life-long infection. Upon infection of mucosal epithelial cells, herpesviruses immediately employ a variety of cellular mechanisms to evade host detection during active replication. Next, infectious viral progeny bud from infected cells and fuse to neuronal axonal terminals. Here, the nucleocapsid is transported via sensory neuron axons to the ganglion cell body, where latency is established until viral reactivation. This review will primarily focus on how HSV-1 induces various innate immune responses, including host cell recognition of viral constituents by pattern-recognition receptors (PRRs), induction of IFN-mediated immune responses involving toll-like receptor (TLR) signaling pathways, and cyclic GMP-AMP synthase stimulator of interferon genes (cGAS-STING). This review focuses on these pathways along with other mechanisms including autophagy and the complement system. We will summarize and discuss recent evidence which has revealed how HSV-1 is able to manipulate and evade host antiviral innate immune responses both in neuronal (sensory neurons of the trigeminal ganglia) and non-neuronal (epithelial) cells. Understanding the innate immune response mechanisms triggered by HSV-1 infection, and the mechanisms of innate immune evasion, will impact the development of future therapeutic treatments.


Asunto(s)
Axones/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Evasión Inmune , Inmunidad Innata , Células Receptoras Sensoriales/inmunología , Animales , Herpes Simple/terapia , Humanos , Transducción de Señal/inmunología
9.
Front Immunol ; 12: 662234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34012447

RESUMEN

Herpes simplex virus type 1 (HSV-1) infection is highly prevalent in humans, with approximately two-thirds of the world population living with this virus. However, only a fraction of those carrying HSV-1, which elicits lifelong infections, are symptomatic. HSV-1 mainly causes lesions in the skin and mucosae but reaches the termini of sensory neurons innervating these tissues and travels in a retrograde manner to the neuron cell body where it establishes persistent infection and remains in a latent state until reactivated by different stimuli. When productive reactivations occur, the virus travels back along axons to the primary infection site, where new rounds of replication are initiated in the skin, in recurrent or secondary infections. During this process, new neuron infections occur. Noteworthy, the mechanisms underlying viral reactivations and the exit of latency are somewhat poorly understood and may be regulated by a crosstalk between the infected neurons and components of the immune system. Here, we review and discuss the immune responses that occur at the skin during primary and recurrent infections by HSV-1, as well as at the interphase of latently-infected neurons. Moreover, we discuss the implications of neuronal signals over the priming and migration of immune cells in the context of HSV-1 infection.


Asunto(s)
Células Epiteliales/metabolismo , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Células Receptoras Sensoriales/metabolismo , Enfermedades Cutáneas Virales/inmunología , Animales , Técnicas de Cultivo de Célula , Células Epiteliales/inmunología , Regulación Viral de la Expresión Génica , Herpesvirus Humano 1/genética , Humanos , Ratones , Células Receptoras Sensoriales/inmunología , Activación Viral , Latencia del Virus , Replicación Viral
10.
Nat Commun ; 12(1): 2936, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34006861

RESUMEN

Host protection against cutaneous herpes simplex virus 1 (HSV-1) infection relies on the induction of a robust adaptive immune response. Here, we show that Nav1.8+ sensory neurons, which are involved in pain perception, control the magnitude of CD8 T cell priming and expansion in HSV-1-infected mice. The ablation of Nav1.8-expressing sensory neurons is associated with extensive skin lesions characterized by enhanced inflammatory cytokine and chemokine production. Mechanistically, Nav1.8+ sensory neurons are required for the downregulation of neutrophil infiltration in the skin after viral clearance to limit the severity of tissue damage and restore skin homeostasis, as well as for eliciting robust CD8 T cell priming in skin-draining lymph nodes by controlling dendritic cell responses. Collectively, our data reveal an important role for the sensory nervous system in regulating both innate and adaptive immune responses to viral infection, thereby opening up possibilities for new therapeutic strategies.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Herpes Simple/inmunología , Herpesvirus Humano 1/inmunología , Dolor Nociceptivo/inmunología , Células Receptoras Sensoriales/inmunología , Animales , Linfocitos T CD8-positivos/metabolismo , Linfocitos T CD8-positivos/virología , Citocinas/inmunología , Citocinas/metabolismo , Femenino , Herpes Simple/genética , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Humanos , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/inmunología , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Infiltración Neutrófila/inmunología , Dolor Nociceptivo/genética , Dolor Nociceptivo/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/virología , Piel/inmunología , Piel/metabolismo , Piel/virología
11.
Front Immunol ; 12: 660203, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912189

RESUMEN

Bidirectional interplay between the peripheral immune and nervous systems plays a crucial role in maintaining homeostasis and responding to noxious stimuli. This crosstalk is facilitated by a variety of cytokines, inflammatory mediators and neuropeptides. Dysregulation of this delicate physiological balance is implicated in the pathological mechanisms of various skin disorders and peripheral neuropathies. The skin is a highly complex biological structure within which peripheral sensory nerve terminals and immune cells colocalise. Herein, we provide an overview of the sensory innervation of the skin and immune cells resident to the skin. We discuss modulation of cutaneous immune response by sensory neurons and their mediators (e.g., nociceptor-derived neuropeptides), and sensory neuron regulation by cutaneous immune cells (e.g., nociceptor sensitization by immune-derived mediators). In particular, we discuss recent findings concerning neuroimmune communication in skin infections, psoriasis, allergic contact dermatitis and atopic dermatitis. We then summarize evidence of neuroimmune mechanisms in the skin in the context of peripheral neuropathic pain states, including chemotherapy-induced peripheral neuropathy, diabetic polyneuropathy, post-herpetic neuralgia, HIV-induced neuropathy, as well as entrapment and traumatic neuropathies. Finally, we highlight the future promise of emerging therapies associated with skin neuroimmune crosstalk in neuropathic pain.


Asunto(s)
Citocinas/inmunología , Mediadores de Inflamación/inmunología , Neuralgia/inmunología , Neuroinmunomodulación/inmunología , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Animales , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Modelos Inmunológicos , Neuralgia/metabolismo , Neuralgia/fisiopatología , Nociceptores/inmunología , Nociceptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Piel/inervación , Piel/metabolismo
12.
FASEB J ; 35(3): e21320, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33660333

RESUMEN

Influenza A virus (IAV) is rapidly detected in the airways by the immune system, with resident parenchymal cells and leukocytes orchestrating viral sensing and the induction of antiviral inflammatory responses. The airways are innervated by heterogeneous populations of vagal sensory neurons which also play an important role in pulmonary defense. How these neurons respond to IAV respiratory infection remains unclear. Here, we use a murine model to provide the first evidence that vagal sensory neurons undergo significant transcriptional changes following a respiratory IAV infection. RNA sequencing on vagal sensory ganglia showed that IAV infection induced the expression of many genes associated with an antiviral and pro-inflammatory response and this was accompanied by a significant increase in inflammatory cell recruitment into the vagal ganglia. Assessment of gene expression in single-vagal sensory neurons confirmed that IAV infection induced a neuronal inflammatory phenotype, which was most prominent in bronchopulmonary neurons, and also evident in some neurons innervating other organs. The altered transcriptome could be mimicked by intranasal treatment with cytokines and the lung homogenates of infected mice, in the absence of infectious virus. These data argue that IAV pulmonary infection and subsequent inflammation induces vagal sensory ganglia neuroinflammation and this may have important implications for IAV-induced morbidity.


Asunto(s)
Inflamación/inmunología , Virus de la Influenza A , Pulmón/inervación , Infecciones por Orthomyxoviridae/inmunología , Células Receptoras Sensoriales/inmunología , Nervio Vago/inmunología , Animales , Femenino , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Receptoras Sensoriales/metabolismo , Transcripción Genética , Nervio Vago/metabolismo
13.
Front Immunol ; 12: 785355, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975876

RESUMEN

The lungs are constantly exposed to non-sterile air which carries harmful threats, such as particles and pathogens. Nonetheless, this organ is equipped with fast and efficient mechanisms to eliminate these threats from the airways as well as prevent pathogen invasion. The respiratory tract is densely innervated by sensory neurons, also known as nociceptors, which are responsible for the detection of external stimuli and initiation of physiological and immunological responses. Furthermore, expression of functional innate receptors by nociceptors have been reported; however, the influence of these receptors to the lung function and local immune response is poorly described. The COVID-19 pandemic has shown the importance of coordinated and competent pulmonary immunity for the prevention of pathogen spread as well as prevention of excessive tissue injury. New findings suggest that lung nociceptors can be a target of SARS-CoV-2 infection; what remains unclear is whether innate receptor trigger sensory neuron activation during SARS-CoV-2 infection and what is the relevance for the outcomes. Moreover, elderly individuals often present with respiratory, neurological and immunological dysfunction. Whether aging in the context of sensory nerve function and innate receptors contributes to the disorders of these systems is currently unknown. Here we discuss the expression of innate receptors by nociceptors, particularly in the lungs, and the possible impact of their activation on pulmonary immunity. We then demonstrate recent evidence that suggests lung sensory neurons as reservoirs for SARS-CoV-2 and possible viral recognition via innate receptors. Lastly, we explore the mechanisms by which lung nociceptors might contribute to disturbance in respiratory and immunological responses during the aging process.


Asunto(s)
Envejecimiento/inmunología , COVID-19/inmunología , Inmunidad Innata/inmunología , Pulmón/inmunología , Nociceptores/inmunología , SARS-CoV-2/inmunología , Canales de Potencial de Receptor Transitorio/inmunología , Anciano , COVID-19/virología , Humanos , Pulmón/inervación , Pulmón/virología , Nociceptores/metabolismo , Nociceptores/virología , SARS-CoV-2/fisiología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/virología , Canales de Potencial de Receptor Transitorio/metabolismo
14.
Immunol Lett ; 229: 32-43, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33248166

RESUMEN

Clinically, a variety of micro-organisms cause painful infections. Before seen as bystanders in the context of infections, recent studies have demonstrated that, as immune cells, nociceptors can sense pathogen-derived products. Nociceptors and immune cells, therefore, have evolved to communicate with each other to control inflammatory and host responses against pathogens in a complementary way. This interaction is named as neuroimmune communication (or axon-axon immune reflex) and initiates after the release of neuropeptides, such as CGRP and VIP by neurons. By this neurogenic response, nociceptors orchestrate the activity of innate and adaptive immune cells in a context-dependent manner. In this review, we focus on how nociceptors sense pathogen-derived products to shape the host response. We also highlight the new concept involving the resolution of inflammation, which is related to an active and time-dependent biosynthetic shift from pro-inflammatory to pro-resolution mediators, the so-called specialized pro-resolving lipid mediators (SPMs). At very low doses, SPMs act on specific receptors to silence nociceptors, limit pain and neurogenic responses, and resolve infections. Furthermore, stimulation of the vagus nerve induces SPMs production to regulate immune responses in infections. Therefore, harnessing the current understanding of neuro-immune communication and neurogenic responses might provide the bases for reprogramming host responses against infections through well balanced and effective immune response and inflammation resolution.


Asunto(s)
Infecciones/etiología , Infecciones/metabolismo , Neuroinmunomodulación , Dolor/etiología , Animales , Biomarcadores , Comunicación Celular , Susceptibilidad a Enfermedades/inmunología , Metabolismo Energético , Interacciones Huésped-Parásitos/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/inervación , Sistema Inmunológico/metabolismo , Infecciones/complicaciones , Inflamación/complicaciones , Inflamación/etiología , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Metabolismo de los Lípidos , Dolor/diagnóstico , Dolor/metabolismo , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/metabolismo
15.
Cell ; 184(2): 441-459.e25, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33333021

RESUMEN

Barrier tissue immune responses are regulated in part by nociceptors. Nociceptor ablation alters local immune responses at peripheral sites and within draining lymph nodes (LNs). The mechanisms and significance of nociceptor-dependent modulation of LN function are unknown. Using high-resolution imaging, viral tracing, single-cell transcriptomics, and optogenetics, we identified and functionally tested a sensory neuro-immune circuit that is responsive to lymph-borne inflammatory signals. Transcriptomics profiling revealed that multiple sensory neuron subsets, predominantly peptidergic nociceptors, innervate LNs, distinct from those innervating surrounding skin. To uncover LN-resident cells that may interact with LN-innervating sensory neurons, we generated a LN single-cell transcriptomics atlas and nominated nociceptor target populations and interaction modalities. Optogenetic stimulation of LN-innervating sensory fibers triggered rapid transcriptional changes in the predicted interacting cell types, particularly endothelium, stromal cells, and innate leukocytes. Thus, a unique population of sensory neurons monitors peripheral LNs and may locally regulate gene expression.


Asunto(s)
Inmunomodulación , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/inervación , Células Receptoras Sensoriales/inmunología , Potenciales de Acción , Animales , Inflamación/patología , Ratones , Nociceptores/metabolismo , Optogenética , Péptidos/metabolismo , Piel/inervación , Sistema Nervioso Simpático/fisiología , Receptores Toll-Like/agonistas , Receptores Toll-Like/metabolismo
16.
Immunity ; 53(5): 1063-1077.e7, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33098765

RESUMEN

Dendritic cells (DCs) of the cDC2 lineage initiate allergic immunity and in the dermis are marked by their expression of CD301b. CD301b+ dermal DCs respond to allergens encountered in vivo, but not in vitro. This suggests that another cell in the dermis may sense allergens and relay that information to activate and induce the migration of CD301b+ DCs to the draining lymph node (dLN). Using a model of cutaneous allergen exposure, we show that allergens directly activated TRPV1+ sensory neurons leading to itch and pain behaviors. Allergen-activated sensory neurons released the neuropeptide Substance P, which stimulated proximally located CD301b+ DCs through the Mas-related G-protein coupled receptor member A1 (MRGPRA1). Substance P induced CD301b+ DC migration to the dLN where they initiated T helper-2 cell differentiation. Thus, sensory neurons act as primary sensors of allergens, linking exposure to activation of allergic-skewing DCs and the initiation of an allergic immune response.


Asunto(s)
Alérgenos/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Hipersensibilidad/etiología , Hipersensibilidad/metabolismo , Células Receptoras Sensoriales/metabolismo , Sustancia P/biosíntesis , Animales , Biomarcadores , Movimiento Celular/inmunología , Femenino , Ganglios Espinales/citología , Hipersensibilidad/diagnóstico , Masculino , Ratones , Células Receptoras Sensoriales/inmunología
17.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32796067

RESUMEN

Neurotropic Alphaherpesvirinae subfamily members such as bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) establish and maintain lifelong latent infections in neurons. Following infection of ocular, oral, or nasal cavities, sensory neurons within trigeminal ganglia (TG) are an important site for latency. Certain external stressors can trigger reactivation from latency, in part because activation of the glucocorticoid receptor (GR) stimulates productive infection and promoters that drive expression of key viral transcriptional regulators. The Akt serine/threonine protein kinase family is linked to maintaining latency. For example, Akt3 is detected in more TG neurons during BoHV-1 latency than in reactivation and uninfected calves. Furthermore, Akt signaling correlates with maintaining HSV-1 latency in certain neuronal models of latency. Finally, an active Akt protein kinase is crucial for the ability of the HSV-1 latency-associated transcript (LAT) to inhibit apoptosis in neuronal cell lines. Consequently, we hypothesized that viral and/or cellular factors impair stress-induced transcription and reduce the incidence of reactivation triggered by low levels of stress. New studies demonstrate that Akt1 and Akt2, but not Akt3, significantly reduced GR-mediated transactivation of the BoHV-1 immediate early transcription unit 1 (IEtu1) promoter, the HSV-1 infected cell protein 0 (ICP0) promoter, and the mouse mammary tumor virus long terminal repeat (MMTV-LTR). Akt3, but not Akt1 or Akt2, significantly enhanced neurite formation in mouse neuroblastoma cells, which correlates with repairing damaged neurons. These studies suggest that unique biological properties of the three Akt family members promote the maintenance of latency in differentiated neurons.IMPORTANCE External stressful stimuli are known to increase the incidence of reactivation of Alphaherpesvirinae subfamily members. Activation of the glucocorticoid receptor (GR) by the synthetic corticosteroid dexamethasone (DEX) stimulates bovine herpesvirus 1 (BoHV-1) and herpes simplex virus 1 (HSV-1) reactivation. Furthermore, GR and dexamethasone stimulate productive infection and promoters that drive expression of viral transcriptional regulators. These observations lead us to predict that stress-induced transcription is impaired by factors abundantly expressed during latency. Interestingly, activation of the Akt family of serine/threonine protein kinases is linked to maintenance of latency. New studies reveal that Akt1 and Ak2, but not Akt3, impaired GR- and dexamethasone-mediated transactivation of the BoHV-1 immediate early transcription unit 1 and HSV-1 ICP0 promoters. Strikingly, Akt3, but not Akt1 or Akt2, stimulated neurite formation in mouse neuroblastoma cells, a requirement for neurogenesis. These studies provide insight into how Akt family members may promote the maintenance of lifelong latency.


Asunto(s)
Herpes Simple/inmunología , Infecciones por Herpesviridae/inmunología , Interacciones Huésped-Patógeno/inmunología , Proteínas Proto-Oncogénicas c-akt/inmunología , Células Receptoras Sensoriales/virología , Animales , Bovinos , Diferenciación Celular , Línea Celular Tumoral , Herpes Simple/genética , Herpes Simple/patología , Herpes Simple/virología , Infecciones por Herpesviridae/genética , Infecciones por Herpesviridae/patología , Infecciones por Herpesviridae/virología , Herpesvirus Bovino 1/genética , Herpesvirus Bovino 1/inmunología , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/inmunología , Interacciones Huésped-Patógeno/genética , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/inmunología , Ratones , Neuritas/inmunología , Neuritas/ultraestructura , Neuritas/virología , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-akt/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/inmunología , Células Receptoras Sensoriales/inmunología , Células Receptoras Sensoriales/patología , Transducción de Señal , Activación Transcripcional/inmunología , Ganglio del Trigémino/inmunología , Ganglio del Trigémino/patología , Ganglio del Trigémino/virología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/inmunología
18.
Brain Behav Immun ; 89: 559-568, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32497778

RESUMEN

The SARS-CoV-2 virus infects cells of the airway and lungs in humans causing the disease COVID-19. This disease is characterized by cough, shortness of breath, and in severe cases causes pneumonia and acute respiratory distress syndrome (ARDS) which can be fatal. Bronchial alveolar lavage fluid (BALF) and plasma from mild and severe cases of COVID-19 have been profiled using protein measurements and bulk and single cell RNA sequencing. Onset of pneumonia and ARDS can be rapid in COVID-19, suggesting a potential neuronal involvement in pathology and mortality. We hypothesized that SARS-CoV-2 infection drives changes in immune cell-derived factors that then interact with receptors expressed by the sensory neuronal innervation of the lung to further promote important aspects of disease severity, including ARDS. We sought to quantify how immune cells might interact with sensory innervation of the lung in COVID-19 using published data from patients, existing RNA sequencing datasets from human dorsal root ganglion neurons and other sources, and a genome-wide ligand-receptor pair database curated for pharmacological interactions relevant for neuro-immune interactions. Our findings reveal a landscape of ligand-receptor interactions in the lung caused by SARS-CoV-2 viral infection and point to potential interventions to reduce the burden of neurogenic inflammation in COVID-19 pulmonary disease. In particular, our work highlights opportunities for clinical trials with existing or under development rheumatoid arthritis and other (e.g. CCL2, CCR5 or EGFR inhibitors) drugs to treat high risk or severe COVID-19 cases.


Asunto(s)
Líquido del Lavado Bronquioalveolar/inmunología , Infecciones por Coronavirus/inmunología , Citocinas/inmunología , Pulmón/inmunología , Pulmón/inervación , Neumonía Viral/inmunología , Receptores de Citocinas/inmunología , Células Receptoras Sensoriales/inmunología , Antirreumáticos/uso terapéutico , Betacoronavirus , COVID-19 , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/metabolismo , Citocinas/metabolismo , Bases de Datos Factuales , Ganglios Espinales , Humanos , Pulmón/metabolismo , Pulmón/fisiopatología , Terapia Molecular Dirigida , Nociceptores/metabolismo , Pandemias , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/metabolismo , RNA-Seq , Receptores de Citocinas/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/fisiopatología , SARS-CoV-2 , Células Receptoras Sensoriales/metabolismo , Transcriptoma , Regulación hacia Arriba , Tratamiento Farmacológico de COVID-19
19.
Immunity ; 52(5): 753-766, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433948

RESUMEN

Although the medical definition of itch has been in existence for 360 years, only in the last 20 years have we begun to understand the basic mechanisms that underlie this unique sensation. Therapeutics that specifically target chronic itch as a pathologic entity are currently still not available. Recent seminal advances in itch circuitry within the nervous system have intersected with discoveries in immunology in unexpected ways to rapidly inform emerging treatment strategies. The current review aims to introduce these basic concepts in itch biology and highlight how distinct immunologic pathways integrate with recently identified itch-sensory circuits in the nervous system to inform a major new paradigm of neuroimmunology and therapeutic development for chronic itch.


Asunto(s)
Ganglios Espinales/inmunología , Prurito/inmunología , Células Receptoras Sensoriales/inmunología , Piel/inmunología , Corteza Somatosensorial/inmunología , Animales , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Humanos , Modelos Inmunológicos , Modelos Neurológicos , Prurito/diagnóstico , Prurito/fisiopatología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Transducción de Señal/inmunología , Transducción de Señal/fisiología , Piel/inervación , Corteza Somatosensorial/fisiopatología
20.
Infect Immun ; 88(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32341116

RESUMEN

The orchestration of host immune responses to enteric bacterial pathogens is a complex process involving the integration of numerous signals, including from the nervous system. Despite the recent progress in understanding the contribution of neuroimmune interactions in the regulation of inflammation, the mechanisms and effects of this communication during enteric bacterial infection are only beginning to be characterized. As part of this neuroimmune communication, neurons specialized to detect painful or otherwise noxious stimuli can respond to bacterial pathogens. Highlighting the complexity of these systems, the immunological consequences of sensory neuron activation can be either host adaptive or maladaptive, depending on the pathogen and organ system. These are but one of many types of neuroimmune circuits, with the vagus nerve and sympathetic innervation of numerous organs now known to modulate immune cell function and therefore dictate immunological outcomes during health and disease. Here, we review the evidence for neuroimmune communication in response to bacterial pathogens, and then discuss the consequences to host morbidity and mortality during infection of the gastrointestinal tract.


Asunto(s)
Sistema Nervioso Entérico/inmunología , Infecciones por Enterobacteriaceae/inmunología , Microbioma Gastrointestinal/inmunología , Tracto Gastrointestinal/inmunología , Neuroinmunomodulación/genética , Células Receptoras Sensoriales/inmunología , Animales , Péptido Relacionado con Gen de Calcitonina/genética , Péptido Relacionado con Gen de Calcitonina/inmunología , Citrobacter/crecimiento & desarrollo , Citrobacter/inmunología , Sistema Nervioso Entérico/microbiología , Infecciones por Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/patología , Tracto Gastrointestinal/inervación , Tracto Gastrointestinal/microbiología , Regulación de la Expresión Génica/inmunología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Células Receptoras Sensoriales/microbiología , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/inmunología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/inmunología , Receptores Toll-Like/genética , Receptores Toll-Like/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...