Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Biol Sex Differ ; 14(1): 85, 2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-37964320

RESUMEN

BACKGROUND: Metabolic dysfunction-associated steatotic liver disease (MASLD) is prevalent in Western countries, evolving into metabolic dysfunction-associated steatohepatitis (MASH) with a sexual dimorphism. Fertile women exhibit lower MASLD risk than men, which diminishes post-menopause. While NKT-cell involvement in steatohepatitis is debated, discrepancies may stem from varied mouse strains used, predominantly C57BL6/J with Th1-dominant responses. Exploration of steatohepatitis, encompassing both genders, using Balb/c background, with Th2-dominant immune response, and CD1d-deficient mice in the Balb/c background (lacking Type I and Type II NKT cells) can clarify gender disparities and NKT-cell influence on MASH progression. METHODS: A high fat and choline-deficient (HFCD) diet was used in male and female mice, Balb/c mice or CD1d-/- mice in the Balb/c background that exhibit a Th2-dominant immune response. Liver fibrosis and inflammatory gene expression were measured by qPCR, and histology assessment. NKT cells, T cells, macrophages and neutrophils were assessed by flow cytometry. RESULTS: Female mice displayed milder steatohepatitis after 6 weeks of HFCD, showing reduced liver damage, inflammation, and fibrosis compared to males. Male Balb/c mice exhibited NKT-cell protection against steatohepatitis whereas CD1d-/- males on HFCD presented decreased hepatoprotection, increased liver fibrosis, inflammation, neutrophilic infiltration, and inflammatory macrophages. In contrast, the NKT-cell role was negligible in early steatohepatitis development in both female mice, as fibrosis and inflammation were similar despite augmented liver damage in CD1d-/- females. Relevant, hepatic type I NKT levels in female Balb/c mice were significantly lower than in male. CONCLUSIONS: NKT cells exert a protective role against experimental steatohepatitis as HFCD-treated CD1d-/- males had more severe fibrosis and inflammation than male Balb/c mice. In females, the HFCD-induced hepatocellular damage and the immune response are less affected by NKT cells on early steatohepatitis progression, underscoring sex-specific NKT-cell influence in MASH development.


Metabolic dysfunction-associated steatotic liver disease (MASLD) is a common liver condition today. In its more advanced form, called metabolic dysfunction-associated steatohepatitis (MASH), adult men are more often affected than women, though this difference vanishes after menopause. Various factors contribute to MASH, including a specific immune cell type called NKT cells, which has not been deeply researched yet. To explore the role of NKT cells in steatohepatitis, we used male and female mice with or without NKT cells (CD1d−/− mice), feeding them a high-fat diet that induces steatohepatitis. Our findings revealed that female mice had less severe steatohepatitis compared to males. Interestingly, we observed a protective role of NKT cells during steatohepatitis, as male mice without these cells had more damage, inflammation, and fibrosis than those with NKT cells. However, in females, even though those lacking NKT cells showed more liver damage and immune alterations, NKT did not seem to play a major role in early steatohepatitis progression. Notably, females had much fewer NKT cells in their livers compared to males, possibly explaining this difference. In conclusion, NKT cells seem to slow down steatohepatitis progression, especially in male mice. In females, their impact on early steatohepatitis advance appears more limited.


Asunto(s)
Hígado Graso , Células T Asesinas Naturales , Femenino , Masculino , Animales , Humanos , Ratones , Células T Asesinas Naturales/patología , Células T Asesinas Naturales/fisiología , Ratones Endogámicos BALB C , Caracteres Sexuales , Hígado Graso/metabolismo , Hígado Graso/patología , Cirrosis Hepática/patología , Fibrosis , Inflamación , Dieta Alta en Grasa/efectos adversos , Colina
2.
Sci Immunol ; 7(74): eabn6563, 2022 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-35984893

RESUMEN

Adoptive immunotherapy with T cells engineered with tumor-specific T cell receptors (TCRs) holds promise for cancer treatment. However, suppressive cues generated in the tumor microenvironment (TME) can hinder the efficacy of these therapies, prompting the search for strategies to overcome these detrimental conditions and improve cellular therapeutic approaches. CD1d-restricted invariant natural killer T (iNKT) cells actively participate in tumor immunosurveillance by restricting suppressive myeloid populations in the TME. Here, we showed that harnessing iNKT cells with a second TCR specific for a tumor-associated peptide generated bispecific effectors for CD1d- and major histocompatibility complex (MHC)-restricted antigens in vitro. Upon in vivo transfer, TCR-engineered iNKT (TCR-iNKT) cells showed the highest efficacy in restraining the progression of multiple tumors that expressed the cognate antigen compared with nontransduced iNKT cells or CD8+ T cells engineered with the same TCR. TCR-iNKT cells achieved robust cancer control by simultaneously modulating intratumoral suppressive myeloid populations and killing malignant cells. This dual antitumor function was further enhanced when the iNKT cell agonist α-galactosyl ceramide (α-GalCer) was administered as a therapeutic booster through a platform that ensured controlled delivery at the tumor site, named multistage vector (MSV). These preclinical results support the combination of tumor-redirected TCR-iNKT cells and local α-GalCer boosting as a potential therapy for patients with cancer.


Asunto(s)
Células T Asesinas Naturales , Neoplasias , Receptores de Antígenos de Linfocitos T , Animales , Humanos , Ratones , Linfocitos T CD8-positivos , Ingeniería Celular , Células Mieloides , Células T Asesinas Naturales/fisiología , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/uso terapéutico , Microambiente Tumoral
3.
Mediators Inflamm ; 2021: 5170123, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34924812

RESUMEN

Herein, the migration distribution and safety of specific phenotypic and functionally identified spleen-derived invariant natural killer T2 (iNKT2) cells after adoptive infusion in mice were studied. The proliferation and differentiation of iNKT cells were induced by intraperitoneal injection of α-galactosylceramide (α-GalCer) in vivo. Mouse spleens were isolated in a sterile environment. iNKT cells were isolated by magnetic-activated cell sorting columns (MS columns). Cytometric bead array (CBA) assay was used to detect cytokine secretion in the supernatant stimulated by iNKT cells. The basic life status of the mice was observed, and systematic quantitative scoring was conducted after injecting spleen-derived iNKT cells through the tail vein. An in vivo imaging system was used to trace the migration and distribution of iNKT cells in DBA mice. The percentage of the iNKT2 subgroup was the highest in 3 days after intraperitoneal injection of α-GalCer, and iNKT2 subsets accounted for more than 92% after separation and purification by magnetic-activated cell sorting (MACS). Anti-inflammatory cytokine IL-4 was mainly found in the supernatant of cell cultures. The adoptive infusion of iNKT cells into healthy mice resulted in no significant change in the basic life status of mice compared with the noninjected group. iNKT cells were detected in the lung, spleen, and liver, but no fluorescence was detected in lymph nodes and thymus. After dissecting the mice, it was found that there were no significant abnormalities in the relevant immune organs, brain, heart, kidney, lung, and other organs. Intraperitoneal injection of α-GalCer results in a large number of iNKT2 cells, mainly secreting anti-inflammatory cytokine IL-4, from the spleen of mice. After adoptive infusion, the iNKT2 cells mainly settled in the liver and spleen of mice with a satisfactory safety profile.


Asunto(s)
Traslado Adoptivo , Células T Asesinas Naturales/inmunología , Bazo/inmunología , Animales , Movimiento Celular , Galactosilceramidas/farmacología , Inmunofenotipificación , Masculino , Ratones , Ratones Endogámicos DBA , Células T Asesinas Naturales/fisiología
4.
Science ; 374(6573): eabf0095, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34882451

RESUMEN

Unconventional T cells­including invariant natural killer T (iNKT) cells, mucosal-associated invariant T (MAIT) cells, and defined subsets of γδ T cells­are restricted by monomorphic major histocompatibility complex class Ib (MHC-Ib) molecules and seed tissues during development. Early-life instructive signals, including those derived from the microbiota, establish homeostatic set points for unconventional T cells, a phenomenon that has lifelong consequences for the regulation of tissue immunity, inflammation, and repair. Unconventional T cells compete for niches within tissues, and recent evidence supports the idea that the fundamental role of these cells in tissue physiology may result from their action as a network with overlapping and potentially synergistic functions, rather than as individual subsets.


Asunto(s)
Homeostasis , Microbiota , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/fisiología , Animales , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Inmunidad Innata , Inflamación , Microbiota/inmunología , Microbiota/fisiología , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/fisiología
5.
Mediators Inflamm ; 2021: 5573937, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34594157

RESUMEN

Natural killer T (NKT) cells constitute a unique subset of T lymphocytes characterized by specifically interacting with antigenic glycolipids conjugated to the CD1d receptor on antigen-presenting cells. Functionally, NKT cells are capable of performing either effector or suppressor immune responses, depending on their production of proinflammatory or anti-inflammatory cytokines, respectively. Effector NKT cells are subdivided into three subsets, termed NKT1, NKT2, and NKT17, based on the cytokines they produce and their similarity to the cytokine profile produced by Th1, Th2, and Th17 lymphocytes, respectively. Recently, a new subgroup of NKT cells termed NKT10 has been described, which cooperates and interacts with other immune cells to promote immunoregulatory responses. Although the tissue-specific functions of NKT cells have not been fully elucidated, their activity has been associated with the pathogenesis of different inflammatory diseases with immunopathogenic similarities to periodontitis, including osteolytic pathologies such as rheumatoid arthritis and osteoporosis. In the present review, we revise and discuss the pathogenic characteristics of NKT cells in these diseases and their role in the pathogenesis of periodontitis; particularly, we analyze the potential regulatory role of the IL-10-producing NKT10 cells.


Asunto(s)
Células T Asesinas Naturales/fisiología , Periodontitis/etiología , Animales , Antígenos CD1d/química , Citocinas/fisiología , Glucolípidos/química , Humanos , Activación de Linfocitos , Células T Asesinas Naturales/citología , Periodontitis/inmunología
6.
JCI Insight ; 6(18)2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34549726

RESUMEN

Invariant NKT (iNKT) cells are potent immunomodulatory cells that acquire effector function during their development in the thymus. IL-17-producing iNKT cells are commonly referred to as NKT17 cells, and they are unique among iNKT cells to express the heparan sulfate proteoglycan CD138 and the transcription factor RORγt. Whether and how CD138 and RORγt contribute to NKT17 cell differentiation, and whether there is an interplay between RORγt and CD138 expression to control iNKT lineage fate, remain mostly unknown. Here, we showed that CD138 expression was only associated with and not required for the differentiation and IL-17 production of NKT17 cells. Consequently, CD138-deficient mice still generated robust numbers of IL-17-producing RORγt+ NKT17 cells. Moreover, forced expression of RORγt significantly promoted the generation of thymic NKT17 cells, but did not induce CD138 expression on non-NKT17 cells. These results indicated that NKT17 cell generation and IL-17 production were driven by RORγt, employing mechanisms that were independent of CD138. Therefore, our study effectively dissociated CD138 expression from the RORγt-driven molecular pathway of NKT17 cell differentiation.


Asunto(s)
Diferenciación Celular , Interleucina-17/metabolismo , Células T Asesinas Naturales/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Sindecano-1/genética , Sindecano-1/metabolismo , Animales , Antígenos CD4/metabolismo , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/fisiología , Diferenciación Celular/genética , Femenino , Granzimas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/fisiología , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Fenotipo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Timocitos/metabolismo
7.
N Engl J Med ; 385(10): 921-929, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34469647

RESUMEN

Human papillomavirus (HPV) infections underlie a wide spectrum of both benign and malignant epithelial diseases. In this report, we describe the case of a young man who had encephalitis caused by herpes simplex virus during adolescence and currently presented with multiple recurrent skin and mucosal lesions caused by HPV. The patient was found to have a pathogenic germline mutation in the X-linked interleukin-2 receptor subunit gamma gene (IL2RG), which was somatically reverted in T cells but not in natural killer (NK) cells. Allogeneic hematopoietic-cell transplantation led to restoration of NK cytotoxicity, with normalization of the skin microbiome and persistent remission of all HPV-related diseases. NK cytotoxicity appears to play a role in containing HPV colonization and the ensuing HPV-related hyperplastic or dysplastic lesions. (Funded by the National Institutes of Health and the Herbert Irving Comprehensive Cancer Center Flow Cytometry Shared Resources.).


Asunto(s)
Mutación de Línea Germinal , Trasplante de Células Madre Hematopoyéticas , Células Asesinas Naturales/fisiología , Infecciones por Papillomavirus/terapia , Citotoxicidad Inmunológica , Encefalitis/virología , Femenino , Humanos , Células Asesinas Naturales/efectos de los fármacos , Masculino , Microbiota/efectos de los fármacos , Células T Asesinas Naturales/fisiología , Papillomaviridae , Infecciones por Papillomavirus/genética , Infecciones por Papillomavirus/inmunología , Linaje , Piel/microbiología , Trasplante Homólogo , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-34385365

RESUMEN

BACKGROUND AND OBJECTIVE: The aim of this study was to determine whether natural killer T (NKT) cells, including invariant (i) NKT cells, have clinical value in preventing the progression of multiple sclerosis (MS) by examining the mechanisms by which a distinct self-peptide induces a novel, protective invariant natural killer T cell (iNKT cell) subset. METHODS: We performed a transcriptomic and functional analysis of iNKT cells that were reactive to a human collagen type II self-peptide, hCII707-721, measuring differentially induced genes, cytokines, and suppressive capacity. RESULTS: We report the first transcriptomic profile of human conventional vs novel hCII707-721-reactive iNKT cells. We determined that hCII707-721 induces protective iNKT cells that are found in the blood of healthy individuals but not progressive patients with MS (PMS). By transcriptomic analysis, we observed that hCII707-721 promotes their development and proliferation, favoring the splicing of full-length AKT serine/threonine kinase 1 (AKT1) and effector function of this unique lineage by upregulating tumor necrosis factor (TNF)-related genes. Furthermore, hCII707-721-reactive iNKT cells did not upregulate interferon (IFN)-γ, interleukin (IL)-4, IL-10, IL-13, or IL-17 by RNA-seq or at the protein level, unlike the response to the glycolipid alpha-galactosylceramide. hCII707-721-reactive iNKT cells increased TNFα only at the protein level and suppressed autologous-activated T cells through FAS-FAS ligand (FAS-FASL) and TNFα-TNF receptor I signaling but not TNF receptor II. DISCUSSION: Based on their immunomodulatory properties, NKT cells have a potential value in the treatment of autoimmune diseases, such as MS. These significant findings suggest that endogenous peptide ligands can be used to expand iNKT cells, without causing a cytokine storm, constituting a potential immunotherapy for autoimmune conditions, including PMS.


Asunto(s)
Colágeno Tipo II , Agentes Inmunomoduladores , Esclerosis Múltiple Crónica Progresiva/sangre , Esclerosis Múltiple Recurrente-Remitente/sangre , Células T Asesinas Naturales/fisiología , Subgrupos de Linfocitos T/fisiología , Transcriptoma , Adulto , Estudios Transversales , Femenino , Humanos , Masculino , Persona de Mediana Edad , Células T Asesinas Naturales/metabolismo , Subgrupos de Linfocitos T/metabolismo , Adulto Joven
9.
Cell Mol Life Sci ; 78(16): 6003-6015, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34236444

RESUMEN

Invariant natural killer T cells (iNKT) are a prevalent population of innate-like T cells in mice, but quite rare in humans that are critical for regulation of the innate and adaptive immune responses during antimicrobial immunity, tumor rejection, and inflammatory diseases. Multiple transcription factors and signaling molecules that contribute to iNKT cell selection and functional differentiation have been identified. However, the full molecular network responsible for regulating and maintaining iNKT populations remains unclear. MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that regulate gene expression post-transcriptionally. Previous reports uncovered the important roles of miRNAs in iNKT cell development and function using Dicer mutant mice. In this review, we discuss the emerging roles of individual miRNAs in iNKT cells reported by our group and other groups, including miR-150, miR-155, miR-181, let-7, miR-17 ~ 92 cluster, and miR-183-96-182 cluster. It is likely that iNKT cell development, differentiation, homeostasis, and functions are orchestrated through a multilayered network comprising interactions among master transcription factors, signaling molecules, and dynamically expressed miRNAs. We provide a comprehensive view of the molecular mechanisms underlying iNKT cell differentiation and function controlled by dynamically expressed miRNAs.


Asunto(s)
MicroARNs/genética , Células T Asesinas Naturales/fisiología , Animales , Diferenciación Celular/genética , Expresión Génica/genética , Humanos , Transducción de Señal/genética
10.
Front Immunol ; 12: 642856, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34054809

RESUMEN

Invariant NKT (iNKT) cells are thymus-generated innate-like T cells, comprised of three distinct subsets with divergent effector functions. The molecular mechanism that drives the lineage trifurcation of immature iNKT cells into the NKT1, NKT2, and NKT17 subsets remains a controversial issue that remains to be resolved. Because cytokine receptor signaling is necessary for iNKT cell generation, cytokines are proposed to contribute to iNKT subset differentiation also. However, the precise roles and requirements of cytokines in these processes are not fully understood. Here, we show that IL-2Rß, a nonredundant component of the IL-15 receptor complex, plays a critical role in both the development and differentiation of thymic iNKT cells. While the induction of IL-2Rß expression on postselection thymocytes is necessary to drive the generation of iNKT cells, surprisingly, premature IL-2Rß expression on immature iNKT cells was detrimental to their development. Moreover, while IL-2Rß is necessary for NKT1 generation, paradoxically, we found that the increased abundance of IL-2Rß suppressed NKT1 generation without affecting NKT2 and NKT17 cell differentiation. Thus, the timing and abundance of IL-2Rß expression control iNKT lineage fate and development, thereby establishing cytokine receptor expression as a critical regulator of thymic iNKT cell differentiation.


Asunto(s)
Subunidad beta del Receptor de Interleucina-2/fisiología , Células T Asesinas Naturales/fisiología , Timo/inmunología , Animales , Diferenciación Celular , Interleucina-15/farmacología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Células T Asesinas Naturales/clasificación , Células T Asesinas Naturales/citología , Factor de Transcripción STAT5/fisiología
11.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33753493

RESUMEN

Conventional T cell fate and function are determined by coordination between cellular signaling and mitochondrial metabolism. Invariant natural killer T (iNKT) cells are an important subset of "innate-like" T cells that exist in a preactivated effector state, and their dependence on mitochondrial metabolism has not been previously defined genetically or in vivo. Here, we show that mature iNKT cells have reduced mitochondrial respiratory reserve and iNKT cell development was highly sensitive to perturbation of mitochondrial function. Mice with T cell-specific ablation of Rieske iron-sulfur protein (RISP; T-Uqcrfs1-/- ), an essential subunit of mitochondrial complex III, had a dramatic reduction of iNKT cells in the thymus and periphery, but no significant perturbation on the development of conventional T cells. The impaired development observed in T-Uqcrfs1-/- mice stems from a cell-autonomous defect in iNKT cells, resulting in a differentiation block at the early stages of iNKT cell development. Residual iNKT cells in T-Uqcrfs1-/- mice displayed increased apoptosis but retained the ability to proliferate in vivo, suggesting that their bioenergetic and biosynthetic demands were not compromised. However, they exhibited reduced expression of activation markers, decreased T cell receptor (TCR) signaling and impaired responses to TCR and interleukin-15 stimulation. Furthermore, knocking down RISP in mature iNKT cells diminished their cytokine production, correlating with reduced NFATc2 activity. Collectively, our data provide evidence for a critical role of mitochondrial metabolism in iNKT cell development and activation outside of its traditional role in supporting cellular bioenergetic demands.


Asunto(s)
Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Células T Asesinas Naturales/fisiología , Animales , Antígenos CD1d/metabolismo , Diferenciación Celular , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Técnicas de Silenciamiento del Gen , Interleucina-15/metabolismo , Proteínas Hierro-Azufre/genética , Activación de Linfocitos , Ratones , Ratones Noqueados , Células T Asesinas Naturales/citología
12.
Sci Bull (Beijing) ; 66(20): 2124-2134, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-36654270

RESUMEN

CD1d-restricted natural killer T (NKT) cells are innate-like T lymphocytes with protective or pathogenic roles in the development of influenza pneumonia. Here, we show that lung-infiltrated and activated NKT cells are the major cellular source of LIGHT/TNFSF14, which determines the severity of pulmonary pneumonia by highly deteriorative influenza A virus (IAV) infection. Compared to wild-type mice, LIGHT-/- mice exhibit much lower morbidity and mortality to IAV, due to alleviated lung damage and reduced apoptosis of alveolar macrophages (AMs). LIGHT preferentially promotes cell death of lymphotoxin ß receptors positive (LTßR+) AMs but not herpesvirus entry mediator positive (HVEM+) AMs. Therefore, these results suggest that NKT-derived LIGHT augments cell death of the tissue protective AMs in exacerbating lung pathology and susceptibility to fatal influenza infection. Suppression of LIGHT signaling might be a viable option in the treatment of influenza-associated acute respiratory distress syndrome.


Asunto(s)
Gripe Humana , Células T Asesinas Naturales , Neumonía , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Animales , Humanos , Ratones , Virus de la Influenza A , Gripe Humana/patología , Pulmón/patología , Macrófagos Alveolares , Células T Asesinas Naturales/fisiología , Neumonía/patología , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
13.
Mol Immunol ; 130: 1-6, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33340930

RESUMEN

The capacity of α-galactosylceramide (α-GalCer) to act as an anti-cancer agent in mice through the specific stimulation of type I NKT (iNKT) cells has prompted extensive investigation to translate this finding to the clinic. However, low frequencies of iNKT cells in cancer patients and their hypo-responsiveness to repeated stimulation have been seen as barriers to its efficacy. Currently the most promising clinical application of α-GalCer, or its derivatives, is as stimuli for ex vivo expansion of iNKT cells for adoptive therapy, although some encouraging clinical results have recently been reported using α-GalCer pulsed onto large numbers of antigen presenting cells (APCs). In on-going preclinical studies, attempts to improve efficacy of injected iNKT cell agonists have focussed on optimising presentation in vivo, through encapsulation in particulate vectors, making structural changes that help binding to the presenting molecule CD1d, or injecting agonists covalently attached to recombinant CD1d. Variations on these same approaches are being used to enhance the APC-licencing function of iNKT cells in vivo to induce adaptive immune responses to associated tumour antigens. Looking ahead, a unique capacity of in vivo-activated iNKT cells to facilitate formation of resident memory CD8+ T cells is a new observation that could find a role in cancer therapy.


Asunto(s)
Galactosilceramidas/uso terapéutico , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos , Células T Asesinas Naturales/efectos de los fármacos , Neoplasias/terapia , Adyuvantes Inmunológicos/uso terapéutico , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/uso terapéutico , Galactosilceramidas/farmacología , Humanos , Activación de Linfocitos/fisiología , Células T Asesinas Naturales/fisiología , Células T Asesinas Naturales/trasplante , Neoplasias/inmunología
14.
Exp Eye Res ; 203: 108406, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347870

RESUMEN

Experimental autoimmune uveoretinitis (EAU) in mice provides a useful platform to study the pathogenesis and experimental therapeutics of human uveitis. One often used EAU model employs C57BL/6 (B6) mice sensitized with a peptide residue having 1 to 20 amino acids of human interphotoreceptor retinoid binding protein (hIRBP1-20). The model using the B6 background has permitted a liberal use of genetically engineered strains and has provided insights for understanding uveoretinitis. However, this is usually acute/monophasic and does not represent human uveoretinitis that is characterized as a chronic/recurrent disease. Several chronic/recurrent EAU models have been developed; of these, we employed administration of staphylococcal enterotoxin B (SEB) for relapse in the present study, and found that recurrence was induced at day 24 after primary immunization, which is thought to be the convalescent phase. We reported the activation of invariant natural killer T (iNKT)-cells upon primary immunization of the EAU model mice with the ligand RCAI-56, which was found to mitigate the disease in our previous study. Here, we first attempted to ameliorate EAU in the relapse model using a preventive regimen by activating iNKT cells at the same time relapse induction (day 24) or in a regimen after 3 days of relapse induction (day 27). The preventive as well as post-inductive regimens were successful in reducing histopathological scores by inhibiting the Ag-specific Th17-biased response. Collectively, activation of iNKT cells may be useful to mitigate the relapse response of EAU induced with SEB.


Asunto(s)
Enfermedades Autoinmunes/prevención & control , Modelos Animales de Enfermedad , Células T Asesinas Naturales/fisiología , Retinitis/prevención & control , Uveítis/prevención & control , Animales , Enfermedades Autoinmunes/inmunología , Proliferación Celular , Proteínas del Ojo/toxicidad , Femenino , Citometría de Flujo , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Recurrencia , Retinitis/inmunología , Proteínas de Unión al Retinol/toxicidad , Células TH1/inmunología , Células Th17/inmunología , Células Th2/inmunología , Uveítis/inmunología
15.
Mol Immunol ; 130: 49-54, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33360376

RESUMEN

Rapid immune responses regulated by invariant Natural Killer T (iNKT) cells bridge the gap between innate and adaptive responses to pathogens, while also providing key regulation to maintain immune homeostasis. iNKT immune protection and immune regulation are both mediated through interactions with innate and adaptive B cell populations that express CD1d. Recent studies have expanded our understanding of the position of iNKT cells at the fulcrum between regulating inflammatory and autoreactive B cells. Environmental signals influence iNKT cells to set the tone for subsequent adaptive responses, ranging from maintaining homeostasis as an iNKT regulatory cell (iNKTreg) or supporting pathogen-specific effector B cells as an iNKT follicular helper (iNKTFH). Here we review recent advances in iNKT and B cell cooperation during autoimmunity and sterile inflammation. Understanding the nature of the interactions between iNKT and B cells will enable the development of clinical interventions to strategically target regulatory iNKT and B cell populations or inflammatory ones, across a range of indications.


Asunto(s)
Linfocitos B/inmunología , Activación de Linfocitos , Células T Asesinas Naturales/fisiología , Animales , Autoinmunidad/inmunología , Humanos , Inmunidad Innata/fisiología , Inflamación/etiología , Inflamación/inmunología , Activación de Linfocitos/inmunología
16.
Clin Immunol ; 222: 108630, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33189887

RESUMEN

BACKGROUND: NK cells seem to be mainly involved in COVID-19 pneumonia. Little is known about NKT cells which represent a bridge between innate and adaptive immunity. METHODS: We characterized peripheral blood T, NK and NKT cells in 45 patients with COVID-19 pneumonia (COVID-19 subjects) and 19 healthy donors (HDs). According to the severity of the disease, we stratified COVID-19 subjects into severe and non-severe groups. RESULTS: Compared to HDs, COVID-19 subjects showed higher percentages of NK CD57+ and CD56dim NK cells and lower percentages of NKT and CD56bright cells. In the severe group we found a significantly lower percentage of NKT cells. In a multiple logistic regression analysis, NKT cell was independently associated with the severity of the disease. CONCLUSIONS: The low percentage of NKT cells in peripheral blood of COVID-19 subjects and the independent association with the severity of the disease suggests a potential role of this subset.


Asunto(s)
COVID-19/patología , Células T Asesinas Naturales/fisiología , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , Antígenos CD/genética , Antígenos CD/metabolismo , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Células T Asesinas Naturales/clasificación , Células T Asesinas Naturales/metabolismo
17.
Sci Rep ; 10(1): 21778, 2020 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-33311540

RESUMEN

Sterile liver inflammation and fibrosis are associated with many liver disorders of different etiologies. Both type 1 and type 2 inflammatory responses have been reported to contribute to liver pathology. However, the mechanisms controlling the balance between these responses are largely unknown. Natural killer T (NKT) cells can be activated to rapidly secrete cytokines and chemokines associated with both type 1 and type 2 inflammatory responses. As these proteins have been reported to accumulate in different types of sterile liver inflammation, we hypothesized that these cells may play a role in this pathological process. We have found that a transgenic NKT (tgNKT) cell population produced in the immunodeficient 2,4αßNOD.Rag2-/- mice, but not in 2,4αßNOD.Rag2+/- control mice, promoted a type 1 inflammatory response with engagement of the NOD-, LRR- and pyrin domain-containing protein-3 (NLRP3) inflammasome. The induction of the type 1 inflammatory response was followed by an altered cytokine profile of the tgNKT cell population with a biased production of anti-inflammatory/profibrotic cytokines and development of liver fibrosis. These findings illustrate how the plasticity of NKT cells modulates the inflammatory response, suggesting a key role for the NKT cell population in the control of sterile liver inflammation.


Asunto(s)
Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Células T Asesinas Naturales/metabolismo , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Fibrosis/metabolismo , Hepatitis/patología , Inmunidad Celular/fisiología , Inmunidad Innata/fisiología , Inflamasomas/metabolismo , Hígado/metabolismo , Hígado/patología , Cirrosis Hepática/metabolismo , Hepatopatías/patología , Masculino , Ratones , Ratones Endogámicos NOD , Células T Asesinas Naturales/fisiología
18.
Diabetologia ; 63(11): 2396-2409, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32880687

RESUMEN

AIMS/HYPOTHESIS: Mucosal-associated invariant T (MAIT) cells are innate-like T cells that recognise derivatives of bacterial riboflavin metabolites presented by MHC-Ib-related protein 1 (MR1) molecules and are important effector cells for mucosal immunity. Their development can be influenced by the intestinal microbiome. Since the development of type 1 diabetes has been associated with changes in the gut microbiome, this can be hypothesised to lead to alterations in circulating MAIT cells. Accordingly, peripheral blood MAIT cell alterations have been reported previously in patients with type 1 diabetes. However, a comprehensive analysis of the frequency and phenotype of circulating MAIT cells at different stages of type 1 diabetes progression is currently lacking. METHODS: We analysed the frequency, phenotype and functionality of peripheral blood MAIT cells, as well as γδ T cells, invariant natural killer T (iNKT) cells and natural killer (NK) cells with flow cytometry in a cross-sectional paediatric cohort (aged 2-15) consisting of 51 children with newly diagnosed type 1 diabetes, 27 autoantibody-positive (AAb+) at-risk children, and 113 healthy control children of similar age and HLA class II background. The frequency of MAIT cells was also assessed in a separate cross-sectional adult cohort (aged 19-39) of 33 adults with established type 1 diabetes and 37 healthy individuals of similar age. RESULTS: Children with newly diagnosed type 1 diabetes displayed a proportional increase of CD8-CD27- MAIT cells compared with healthy control children (median 4.6% vs 3.1% of MAIT cells, respectively, p = 0.004), which was associated with reduced expression of C-C chemokine receptor (CCR)5 (median 90.0% vs 94.3% of MAIT cells, p = 0.02) and ß7 integrin (median 73.5% vs 81.7% of MAIT cells, p = 0.004), as well as decreased production of IFN-γ (median 57.1% vs 69.3% of MAIT cells, p = 0.04) by the MAIT cells. The frequency of MAIT cells was also decreased in AAb+ children who later progressed to type 1 diabetes compared with healthy control children (median 0.44% vs 0.96% of CD3+ T cells, p = 0.04), as well as in adult patients with a short duration of type 1 diabetes (less than 6 years after diagnosis) compared with control individuals (median 0.87% vs 2.19% of CD3+ T cells, p = 0.007). No alterations in γδ T cell, iNKT cell or NK cell frequencies were observed in children with type 1 diabetes or in AAb+ children, with the exception of an increased frequency of IL-17A+ γδ T cells in children with newly diagnosed diabetes compared with healthy control children (median 1.58% vs 1.09% of γδ T cells, p = 0.002). CONCLUSIONS/INTERPRETATION: Changes in the frequency and phenotype of circulating MAIT cells were detectable before, at the onset and after diagnosis of type 1 diabetes in cross-sectional cohorts. Our results suggest a possible temporal association between peripheral blood MAIT cell alterations and the clinical onset of type 1 diabetes. Graphical abstract.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Células T Invariantes Asociadas a Mucosa/inmunología , Adulto , Células Cultivadas , Estudios Transversales , Femenino , Citometría de Flujo , Humanos , Inmunidad Innata/inmunología , Inmunidad Innata/fisiología , Masculino , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/fisiología
19.
Eur J Immunol ; 50(10): 1515-1524, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32390174

RESUMEN

Invariant natural killer T cells (iNKT) constitute up to 50% of liver lymphocytes and contribute to immunosurveillance as well as pathogenesis of the liver. Systemic activation of iNKT cells induces acute immune-mediated liver injury. However, how tissue damage events regulate iNKT cell function and homeostasis remains unclear. We found that specifically tissue-resident iNKT cells in liver and spleen express the tissue-damage receptor P2RX7 and the P2RX7-activating ectoenzyme ARTC2. P2RX7 expression restricted formation of iNKT cells in the liver suggesting that liver iNKT cells are actively restrained under homeostatic conditions. Deliberate activation of P2RX7 in vivo by exogenous NAD resulted in a nearly complete iNKT cell ablation in liver and spleen in a P2RX7-dependent manner. Tissue damage generated by acetaminophen-induced liver injury reduced the number of iNKT cells in the liver. The tissue-damage-induced iNKT cell depletion was driven by P2RX7 and localized to the site of injury, as iNKT cells in the spleen remained intact. The depleted liver iNKT cells reconstituted only slowly compared to other lymphocytes such as regulatory T cells. These findings suggest that tissue-damage-mediated depletion of iNKT cells acts as a feedback mechanism to limit iNKT cell-induced pathology resulting in the establishment of a tolerogenic environment.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Hígado/patología , Células T Asesinas Naturales/fisiología , Receptores Purinérgicos P2X7/metabolismo , Acetaminofén/administración & dosificación , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Tolerancia Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Purinérgicos P2X7/genética
20.
Front Immunol ; 11: 322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32362892

RESUMEN

Ample evidence suggests that hepatic macrophages play key roles in the injury and repair mechanisms during liver disease progression. There are two major populations of hepatic macrophages: the liver resident Kupffer cells and the monocyte-derived macrophages, which rapidly infiltrate the liver during injury. Under different disease conditions, the tissue microenvironmental cues of the liver critically influence the phenotypes and functions of hepatic macrophages. Furthermore, hepatic macrophages interact with multiple cells types in the liver, such as hepatocytes, neutrophils, endothelial cells, and platelets. These crosstalk interactions are of paramount importance in regulating the extents of liver injury, repair, and ultimately liver disease progression. In this review, we summarize the novel findings highlighting the impact of injury-induced microenvironmental signals that determine the phenotype and function of hepatic macrophages. Moreover, we discuss the role of hepatic macrophages in homeostasis and pathological conditions through crosstalk interactions with other cells of the liver.


Asunto(s)
Comunicación Celular , Macrófagos del Hígado/fisiología , Hígado/patología , Macrófagos/fisiología , Hepatocitos/fisiología , Homeostasis , Humanos , Células T Asesinas Naturales/fisiología , Fagocitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...