Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 987
Filtrar
1.
Sci Rep ; 14(1): 19008, 2024 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152165

RESUMEN

Premature ovarian insufficiency (POI), a major cause of female infertility, is defined as follicular atresia and a rapid loss of germ cells in women of reproductive age due to ovarian failure. Recently, findings from several studies have indicated that human umbilical cord mesenchymal stem cells (hUMSCs) can alleviate ovarian dysfunction resulting from POI. However, the mechanisms underlying this effect require further clarification. In this study, a mouse model of POI was established as achieved with an intraperitoneal injection of cyclophosphamide (CTX) into female C57BL/6J mice in vivo. These POI mice received a 1-week intervention of hUMACs. In addition, an in vitro POI model was also included. The cultured supernatants of hUMSCs and glycogen synthase kinase 3 beta (GSK3ß) inhibitor (SB216763) were used to treat theca cells (TCs) exposed to CTX. Hematoxylin and Eosin (H&E) staining and Enzyme-linked immunosorbent assay (ELISA) were used to assess ovarian structure and morphology, as well as endocrine function in these POI mice. Based on results from the ELISA and JC-1 labeling, CTX exerted significant detrimental effects on testosterone levels and the mitochondrial membrane potential in TCs. Subsequently, Western Blot, Immunofluorescence staining (IF), and Quantitative real-time polymerase chain reaction (qRT-PCR) were used to evaluate various indicators of testosterone synthesis function and mitochondrial dynamics in ovaries and TCs of POI mice. In vivo, dysfunctions in ovarian structure and function in the POI mouse model were effectively restored following hUMSCs treatment, and abnormalities in hormone synthesis were significantly reduced. Furthermore, when the stem cell supernatants of hUMSCs were applied to TCs in vitro we found that GSK3ß expression was reduced, the imbalance of mitochondrial dynamics was alleviated, and the ability of mitochondrial testosterone synthesis was increased. Taken together, our results indicate that hUMSCs treatment can restore the imbalance of mitochondrial dynamics and restart testosterone synthesis of TCs by suppressing GSK3ß expression, ultimately alleviating POI damage.


Asunto(s)
Glucógeno Sintasa Quinasa 3 beta , Células Madre Mesenquimatosas , Dinámicas Mitocondriales , Insuficiencia Ovárica Primaria , Células Tecales , Animales , Femenino , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Células Tecales/metabolismo , Células Tecales/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Humanos , Insuficiencia Ovárica Primaria/metabolismo , Insuficiencia Ovárica Primaria/terapia , Dinámicas Mitocondriales/efectos de los fármacos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Ovario/metabolismo , Ovario/efectos de los fármacos , Cordón Umbilical/citología , Ciclofosfamida/farmacología , Trasplante de Células Madre Mesenquimatosas/métodos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Testosterona , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Indoles , Maleimidas
2.
Cells ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39120279

RESUMEN

RESEARCH QUESTION: Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN: Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS: Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS: This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).


Asunto(s)
Diferenciación Celular , Células Tecales , Femenino , Células Tecales/metabolismo , Células Tecales/citología , Humanos , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Células Cultivadas , Biomarcadores/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética
3.
Cells ; 13(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39056753

RESUMEN

Androgen excess is a key feature of several clinical phenotypes of polycystic ovary syndrome (PCOS). However, the presence of FSH receptor (FSHR) and aromatase (CYP19A1) activity responses to physiological endocrine stimuli play a critical role in the pathogenesis of PCOS. Preliminary data suggest that myo-Inositol (myo-Ins) and D-Chiro-Inositol (D-Chiro-Ins) may reactivate CYP19A1 activity. We investigated the steroidogenic pathway of Theca (TCs) and Granulosa cells (GCs) in an experimental model of murine PCOS induced in CD1 mice exposed for 10 weeks to a continuous light regimen. The effect of treatment with different combinations of myo-Ins and D-Chiro-Ins on the expression of Fshr, androgenic, and estrogenic enzymes was analyzed by real-time PCR in isolated TCs and GCs and in ovaries isolated from healthy and PCOS mice. Myo-Ins and D-Chiro-Ins, at a ratio of 40:1 at pharmacological and physiological concentrations, positively modulate the steroidogenic activity of TCs and the expression of Cyp19a1 and Fshr in GCs. Moreover, in vivo, inositols (40:1 ratio) significantly increase Cyp19a1 and Fshr. These changes in gene expression are mirrored by modifications in hormone levels in the serum of treated animals. Myo-Ins and D-Chiro-Ins in the 40:1 formula efficiently rescued PCOS features by up-regulating aromatase and FSHR levels while down-regulating androgen excesses produced by TCs.


Asunto(s)
Aromatasa , Modelos Animales de Enfermedad , Inositol , Ovario , Síndrome del Ovario Poliquístico , Receptores de HFE , Femenino , Animales , Síndrome del Ovario Poliquístico/metabolismo , Síndrome del Ovario Poliquístico/patología , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Inositol/farmacología , Ratones , Aromatasa/metabolismo , Aromatasa/genética , Receptores de HFE/metabolismo , Receptores de HFE/genética , Ovario/metabolismo , Ovario/efectos de los fármacos , Ovario/patología , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Células Tecales/metabolismo , Células Tecales/efectos de los fármacos , Esteroides/biosíntesis
4.
Reprod Fertil Dev ; 362024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39074236

RESUMEN

Adipose tissues produce a variety of biologically active compounds, including cytokines, growth factors and adipokines. Adipokines are important as they function as endocrine hormones that are related to various metabolic and reproductive diseases. The goal of this review was to summarise the role of asprosin, a recently discovered adipokine, and compare its role in ovarian steroidogenesis with that of other adipokines including adiponectin, leptin, resistin, apelin, visfatin, chemerin, irisin, and gremlin 1. The summary of concentrations of these adipokines in humans, rats and other animals will help researchers identify appropriate doses to test in future studies. Review of the literature indicated that asprosin increases androstenedione production in theca cells (Tc), and when cotreated with FSH increases oestradiol production in granulosa cells (Gc). In comparison, other adipokines (1) stimulate Gc oestradiol production but inhibit Tc androgen production (adiponectin), (2) inhibit Gc oestradiol production and Tc androstenedione production (leptin and chemerin), (3) inhibit Gc steroidogenesis with no effect on Tc (resistin), (4) inhibit Gc oestradiol production but stimulate Tc androgen production (gremlin 1), and (5) increase steroid secretion by Gc, with unknown effects on Tc steroidogenesis (apelin and visfatin). Irisin has direct effects on Gc but its precise role (inhibitory or stimulatory) may be species dependent and its effects on Tc will require additional research. Thus, most adipokines have direct effects (either positive or negative) on steroid production in ovarian cells, but how they all work together to create a cumulative effect or disease will require further research.


Asunto(s)
Adipoquinas , Células de la Granulosa , Células Tecales , Femenino , Humanos , Adipoquinas/metabolismo , Animales , Células Tecales/metabolismo , Células Tecales/efectos de los fármacos , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos
5.
Reprod Biomed Online ; 49(2): 103853, 2024 08.
Artículo en Inglés | MEDLINE | ID: mdl-38865783

RESUMEN

RESEARCH QUESTION: How is the production of progesterone (P4) and 17-hydroxy-P4 (17-OH-P4) regulated between theca cells and granulosa cells during the follicular phase, during ovulation and after transformation into a corpus luteum? DESIGN: Three cohorts were examined: (i) 31 women undergoing natural and stimulated cycles, with serum hormone measurements taken every 3 days; (ii) 50 women undergoing ovarian stimulation, with hormone concentrations in serum and follicular fluid assessed at five time points during final follicle maturation; and (iii) 12 women undergoing fertility preservation, with hormone concentrations evaluated via the follicular fluid of small antral follicles. RESULTS: In the early follicular phase, theca cells primarily synthesized 17-OH-P4 while granulosa cells produced limited P4, maintaining the P4:17-OH-P4 ratio <1. As follicles reached follicle selection at a diameter of approximately 10 mm, P4 synthesis in granulosa cells was up-regulated, but P4 was mainly accumulated in follicular fluid. During final maturation, enhanced activity of the enzyme HSD3B2 in granulosa cells enhanced P4 production, with the P4:17-OH-P4 ratio increasing to >1. The concentration of 17-OH-P4 in the luteal phase was similar to that in the follicular phase, but P4 production increased in the luteal phase, yielding a P4:17-OH-P4 ratio significantly >1. CONCLUSIONS: The P4:17-OH-P4 ratio reflects the activity of granulosa cells and theca cells during the follicular phase and following luteinization in the corpus luteum. Managing the function of granulosa cells is key for reducing the concentration of P4 during ovarian stimulation, but the concerted action of FSH and LH on granulosa cells during the second half of the follicular phase makes this complex.


Asunto(s)
Líquido Folicular , Células de la Granulosa , Progesterona , Células Tecales , Femenino , Líquido Folicular/metabolismo , Humanos , Células de la Granulosa/metabolismo , Progesterona/biosíntesis , Progesterona/metabolismo , Células Tecales/metabolismo , Adulto , 17-alfa-Hidroxiprogesterona/metabolismo , 17-alfa-Hidroxiprogesterona/sangre , Folículo Ovárico/metabolismo
6.
Free Radic Biol Med ; 222: 72-84, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38825211

RESUMEN

Premature ovarian insufficiency (POI) is a clinical syndrome characterised by a decline in ovarian function in women before 40 years of age and is associated with oestradiol deficiency and a complex pathogenesis. However, the aetiology of POI is still unclear and effective preventative and treatment strategies are still lacking. Methyltransferase like 3 (METTL3) is an RNA methyltransferase that is involved in spermatogenesis, oocyte development and maturation, early embryonic development, and embryonic stem cell differentiation and formation, but its role in POI is unknown. In the present study, METTL3 deficiency in follicular theca cells was found to lead to reduced fertility in female mice, with a POI-like phenotype, and METTL3 knockout promoted ovarian inflammation. Further, a reduction in METTL3 in follicular theca cells led to a decrease in the m6A modification of pri-miR-21, which further reduced pri-miR-21 recognition and binding by DGCR8 proteins, leading to a decrease in the synthesis of mature miR-21-5p. Decrease of miR-21-5p promoted the secretion of interleukin-1ß (IL-1ß) from follicular theca cells. Acting in a paracrine manner, IL-1ß inhibited the cAMP-PKA pathway and activated the NF-κB pathway in follicular granulosa cells. This activation increased the levels of reactive oxygen species in granulosa cells, causing disturbances in the intracellular Ca2+ balance and mitochondrial damage. These cellular events ultimately led to granulosa cell apoptosis and a decrease in oestradiol synthesis, resulting in POI development. Collectively, these findings reveal how METTL3 deficiency promotes the expression and secretion of IL-1ß in theca cells, which regulates ovarian functions, and proposes a new theory for the development of POI disease.


Asunto(s)
Interleucina-1beta , Metiltransferasas , Insuficiencia Ovárica Primaria , Células Tecales , Animales , Femenino , Humanos , Ratones , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Células de la Granulosa/patología , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Insuficiencia Ovárica Primaria/patología , Insuficiencia Ovárica Primaria/genética , Insuficiencia Ovárica Primaria/metabolismo , Transducción de Señal , Células Tecales/metabolismo , Células Tecales/patología
7.
Biol Reprod ; 111(3): 655-666, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-38938081

RESUMEN

Ovarian theca cells produce testosterone, which acts as a vital precursor substance for synthesizing estrogens during follicular development. Nerve growth factor (NGF) has been shown to participate in reproductive physiology, specifically to follicular development and ovulation. There is currently no available data on the impact of NGF on testosterone synthesis in porcine theca cells. Furthermore, m6A modification is the most common internal modification in eukaryotic mRNAs that are closely associated with female gametogenesis, follicle development, ovulation, and other related processes. It is also uncertain whether the three main enzymes associated with m6A, such as Writers, Erasers, and Readers, play a role in this process. The present study, with an in vitro culture model, investigated the effect of NGF on testosterone synthesis in porcine theca cells and the role of Writers-METTL14 in this process. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells. This study will help to further elucidate the mechanisms by which NGF regulates follicular development and provide new therapeutic targets for ovary-related diseases in female animals. Summary Sentence  The present study investigated the effect of NGF on testosterone synthesis in porcine theca cells. It was found that NGF activates the PI3K/AKT signaling pathway through METTL14, which regulates testosterone synthesis in porcine theca cells.


Asunto(s)
Factor de Crecimiento Nervioso , Testosterona , Células Tecales , Animales , Células Tecales/metabolismo , Células Tecales/efectos de los fármacos , Porcinos , Femenino , Factor de Crecimiento Nervioso/farmacología , Factor de Crecimiento Nervioso/metabolismo , Testosterona/farmacología , Testosterona/biosíntesis , Testosterona/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética , Transducción de Señal/efectos de los fármacos , Células Cultivadas , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
8.
Endocrinology ; 165(7)2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38889246

RESUMEN

Follicular androgens are important for successful ovulation and fertilization. The classical nuclear androgen receptor (AR) is a transcription factor expressed in the cells of the ovarian follicle. Androgen actions can also occur via membrane androgen receptor SLC39A9. Studies in fish ovary demonstrated that androgens bind to SLC39A9 and increase intracellular zinc to regulate ovarian cell function. To determine if SLC39A9 is expressed and functional in the key cell types of the mammalian ovulatory follicle, adult female cynomolgus macaques underwent ovarian stimulation. Ovaries or ovarian follicular aspirates were harvested at 0, 12, 24, and 36 hours after human chorionic gonadotropin (hCG). SLC39A9 and AR mRNA and protein were present in granulosa, theca, and vascular endothelial cells across the entire 40-hour ovulatory window. Testosterone, bovine serum albumin-conjugated testosterone (BSA-T), and androstenedione stimulated zinc influx in granulosa, theca, and vascular endothelial cells. The SLC39A9-selective agonist (-)-epicatechin also stimulated zinc influx in vascular endothelial cells. Taken together, these data support the conclusion that SLC39A9 activation via androgen induces zinc influx in key ovarian cells. Testosterone, BSA-T, and androstenedione each increased proliferation in vascular endothelial cells, indicating the potential involvement of SLC39A9 in ovulatory angiogenesis. Vascular endothelial cell migration also increased after treatment with testosterone, but not after treatment with BSA-T or androstenedione, suggesting that androgens stimulate vascular endothelial cell migration through nuclear AR but not SLC39A9. The presence of SLC39A9 receptors and SLC39A9 activation by follicular androstenedione concentrations suggests that androgen activation of ovarian SLC39A9 may regulate ovulatory changes in the mammalian follicle.


Asunto(s)
Macaca fascicularis , Folículo Ovárico , Ovulación , Receptores Androgénicos , Animales , Femenino , Receptores Androgénicos/metabolismo , Receptores Androgénicos/genética , Folículo Ovárico/metabolismo , Folículo Ovárico/efectos de los fármacos , Zinc/metabolismo , Testosterona/metabolismo , Células Endoteliales/metabolismo , Proteínas de Transporte de Catión/metabolismo , Proteínas de Transporte de Catión/genética , Membrana Celular/metabolismo , Células Tecales/metabolismo , Células de la Granulosa/metabolismo , Células de la Granulosa/efectos de los fármacos , Gonadotropina Coriónica/farmacología
9.
Cells Dev ; 179: 203930, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38815807

RESUMEN

The oocyte expresses certain genes during folliculogenesis to regulate the acquisition of oocyte competence. Oocyte competence, or oocyte quality, is directly related to the ability of the oocyte to result in a successful pregnancy following fertilization. Presently, approximately 40 % of bovine embryos will develop to the blastocyst stage in vitro. Characterization of factors regulating these processes is crucial to improve the efficiency of bovine in vitro embryo production. We demonstrated that the secreted protein, agouti-signaling protein (ASIP) is highly abundant in the bovine oocyte and aimed to characterize its spatiotemporal expression profile in the ovary and throughout early embryonic development. In addition to oocyte expression, ASIP was detected in granulosa, cumulus, and theca cells isolated from antral follicles. Both gene expression data and immunofluorescent staining indicated ASIP declines with oocyte maturation which may indicate a potential role for ASIP in the attainment of oocyte competence. Microinjection of zygotes using small interfering RNA targeting ASIP led to a 16 % reduction in the rate of development to the blastocyst stage. Additionally, we examined potential ASIP signaling mechanisms through which ASIP may function to establish oocyte developmental competence. The expression of melanocortin receptor 3 and 4 and the coreceptor attractin was detected in the oocyte and follicular cells. The addition of cortisol during in vitro maturation was found to increase significantly oocyte ASIP levels. In conclusion, these results suggest a functional role for ASIP in promoting oocyte maturation and subsequent embryonic development, potentially through signaling mechanisms involving cortisol.


Asunto(s)
Proteína de Señalización Agouti , Desarrollo Embrionario , Oocitos , Ovario , Animales , Bovinos , Femenino , Desarrollo Embrionario/genética , Oocitos/metabolismo , Ovario/metabolismo , Proteína de Señalización Agouti/metabolismo , Proteína de Señalización Agouti/genética , Regulación del Desarrollo de la Expresión Génica , Blastocisto/metabolismo , Transducción de Señal , Células del Cúmulo/metabolismo , Células Tecales/metabolismo
10.
Reproduction ; 168(1)2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38718815

RESUMEN

In brief: Progenitor cells with ovulation-related tissue repair activity were identified with defined markers (LGR5, EPCR, LY6A, and PDGFRA), but their potentials to form steroidogenic cells were not known. This study shows that the cells can generate progenies with different steroidogenic activities. Abstract: Adult mammalian ovaries contain stem/progenitor cells necessary for folliculogenesis and ovulation-related tissue rupture repair. Theca cells are recruited and developed from progenitors during the folliculogenesis. Theca cell progenitors were not well defined. The aim of current study is to compare the potentials of four ovarian progenitors with defined markers (LY6A, EPCR, LGR5, and PDGFRA) to form steroidogenic theca cells in vitro. The location of the progenitors with defined makers was determined by immunohistochemistry and immunofluorescence staining of ovarian sections of adult mice. Different progenitor populations were purified by magnetic-activated cell sorting (MACS) and/or fluorescence-activated cell sorting (FACS) techniques from ovarian cell preparation and were tested for their abilities to generate steroidogenic theca cells in vitro. The cells were differentiated with a medium containing LH, ITS, and DHH agonist for 12 days. The results showed that EPCR+ and LGR5+ cells primarily distributed along the ovarian surface epithelium (OSE), while LY6A+ cells distributed in both the OSE and parenchyma. However, PDGFRA+ cells were exclusively located in interstitial compartment. When the progenitors were purified by these markers and differentiated in vitro, LY6A+ and PDGFRA+ cells formed steroidogenic cells expressing both CYP11A1 and CYP17A1 and primarily producing androgens, showing characteristics of theca-like cells, while LGR5+ cells generated steroidogenic cells devoid of CYP17A1 expression and androgen production, showing a characteristic of progesterone-producing cells (granulosa- or lutea-like cells). In conclusion, progenitors from both OSE and parenchyma of adult mice are capable of generating steroidogenic cells with different steroidogenic capacities, showing a possible lineage preference.


Asunto(s)
Diferenciación Celular , Receptores Acoplados a Proteínas G , Células Madre , Células Tecales , Animales , Femenino , Células Tecales/metabolismo , Células Tecales/citología , Ratones , Células Madre/metabolismo , Células Madre/citología , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Antígenos Ly/metabolismo , Células Cultivadas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Ovario/citología , Ovario/metabolismo , Ratones Endogámicos C57BL , Biomarcadores/metabolismo
11.
Environ Health Perspect ; 132(4): 47009, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38630605

RESUMEN

BACKGROUND: Exposure to obesogenic chemicals has been reported to result in enhanced adipogenesis, higher adipose tissue accumulation, and reduced ovarian hormonal synthesis and follicular function. We have reported that organotins [tributyltin (TBT) and triphenyltin (TPT)] dysregulate cholesterol trafficking in ovarian theca cells, but, whether organotins also exert lipogenic effects on ovarian cells remains unexplored. OBJECTIVE: We investigated if environmentally relevant exposures to organotins [TBT, TPT, or dibutyltin (DBT)] induce lipid dysregulation in ovarian theca cells and the role of the liver X receptor (LXR) in this effect. We also tested the effect of TBT on oocyte maturation and neutral lipid accumulation, and lipid-related transcript expression in cumulus cells and preimplantation embryos. METHODS: Primary theca cell cultures derived from human and ovine ovaries were exposed to TBT, TPT, or DBT (1, 10, or 50 ng/ml). The effect of these chemical exposures on neutral lipid accumulation, lipid abundance and composition, lipid homeostasis-related gene expression, and cytokine secretion was evaluated using liquid chromatography-mass spectrometry (LC-MS), inhibitor-based methods, cytokine secretion, and lipid ontology analyses. We also exposed murine cumulus-oocyte complexes to TBT and evaluated oocyte maturation, embryo development, and lipid homeostasis-related mRNA expression in cumulus cells and blastocysts. RESULTS: Exposure to TBT resulted in higher intracellular neutral lipids in human and ovine primary theca cells. In ovine theca cells, this effect was dose-dependent, independent of cell stage, and partially mediated by LXR. DBT and TPT resulted in higher intracellular neutral lipids but to a lesser extent in comparison with TBT. More than 140 lipids and 9 cytokines were dysregulated in TBT-exposed human theca cells. Expression of genes involved in lipogenesis and fatty acid synthesis were higher in theca cells, as well as in cumulus cells and blastocysts exposed to TBT. However, TBT did not impact the rates of oocyte maturation or blastocyst development. DISCUSSION: TBT induced dyslipidemia in primary human and ovine theca cells, which may be responsible for some of the TBT-induced fertility dysregulations reported in rodent models of TBT exposure. https://doi.org/10.1289/EHP13955.


Asunto(s)
Compuestos Orgánicos de Estaño , Células Tecales , Compuestos de Trialquiltina , Femenino , Humanos , Animales , Ovinos , Ratones , Células Tecales/metabolismo , Compuestos de Trialquiltina/metabolismo , Compuestos de Trialquiltina/farmacología , Lípidos/farmacología , Citocinas/metabolismo
12.
Vet Res Commun ; 48(3): 1769-1778, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38558370

RESUMEN

Beauvericin is an emerging Fusariotoxin naturally occurring in cereal grains throughout the world whereas glyphosate (N-phosphonomethyl-glycine) is a non-selective systemic herbicide used worldwide. The purpose of this study is to evaluate a newly developed ovarian cell culture system (that includes both granulosa and theca cells) as an in vitro model for toxicological studies. Specifically, the effects of beauvericin and glyphosate in formulation with Roundup on ovarian cell numbers and steroid production were evaluated. Ovaries collected from cattle without luteal structures were sliced into 30-70 pieces each, and granulosa and theca cells were collected. Harvested cells were cultured for 48 h in 10% fetal bovine serum-containing medium followed by 48 h in serum-free medium containing testosterone (500 ng/mL; as an estrogen precursor) with the following eight treatments: (1) controls, (2) FSH (30 ng/mL) alone, (3) FSH plus insulin-like growth factor-1 (IGF1; 30 ng/mL), (4) FSH plus IGF1 plus beauvericin (3 µM), (5) FSH plus IGF1 plus glyphosate in Roundup (10 µg/mL), (6) FSH plus IGF1 plus fibroblast growth factor 9 (FGF9, 30 ng/mL), (7) a negative control without added testosterone, and (8) IGF1 plus LH (30 ng/mL) with basal medium without added testosterone. In the presence of FSH, IGF1 significantly increased cell numbers, estradiol and progesterone production by severalfold. Glyphosate in Roundup formulation significantly inhibited IGF1-induced cell numbers and estradiol and progesterone production by 89-94%. Beauvericin inhibited IGF1-induced cell numbers and estradiol and progesterone by 50-97% production. LH plus IGF1 significantly increased androstenedione secretion compared with controls without added testosterone indicating the presence of theca cells. In conclusion, the present study demonstrates that toxicological effects of beauvericin and glyphosate in Roundup formulation are observed in a newly developed ovarian cell model system and further confirms that both glyphosate and beauvericin may have the potential to impair reproductive function in cattle.


Asunto(s)
Depsipéptidos , Glicina , Glifosato , Herbicidas , Animales , Femenino , Bovinos , Glicina/análogos & derivados , Glicina/toxicidad , Depsipéptidos/toxicidad , Herbicidas/toxicidad , Ovario/efectos de los fármacos , Ovario/metabolismo , Progesterona/metabolismo , Células de la Granulosa/efectos de los fármacos , Células de la Granulosa/metabolismo , Células Tecales/efectos de los fármacos , Células Tecales/metabolismo , Estradiol/metabolismo , Estradiol/análogos & derivados , Recuento de Células , Células Cultivadas , Factor I del Crecimiento Similar a la Insulina/metabolismo , Testosterona/análogos & derivados
13.
Endocrine ; 84(3): 1238-1249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38374513

RESUMEN

PURPOSE: To determine the relationship between serum total testosterone (TT) levels and oxidative stress indices in patients with polycystic ovary syndrome (PCOS), and to investigate the effect of oxidative stress on androgen synthesis and its mechanism in rat ovarian theca-interstitial (T-I) cells. METHODS: Clinical, hormonal, metabolic, and oxidative stress parameters were analyzed in a cross-sectional case-control study including 626 patients with PCOS and 296 controls. The effects of oxidized low-density lipoprotein (ox-LDL) and oxidized high-density lipoprotein (ox-HDL) on cell proliferation, TT secretion, and expression of key enzymes involved in testosterone synthesis were evaluated in T-I cells. RESULTS: Serum TT levels were elevated with an increase in ox-LDL levels, whereas glutathione concentrations were lower in the high-TT subgroup than in the low-TT subgroup. The average ovarian volume and ox-LDL and malondialdehyde levels were significant predictors of TT levels in the multivariate regression models. In a rat ovarian T-I cell model, lipoprotein and oxidized lipoprotein treatments stimulated proliferation and promoted testosterone secretion. The mRNA and protein levels of 17α-hydroxylase were significantly higher in oxidized lipoprotein-treated cells than those in lipoprotein-treated cells. The mRNA levels of cholesterol side chain cleavage enzyme and steroidogenic acute regulatory protein were also significantly higher in ox-HDL-treated cells than in HDL-treated cells. CONCLUSIONS: Oxidative stress can promote androgen production by up-regulating the expression of testosterone synthesis-related enzymes in vitro and may be an essential factor in elevating serum TT levels in patients with PCOS.


Asunto(s)
Hiperandrogenismo , Lipoproteínas LDL , Estrés Oxidativo , Síndrome del Ovario Poliquístico , Testosterona , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Animales , Ratas , Testosterona/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Hiperandrogenismo/metabolismo , Adulto , Humanos , Estudios de Casos y Controles , Estudios Transversales , Ovario/metabolismo , Ratas Sprague-Dawley , Adulto Joven , Células Tecales/metabolismo , Proliferación Celular , Andrógenos/sangre , Esteroide 17-alfa-Hidroxilasa/metabolismo , Esteroide 17-alfa-Hidroxilasa/genética , Células Cultivadas
14.
Biol Reprod ; 110(4): 782-797, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38224314

RESUMEN

Defining features of polycystic ovary syndrome (PCOS) include elevated expression of steroidogenic genes, theca cell androgen biosynthesis, and peripheral levels of androgens. In previous studies, we identified vascular cell adhesion molecule 1 (VCAM1) as a selective androgen target gene in specific NR2F2/SF1 (+/+) theca cells. By deleting NR2F2 and VCAM1 selectively in CYP17A1 theca cells in mice, we documented that NR2F2 and VCAM1 impact distinct and sometimes opposing theca cell functions that alter ovarian follicular development in vivo: including major changes in ovarian morphology, steroidogenesis, gene expression profiles, immunolocalization images (NR5A1, CYP11A1, NOTCH1, CYP17A1, INSL3, VCAM1, NR2F2) as well as granulosa cell functions. We propose that theca cells impact follicle integrity by regulating androgen production and action, as well as granulosa cell differentiation/luteinization in response to androgens and gonadotropins that may underlie PCOS.


Asunto(s)
Factor de Transcripción COUP II , Síndrome del Ovario Poliquístico , Células Tecales , Molécula 1 de Adhesión Celular Vascular , Animales , Femenino , Ratones , Andrógenos/metabolismo , Factor de Transcripción COUP II/genética , Factor de Transcripción COUP II/metabolismo , Células de la Granulosa/metabolismo , Síndrome del Ovario Poliquístico/genética , Síndrome del Ovario Poliquístico/metabolismo , Células Tecales/metabolismo , Molécula 1 de Adhesión Celular Vascular/genética , Molécula 1 de Adhesión Celular Vascular/metabolismo
15.
Poult Sci ; 103(3): 103414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38262338

RESUMEN

Energy and the cAMP-response element binding protein (CREB)/steroidogenic acute regulatory protein (StAR) signaling pathway play important roles in steroid hormone production and follicular development in hens. This present study aimed to investigate the effects of exogenous energy on the synthesis of steroid hormones and the expression characteristics of the CREB/StAR signaling pathway in theca cells of laying hen. The primary theca cells of small yellow follicles were randomly divided into 6 treatments and cultured in medium with glucose concentrations of 1, 1.5, 3, 4.5, 6, and 7.5 mg/mL for 48 h. It was found that growth was robust and cell outlines were clear when cells were cultured with 1, 1.5, 3, and 4.5 mg/mL glucose, but cell viability was diminished and cell density decreased after exposure to glucose at 6 and 7.5 mg/mL for 48 h. Cell viability showed an increasing and then decreasing quadratic response to increasing glucose concentration in culture (r2 = 0.688, P < 0.001). The cell viability of theca cells cultured with 4.5 mg/mL glucose was greater than those cultured with 1, 1.5, 6, and 7.5 mg/mL glucose (P < 0.05). The concentration of estradiol in the medium containing 3 mg/mL glucose was higher than in medium containing 1, 1.5, and 6 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between progesterone concentrations and glucose concentrations (r2 = 0.522, P = 0.002). The concentration of progesterone in medium with 4.5 mg/mL glucose was higher than in medium with 1 and 7.5 mg/mL glucose (P < 0.05). There was an increasing and then decreasing quadratic correlation between the relative expression of CREB1 (r2 = 0.752, P < 0.001), StAR (r2 = 0.456, P = 0.002), CYP1B1 (r2 = 0.568, P < 0.001), and 3ß-HSD (r2 = 0.319, P = 0.018) in theca cells of laying hens and glucose concentrations after treatment with different glucose concentrations for 48 h. After treatment with 4.5 mg/mL glucose, the expression of StAR, CYP1B1, and 3ß-HSD genes were increased compared to treatment with 1, 1.5, 3, 6, and 7.5 mg/mL glucose (P < 0.001). There was an increasing and then decreasing quadratic correlation between glucose concentrations and protein expression of CREB1 (r2 = 0.819, P < 0.001), StAR (r2 = 0.844, P < 0.001), 3ß-HSD (r2 = 0.801, P < 0.001), and CYP11A1 (r2 = 0.800, P < 0.001) in theca cells of laying hens. The protein expression of CREB1, StAR, and 3ß-HSD in theca cells cultured with 4.5 mg/mL glucose was higher than in other groups (P < 0.001). The results indicate that the appropriate glucose concentration (4.5 mg/mL) can improve the synthesis of steroid hormones in theca cells of laying hens through the upregulation of key genes and proteins in the CREB/StAR signaling pathway.


Asunto(s)
Fosfoproteínas , Progesterona , Células Tecales , Femenino , Animales , Células Tecales/metabolismo , Progesterona/metabolismo , Pollos/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/farmacología , Esteroides/metabolismo , Esteroides/farmacología , Transducción de Señal , Glucosa/metabolismo , Células de la Granulosa
16.
Front Endocrinol (Lausanne) ; 14: 1268248, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37964966

RESUMEN

Introduction: Granulosa cells (GCs) and theca cells (TCs) play a pivotal role in human ovarian steroidogenesis, facilitating the conversion of cholesterol into sex steroids that regulate normal reproductive function. This study aims to explore the expression patterns of key enzymes that govern human ovarian steroidogenesis throughout follicle development, employing both genomic and immunological methodologies. Methods: Follicles and GCs obtained from women undergoing ovarian tissue cryopreservation (OTC) and in vitro fertilisation treatment were utilized. Gene expression data were obtained from a Chinese study using RNA sequencing and from microarray data generated in our laboratory to comprehensively analyse gene expression profiles across distinct stages of follicular development. To corroborate the localisation of key enzymes within GCs and TCs, immunohistochemistry analyses utilizing colourimetric and fluorescent techniques were conducted. Results: Steroidogenesis-related enzymes displayed low gene expression levels during early follicle development. However, a notable upregulation of HSD3B2 was observed in GCs as follicles progressed to the antral/preovulatory stage, confirmed consistently using both microarray and RNA sequencing methodologies. Furthermore, immunohistochemical analyses effectively demonstrated that HSD3B2 were not only expressed in GCs, but co-localised with CYP17A1 within a specific subset of TCs surrounding human small antral follicles. Contributing to an enhanced progesterone production during the second half of the follicular phase was a significant upregulation of CYB5A in both microarray and RNA-seq datasets as follicles transition from the antral stage to the pre-ovulatory stage. Moreover, an augmented expression of DHCR24 and LDLR in both types of data, along with HMGCR expression expression in the microarray data, indicates increased substrate availability for ovarian steroidogenesis. Discussion: This study confirms and extends that GCs gradually augment expression of HSD3B2 thereby enhancing their capacity for progesterone synthesis as follicles reach the size of selection at around 10 mm in diameter. This is supported by the expression CYB5A and possibly augmented availability of steroid precursors. A subset of TCs exhibit concurrent expression of CYP17A1 and HSD3B2, collectively contributing to the synthesis of 17-hydroxyprogesterone. These data significantly enhance our understanding of the dynamic regulation of progesterone throughout the process of follicular development.


Asunto(s)
Folículo Ovárico , Progesterona , Humanos , Femenino , Progesterona/metabolismo , Folículo Ovárico/metabolismo , Células de la Granulosa/metabolismo , Ovario , Células Tecales/metabolismo
17.
Theriogenology ; 211: 198-202, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657147

RESUMEN

The purpose of this research was to quantify sperm acrosome associated 3 protein expression in the ovaries of young (3.0 ± 0.9 months, n = 11) and adult (10.4 ± 2.8 months, n = 11) queens. Immunohistochemistry was performed on formalin-fixed, paraffin-embedded feline ovarian sections. Ovaries were obtained following routine ovariohysterectomy of queens. Cellular expression of sperm acrosome associated 3 protein was measured in primordial, primary, secondary, and tertiary follicles using an image-analysis software's red, green, and blue stack and manual thresholding functions. The oocyte nucleus, ooplasm, granulosa cells, and theca cells were outlined using the freehand selection tool and mean grey value was recorded. Results from each cellular location were compared between age groups using a Student's t-test and between follicle stages using an analysis of variance. Compared to adult queens, younger queens had significantly greater sperm acrosome associated 3 protein expression in granulosa cells of primary, secondary, and tertiary follicles. Also, theca cells of secondary and tertiary follicles had significantly greater sperm acrosome associated 3 protein expression in younger queens compared to adult queens. The oocyte nucleus of primordial, primary, and secondary follicles had significantly greater sperm acrosome associated 3 protein expression in younger queens compared to adult queens. However, sperm acrosome associated 3 protein expression within the ooplasm did not differ significantly between age groups of any follicle type. More research is needed to determine what role sperm acrosome associated 3 protein may play in female fertility in animals as well as what mechanisms regulate ovarian sperm acrosome associated 3 protein expression over time.


Asunto(s)
Isoantígenos , Ovario , Proteínas de Plasma Seminal , Animales , Gatos , Femenino , Folículo Ovárico/metabolismo , Ovario/metabolismo , Proteínas de Plasma Seminal/genética , Isoantígenos/genética , Envejecimiento , Células Tecales/metabolismo
18.
Mycotoxin Res ; 39(4): 367-377, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37423938

RESUMEN

Cattle are deemed less susceptible to mycotoxins due to the limited internal exposure resulting from rumen microbiota activity. However, the significant amounts of Fusarium mycotoxins deoxynivalenol (DON) and zearalenone (ZEN) frequently detected in bovine follicular fluid samples suggest that they could affect ovarian function. Both mycotoxins trigger several patterns of cell death and activate the NLRP3 inflammasome in the intestine. In vitro studies have reported a number of adverse effects on bovine oocytes. However, the biological relevance of such findings with regard to realistic concentrations of DON and ZEN in bovine follicular fluid is still not clear. Hence, it is important to better characterize the effects of dietary exposure to DON and ZEN on the bovine ovary. Using bovine primary theca cells, this study investigated the effects of real-life patterns for bovine ovary exposure to DON and ZEN, but also DON metabolite DOM-1, on cell death and NLRP3 inflammasome activation. Exposure to DON starting from 0.1 µM significantly decreased theca cell viability. The kinetics of phosphatidylserine translocation and loss of membrane integrity showed that ZEN and DON, but not DOM-1, induce an apoptotic phenotype. qPCR analysis of the expression of NLRP3, PYCARD, IL-1ß, IL-18, and GSDMD in primary theca cells at concentrations of mycotoxin previously reported in cow follicular fluid clearly indicated that DON and DOM-1 individually and in mixture, but not ZEN, activate NLRP3 inflammasome. Altogether, these results suggest that real-life dietary exposure of cattle to DON may induce inflammatory disorders in the ovary.


Asunto(s)
Fusarium , Micotoxinas , Zearalenona , Femenino , Bovinos , Animales , Zearalenona/análisis , Fusarium/metabolismo , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Células Tecales/química , Células Tecales/metabolismo , Micotoxinas/metabolismo , Apoptosis
19.
Domest Anim Endocrinol ; 84-85: 106791, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37167929

RESUMEN

Recent studies have reported hormonal regulation of expression of fibrillin 1 (FBN1), the gene that encodes asprosin, in bovine theca cells, however, hormonal regulation of gene expression of FBN1 and the asprosin receptor, olfactory receptor 4M1 (OR4M1), has not been evaluated in granulosa cells (GC). This study was designed to characterize FBN1 and OR4M1 gene expression in GC during development of bovine dominant ovarian follicles, and to determine the hormonal regulation of FBN1 and OR4M1 mRNA expression in GC. GC FBN1 mRNA abundance was greater (P < 0.05) in medium (5.1-8 mm) estrogen inactive (EI) follicles than in large (>8.1 mm) or small (1-5 mm) EI follicles. In comparison, GC OR4M1 mRNA abundance was greater (P < 0.05) in small EI follicles than in large or medium EI follicles. Abundance of OR4M1 mRNA in GC of follicles collected on days 3 to 4 (early growth phase) and on days 5 to 6 (late growth phase) was similar, whereas FBN1 mRNA abundance was greater (P < 0.05) on days 5 to 6 vs days 3 to 4. Hormonal regulators for FBN1 mRNA abundance in cultured small-follicle GC were identified: TGFß1 causing a 2.45-fold increase, WNT3A causing a 1.45-fold increase, and IGF1 causing a 65% decrease. Steroids, leptin, insulin, growth hormone, follicle stimulating hormone, fibroblast growth factor 9 and epidermal growth factor had no effect on FBN1 mRNA abundance. Abundance of OR4M1 mRNA in GC was regulated by progesterone with 3.55-fold increase, but other hormones did not affect GC OR4M1 mRNA abundance. Findings indicate that both FBN1 and OR4M1 gene expression are hormonally and developmentally regulated in bovine follicles, and thus may affect asprosin production and its subsequent role in ovarian follicular function in cattle.


Asunto(s)
Receptores Odorantes , Femenino , Bovinos , Animales , Receptores Odorantes/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Células Tecales/metabolismo , Estrógenos , Hormona Folículo Estimulante/metabolismo , Estradiol/metabolismo
20.
Reprod Fertil Dev ; 35(9): 518-526, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37225163

RESUMEN

CONTEXT: Sphingosine-1-phosphate (S1P) is synthesised by follicle granulosa cells under the influence of follicle-stimulating hormone and seems to be necessary for the biological effects of this gonadotrophin. AIMS: To determine if luteinising hormone (LH) increases S1P production and if this sphingolipid, either induced by LH or added to culture media, regulates steroidogenesis and cell viability in bovine theca cells. METHODS: We used bovine theca cell cultures treated with: S1P (0, 0.1, 1 and 10µM; Experiment 1), LH (0, 0.02, 0.2 and 2ngmL-1 ; Experiment 2) and LH (0.02ngmL-1 ) plus a sphingosine kinase inhibitor (SKI-178; 0, 5 and 10µM; Experiment 3). KEY RESULTS: Treatment with S1P did not affect (P >0.05) theca cell viability or their ability to produce progesterone and testosterone. LH (0.02ngmL-1 ) increased (P <0.05) S1P production, and stimulated the expression of phosphorylated sphingosine kinase-1 (pSPHK1). However, the inhibition of SPHK1, by a specific SPHK1 inhibitor (SKI-178), reduced (P <0.05) cell viability and progesterone secretion. Additionally, the use of SKI-178 increased theca cell testosterone production (P<0.05). CONCLUSIONS: S1P added to culture media did not affect cell viability or steroid synthesis. However, LH stimulated the production of S1P, by increasing phosphorylation of SPHK1 in theca cells. This intracellular S1P was inhibitory on testosterone production but augmented progesterone and viable cell number. IMPLICATIONS: These results suggest a novel signalling pathway for LH in theca cells and underline the importance of S1P in the regulation of steroid synthesis.


Asunto(s)
Progesterona , Células Tecales , Femenino , Animales , Bovinos , Células Tecales/metabolismo , Progesterona/metabolismo , Hormona Luteinizante/farmacología , Hormona Luteinizante/metabolismo , Células de la Granulosa/metabolismo , Testosterona/metabolismo , Proliferación Celular , Medios de Cultivo/farmacología , Células Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA