Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.795
Filtrar
1.
J Pharmacol Sci ; 156(3): 180-187, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39313276

RESUMEN

Fibromyalgia (FM) is an intractable disease with a chief complaint of chronic widespread pain. Amitriptyline (AMI) and duloxetine (DLX), which are antidepressant drugs, have been reported to ameliorate pain in patients with FM and pain-related behaviors in several rodent models of FM. However, the mechanisms of action of AMI and DLX are not yet fully understood. Here, we examined the effects of these drugs on the responsiveness of superficial dorsal horn (SDH) neurons in the spinal cord, using a rat FM model developed by injecting a biogenic amine depleter (reserpine). Extracellular recordings of SDH neurons in vivo demonstrated that bath application of AMI and DLX at concentrations of 0.1-1.0 mM on the dorsal surface of the spinal cord markedly suppressed spontaneous discharge and von Frey filament-evoked mechanical firing in SDH neurons. The suppression induced by the drugs was noted in a concentration-dependent manner and the suppressive effects resolved after washing the spinal cord surface. These results show that SDH neurons are the site of action for AMI and DLX in a rat reserpine-induced FM model. Spinal mechanisms may underlie the therapeutic effects of these drugs in patients with FM.


Asunto(s)
Amitriptilina , Modelos Animales de Enfermedad , Clorhidrato de Duloxetina , Fibromialgia , Células del Asta Posterior , Ratas Sprague-Dawley , Reserpina , Animales , Clorhidrato de Duloxetina/farmacología , Amitriptilina/farmacología , Fibromialgia/tratamiento farmacológico , Fibromialgia/inducido químicamente , Células del Asta Posterior/efectos de los fármacos , Masculino , Ratas , Antidepresivos/farmacología , Relación Dosis-Respuesta a Droga
2.
Mol Pain ; 20: 17448069241285357, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39237258

RESUMEN

Background: IL-1ß plays a critical role in the pathophysiology of neuroinflammation. The presence of cleaved IL-1ß (cIL-1ß) in the neurons of the dorsal root ganglion (DRG) implicates its function in biological signaling arising from the sensory neuron. This study was conducted to analyze the role of IL-1ß in nociceptive transduction after tissue injury. Methods: A plantar incision was made in C57BL/6 mice, following which immunohistochemistry and RNA scope in situ hybridization were performed at various time points to analyze cIL-1ß, caspase-1, and IL-1 receptor 1 (IL-1R1) expression in the DRG. The effect of intrathecal administration of a caspase-1 inhibitor or regional anesthesia using local anesthetics on cIL-1ß expression and pain hypersensitivity was analyzed by immunohistochemistry and behavioral analysis. ERK phosphorylation was also analyzed to investigate the effect of IL-1ß on the activity of spinal dorsal horn neurons. Results: cIL-1ß expression was significantly increased in caspase-1-positive DRG neurons 5 min after the plantar incision. Intrathecal caspase-1 inhibitor treatment inhibited IL-1ß cleavage and pain hypersensitivity after the plantar incision. IL-1R1 was also detected in the DRG neurons, although the majority of IL-1R1-expressing neurons lacked cIL-1ß expression. Regional anesthesia using local anesthetics prevented cIL-1ß processing. Plantar incision-induced phosphorylation of ERK was inhibited by the caspase-1 inhibitor. Conclusion: IL-1ß in the DRG neuron undergoes rapid cleavage in response to tissue injury in an activity-dependent manner. Cleaved IL-1ß causes injury-induced functional activation of sensory neurons and pain hypersensitivity. IL-1ß in the primary afferent neurons is involved in physiological nociceptive signal transduction.


Asunto(s)
Ganglios Espinales , Interleucina-1beta , Animales , Masculino , Ratones , Caspasa 1/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Ganglios Espinales/metabolismo , Ganglios Espinales/patología , Hiperalgesia/metabolismo , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/patología , Neuronas/efectos de los fármacos , Fosforilación/efectos de los fármacos , Células del Asta Posterior/metabolismo , Células del Asta Posterior/efectos de los fármacos , Receptores Tipo I de Interleucina-1/metabolismo
3.
J Pain ; 25(10): 104609, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38885917

RESUMEN

While early-life adversity has been associated with a higher risk of developing chronic pain in adulthood, the cellular and molecular mechanisms by which chronic stress during the neonatal period can persistently sensitize developing nociceptive circuits remain poorly understood. Here, we investigate the effects of early-life stress (ELS) on synaptic integration and intrinsic excitability in dynorphin-lineage (DYN) interneurons within the adult mouse superficial dorsal horn (SDH), which are important for inhibiting mechanical pain and itch. The administration of neonatal limited bedding between postnatal days (P)2 and P9 evoked sex-dependent effects on spontaneous glutamatergic signaling, as female SDH neurons exhibited a higher amplitude of miniature excitatory postsynaptic currents (mEPSCs) after ELS, while mEPSC frequency was reduced in DYN neurons of the male SDH. Furthermore, ELS decreased the frequency of miniature inhibitory postsynaptic currents selectively in female DYN neurons. As a result, ELS increased the balance of spontaneous excitation versus inhibition (E:I ratio) in mature DYN neurons of the female, but not male, SDH network. Nonetheless, ELS weakened the total primary afferent-evoked glutamatergic drive onto adult DYN neurons selectively in females, without modifying afferent-evoked inhibitory signaling onto the DYN population. Finally, ELS failed to significantly change the intrinsic membrane excitability of mature DYN neurons in either males or females. Collectively, these data suggest that ELS exerts a long-term influence on the properties of synaptic transmission onto DYN neurons within the adult SDH, which includes a reduction in the overall strength of sensory input onto this important subset of inhibitory interneurons. PERSPECTIVE: This study suggests that chronic stress during the neonatal period influences synaptic function within adult spinal nociceptive circuits in a sex-dependent manner. These findings yield new insight into the potential mechanisms by which early-life adversity might shape the maturation of pain pathways in the central nervous system (CNS).


Asunto(s)
Dinorfinas , Potenciales Postsinápticos Excitadores , Estrés Psicológico , Animales , Femenino , Dinorfinas/metabolismo , Ratones , Masculino , Estrés Psicológico/fisiopatología , Estrés Psicológico/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Células del Asta Posterior/fisiología , Interneuronas/fisiología , Animales Recién Nacidos , Ratones Endogámicos C57BL , Caracteres Sexuales , Potenciales Postsinápticos Inhibidores/fisiología
4.
Pflugers Arch ; 476(8): 1171-1186, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38822875

RESUMEN

Spontaneous activity refers to the firing of action potentials by neurons in the absence of external stimulation. Initially considered an artifact or "noise" in the nervous system, it is now recognized as a potential feature of neural function. Spontaneous activity has been observed in various brain areas, in experimental preparations from different animal species, and in live animals and humans using non-invasive imaging techniques. In this review, we specifically focus on the spontaneous activity of dorsal horn neurons of the spinal cord. We use a historical perspective to set the basis for a novel classification of the different patterns of spontaneous activity exhibited by dorsal horn neurons. Then we examine the origins of this activity and propose a model circuit to explain how the activity is generated and transmitted to the dorsal horn. Finally, we discuss possible roles of this activity during development and during signal processing under physiological conditions and pain states. By analyzing recent studies on the spontaneous activity of dorsal horn neurons, we aim to shed light on its significance in sensory processing. Understanding the different patterns of activity, the origins of this activity, and the potential roles it may play, will contribute to our knowledge of sensory mechanisms, including pain, to facilitate the modeling of spinal circuits and hopefully to explore novel strategies for pain treatment.


Asunto(s)
Células del Asta Posterior , Animales , Células del Asta Posterior/fisiología , Humanos , Potenciales de Acción/fisiología , Dolor/fisiopatología , Médula Espinal/fisiología
5.
Neuropharmacology ; 254: 109994, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750803

RESUMEN

Neuronal voltage-gated KCNQ (Kv7) channels, expressed centrally and peripherally, mediate low-threshold and non-inactivating M-currents responsible for the control of tonic excitability of mammalian neurons. Pharmacological opening of KCNQ channels has been reported to generate analgesic effects in animal models of neuropathic pain. Here, we examined the possible involvement of central KCNQ channels in the analgesic effects of retigabine, a KCNQ channel opener. Behaviorally, intraperitoneally applied retigabine exerted analgesic effects on thermal and mechanical hypersensitivity in male mice developing neuropathic pain after partial sciatic nerve ligation, which was antagonized by the KCNQ channel blocker XE991 preadministered intraperitoneally and intrathecally. Intrathecally applied retigabine also exerted analgesic effects that were inhibited by intrathecally injected XE991. We then explored the synaptic mechanisms underlying the analgesic effects of retigabine in the spinal dorsal horn. Whole-cell recordings were made from dorsal horn neurons in spinal slices with attached dorsal roots from adult male mice developing neuropathic pain, and the effects of retigabine on miniature and afferent-evoked postsynaptic currents were examined. Retigabine reduced the amplitude of A-fiber-mediated EPSCs without affecting C-fiber-mediated excitatory synaptic transmission. A-fiber-mediated EPSCs remained unaltered by retigabine in the presence of XE991, consistently with the behavioral findings. The frequency and amplitude of mEPSCs were not affected by retigabine. Thus, opening of KCNQ channels in the central terminals of primary afferent A-fibers inhibits excitatory synaptic transmission in the spinal dorsal horn, most likely contributing to the analgesic effect of retigabine.


Asunto(s)
Analgésicos , Antracenos , Carbamatos , Canales de Potasio KCNQ , Fenilendiaminas , Animales , Masculino , Carbamatos/farmacología , Fenilendiaminas/farmacología , Canales de Potasio KCNQ/antagonistas & inhibidores , Canales de Potasio KCNQ/efectos de los fármacos , Antracenos/farmacología , Ratones , Analgésicos/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Neuralgia/tratamiento farmacológico , Células del Asta Posterior/efectos de los fármacos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/fisiología , Asta Dorsal de la Médula Espinal/efectos de los fármacos
6.
Zhen Ci Yan Jiu ; 49(5): 448-455, 2024 May 25.
Artículo en Inglés, Chino | MEDLINE | ID: mdl-38764115

RESUMEN

OBJECTIVES: To observe the effect of electroacupuncture (EA) at different intensities on nociceptive discharges of wide dynamic range (WDR) neurons in the spinal dorsal horns (DHs) of rats, so as to explore its regulatory characteristics on nociceptive signals at the spinal level. METHODS: A total of 25 male SD rats were used in the present study. A microelectrode array was used to record the discharge activity of WDR neurons in the lumbar spinal DHs of normal rats. After finding the WDR neuron, electrical stimulation (pulse width of 2 ms) was administered to the plantar receptive field (RF) for determining its response component of discharges according to the latency of action potential generation (Aß ï¼»0 to 20 msï¼½, Aδ ï¼»20 to 90 msï¼½, C ï¼»90 to 500 msï¼½ and post-discharge ï¼»500 to 800 msï¼½). High-intensity electrical stimulation was continuously applied to the RF at the paw's plantar surface to induce DHs neuronal windup response. Subsequently, EA stimulation at different intensities (1 mA and 2 mA) was applied to the left "Zusanli"(ST36) at a frequency of 2 Hz/15 Hz for 10 min. The induction of WDR neuronal windup was then repeated under the same conditions. The quantity of nociceptive discharge components and the windup response of WDR neurons before and after EA stimulations at different intensities were compared. RESULTS: Compared to pre-EA, both EA1 mA and EA2 mA significantly reduced the number of Aδ and C component discharges of WDR neurons during stimulation, as well as post-discharge (P<0.01, P<0.001). The inhibitory rate of C component by EA2 mA was significantly higher than that by EA1 mA (P<0.05). Meanwhile, both EA1 mA and EA2 mA attenuated the windup response of WDR neurons (P<0.05, P<0.01), and the effect of EA2 mA was stronger than that of EA1 mA (P<0.05). Further analysis showed that when EA1 mA and EA2 mA respectively applied to both non-receptive field (non-RF) and RF, a significant reduction in the number of Aδ component, C component and post-discharge was observed (P<0.05, P<0.01). EA2 mA at the non-RF and RF demonstrated a significant inhibitory effect on the windup response of WDR neurons (P<0.01, P<0.05), but EA1 mA only at the non-RF showed a significant inhibitory effect on the windup response (P<0.01). CONCLUSIONS: EA can suppress nociceptive discharges of spinal DHs WDR neurons in rats. The inhibitory impact of EA is strongly correlated with the location and intensity of EA stimulation, and EA2 mA has a stronger inhibitory effect than EA1 mA.


Asunto(s)
Puntos de Acupuntura , Electroacupuntura , Ratas Sprague-Dawley , Animales , Masculino , Ratas , Humanos , Nocicepción , Asta Dorsal de la Médula Espinal/fisiopatología , Células del Asta Posterior/fisiología , Potenciales de Acción
7.
Cell Rep ; 43(6): 114293, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38814784

RESUMEN

Chronic pain is associated with alterations in fundamental cellular processes. Here, we investigate whether Beclin 1, a protein essential for initiating the cellular process of autophagy, is involved in pain processing and is targetable for pain relief. We find that monoallelic deletion of Becn1 increases inflammation-induced mechanical hypersensitivity in male mice. However, in females, loss of Becn1 does not affect inflammation-induced mechanical hypersensitivity. In males, intrathecal delivery of a Beclin 1 activator, tat-beclin 1, reverses inflammation- and nerve injury-induced mechanical hypersensitivity and prevents mechanical hypersensitivity induced by brain-derived neurotrophic factor (BDNF), a mediator of inflammatory and neuropathic pain. Pain signaling pathways converge on the enhancement of N-methyl-D-aspartate receptors (NMDARs) in spinal dorsal horn neurons. The loss of Becn1 upregulates synaptic NMDAR-mediated currents in dorsal horn neurons from males but not females. We conclude that inhibition of Beclin 1 in the dorsal horn is critical in mediating inflammatory and neuropathic pain signaling pathways in males.


Asunto(s)
Autofagia , Beclina-1 , Animales , Beclina-1/metabolismo , Masculino , Femenino , Ratones , Hiperalgesia/metabolismo , Hiperalgesia/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Neuralgia/metabolismo , Neuralgia/patología , Ratones Endogámicos C57BL , Inflamación/metabolismo , Inflamación/patología , Transducción de Señal , Células del Asta Posterior/metabolismo , Células del Asta Posterior/patología
8.
Exp Mol Med ; 56(5): 1193-1205, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760512

RESUMEN

Neuropathic pain is a debilitating condition caused by the hyperexcitability of spinal dorsal horn neurons and is often characterized by allodynia. Although neuron-independent mechanisms of hyperexcitability have been investigated, the contribution of astrocyte-neuron interactions remains unclear. Here, we show evidence of reactive astrocytes and their excessive GABA release in the spinal dorsal horn, which paradoxically leads to the tonic excitation of neighboring neurons in a neuropathic pain model. Using multiple electrophysiological methods, we demonstrated that neuronal hyperexcitability is attributed to both increased astrocytic GABA synthesis via monoamine oxidase B (MAOB) and the depolarized reversal potential of GABA-mediated currents (EGABA) via the downregulation of the neuronal K+/Cl- cotransporter KCC2. Furthermore, longitudinal 2-deoxy-2-[18F]-fluoro-D-glucose microPET imaging demonstrated increased regional glucose metabolism in the ipsilateral dorsal horn, reflecting neuronal hyperexcitability. Importantly, inhibiting MAOB restored the entire astrocytic GABA-mediated cascade and abrogated the increased glucose metabolism and mechanical allodynia. Overall, astrocytic GABA-mediated tonic excitation is critical for neuronal hyperexcitability, leading to mechanical allodynia and neuropathic pain.


Asunto(s)
Astrocitos , Glucosa , Neuralgia , Ácido gamma-Aminobutírico , Astrocitos/metabolismo , Animales , Neuralgia/metabolismo , Neuralgia/etiología , Glucosa/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Masculino , Ratones , Neuronas/metabolismo , Hiperalgesia/metabolismo , Hiperalgesia/etiología , Células del Asta Posterior/metabolismo , Monoaminooxidasa/metabolismo , Modelos Animales de Enfermedad , Ratas , Cotransportadores de K Cl
9.
Brain ; 147(7): 2507-2521, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38577773

RESUMEN

Opioid pain medications, such as morphine, remain the mainstay for treating severe and chronic pain. Prolonged morphine use, however, triggers analgesic tolerance and hyperalgesia (OIH), which can last for a long period after morphine withdrawal. How morphine induces these detrimental side effects remains unclear. Here, we show that morphine tolerance and OIH are mediated by Tiam1-coordinated synaptic structural and functional plasticity in the spinal nociceptive network. Tiam1 is a Rac1 GTPase guanine nucleotide exchange factor that promotes excitatory synaptogenesis by modulating actin cytoskeletal dynamics. We found that prolonged morphine treatment activated Tiam1 in the spinal dorsal horn and Tiam1 ablation from spinal neurons eliminated morphine antinociceptive tolerance and OIH. At the same time, the pharmacological blockade of Tiam1-Rac1 signalling prevented the development and reserved the established tolerance and OIH. Prolonged morphine treatment increased dendritic spine density and synaptic NMDA receptor activity in spinal dorsal horn neurons, both of which required Tiam1. Furthermore, co-administration of the Tiam1 signalling inhibitor NSC23766 was sufficient to abrogate morphine tolerance in chronic pain management. These findings identify Tiam1-mediated maladaptive plasticity in the spinal nociceptive network as an underlying cause for the development and maintenance of morphine tolerance and OIH and provide a promising therapeutic target to reduce tolerance and prolong morphine use in chronic pain management.


Asunto(s)
Analgésicos Opioides , Tolerancia a Medicamentos , Hiperalgesia , Morfina , Plasticidad Neuronal , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T , Animales , Morfina/farmacología , Proteína 1 de Invasión e Inducción de Metástasis del Linfoma-T/metabolismo , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Tolerancia a Medicamentos/fisiología , Ratones , Analgésicos Opioides/farmacología , Masculino , Ratones Endogámicos C57BL , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Proteína de Unión al GTP rac1/metabolismo
10.
J Pharmacol Sci ; 155(2): 63-73, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677787

RESUMEN

Remimazolam is an ultra-short benzodiazepine that acts on the benzodiazepine site of γ-aminobutyric acid (GABA) receptors in the brain and induces sedation. Although GABA receptors are found localized in the spinal dorsal horn, no previous studies have reported the analgesic effects or investigated the cellular mechanisms of remimazolam on the spinal dorsal horn. Behavioral measures, immunohistochemistry, and in vitro whole-cell patch-clamp recordings of dorsal horn neurons were used to assess synaptic transmission. Intrathecal injection of remimazolam induced behavioral analgesia in inflammatory pain-induced mechanical allodynia (six rats/dose; p < 0.05). Immunohistochemical staining revealed that remimazolam suppressed spinal phosphorylated extracellular signal-regulated kinase activation (five rats/group, p < 0.05). In vitro whole-cell patch-clamp analysis demonstrated that remimazolam increased the frequency of GABAergic miniature inhibitory post-synaptic currents, prolonged the decay time (six rats; p < 0.05), and enhanced GABA currents induced by exogenous GABA (seven rats; p < 0.01). However, remimazolam did not affect miniature excitatory post-synaptic currents or amplitude of monosynaptic excitatory post-synaptic currents evoked by Aδ- and C-fiber stimulation (seven rats; p > 0.05). This study suggests that remimazolam induces analgesia by enhancing GABAergic inhibitory transmission in the spinal dorsal horn, suggesting its potential utility as a spinal analgesic for inflammatory pain.


Asunto(s)
Benzodiazepinas , Células del Asta Posterior , Ratas Sprague-Dawley , Transmisión Sináptica , Animales , Células del Asta Posterior/efectos de los fármacos , Células del Asta Posterior/metabolismo , Masculino , Transmisión Sináptica/efectos de los fármacos , Benzodiazepinas/farmacología , Técnicas de Placa-Clamp , Analgésicos/farmacología , Ácido gamma-Aminobutírico/metabolismo , Ratas , Inyecciones Espinales , Hiperalgesia/tratamiento farmacológico , Receptores de GABA/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo
11.
Neuron ; 112(8): 1302-1327.e13, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38452762

RESUMEN

Sensory feedback is integral for contextually appropriate motor output, yet the neural circuits responsible remain elusive. Here, we pinpoint the medial deep dorsal horn of the mouse spinal cord as a convergence point for proprioceptive and cutaneous input. Within this region, we identify a population of tonically active glycinergic inhibitory neurons expressing parvalbumin. Using anatomy and electrophysiology, we demonstrate that deep dorsal horn parvalbumin-expressing interneuron (dPV) activity is shaped by convergent proprioceptive, cutaneous, and descending input. Selectively targeting spinal dPVs, we reveal their widespread ipsilateral inhibition onto pre-motor and motor networks and demonstrate their role in gating sensory-evoked muscle activity using electromyography (EMG) recordings. dPV ablation altered limb kinematics and step-cycle timing during treadmill locomotion and reduced the transitions between sub-movements during spontaneous behavior. These findings reveal a circuit basis by which sensory convergence onto dorsal horn inhibitory neurons modulates motor output to facilitate smooth movement and context-appropriate transitions.


Asunto(s)
Parvalbúminas , Asta Dorsal de la Médula Espinal , Ratones , Animales , Células del Asta Posterior/fisiología , Locomoción , Interneuronas/fisiología , Médula Espinal
12.
Cells ; 13(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474361

RESUMEN

Pathological pain emerges from nociceptive system dysfunction, resulting in heightened pain circuit activity. Various forms of circuitry plasticity, such as central sensitization, synaptic plasticity, homeostatic plasticity, and excitation/inhibition balance, contribute to the malfunction of neural circuits during pain pathogenesis. Recently, a new form of plasticity in the spinal dorsal horn (SDH), named neural circuit polarization (NCP), was discovered in pain models induced by HIV-1 gp120 and chronic morphine administration. NCP manifests as an increase in excitatory postsynaptic currents (EPSCs) in excitatory neurons and a decrease in EPSCs in inhibitory neurons, presumably facilitating hyperactivation of pain circuits. The expression of NCP is associated with astrogliosis. Ablation of reactive astrocytes or suppression of astrogliosis blocks NCP and, concomitantly, the development of gp120- or morphine-induced pain. In this review, we aim to compare and integrate NCP with other forms of plasticity in pain circuits to improve the understanding of the pathogenic contribution of NCP and its cooperation with other forms of circuitry plasticity during the development of pathological pain.


Asunto(s)
Gliosis , Células del Asta Posterior , Humanos , Gliosis/metabolismo , Células del Asta Posterior/metabolismo , Dolor/metabolismo , Asta Dorsal de la Médula Espinal , Derivados de la Morfina/metabolismo
13.
PLoS One ; 19(3): e0300282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38483883

RESUMEN

Recent transcriptomic studies identified Gucy2d (encoding guanylate cyclase D) as a highly enriched gene within inhibitory dynorphin interneurons in the mouse spinal dorsal horn. To facilitate investigations into the role of the Gucy2d+ population in somatosensation, Gucy2d-cre transgenic mice were created to permit chemogenetic or optogenetic manipulation of this subset of spinal neurons. Gucy2d-cre mice created via CRISPR/Cas9 genomic knock-in were bred to mice expressing a cre-dependent reporter (either tdTomato or Sun1.GFP fusion protein), and the resulting offspring were characterized. Surprisingly, a much wider population of spinal neurons was labeled by cre-dependent reporter expression than previous mRNA-based studies would suggest. Although the cre-dependent reporter expression faithfully labeled ~75% of cells expressing Gucy2d mRNA in the adult dorsal horn, it also labeled a substantial number of additional inhibitory neurons in which no Gucy2d or Pdyn mRNA was detected. Moreover, cre-dependent reporter was also expressed in various regions of the brain, including the spinal trigeminal nucleus, cerebellum, thalamus, somatosensory cortex, and anterior cingulate cortex. Injection of AAV-CAG-FLEX-tdTomato viral vector into adult Gucy2d-cre mice produced a similar pattern of cre-dependent reporter expression in the spinal cord and brain, which excludes the possibility that the unexpected reporter-labeling of cells in the deep dorsal horn and brain was due to transient Gucy2d expression during early stages of development. Collectively, these results suggest that Gucy2d is expressed in a wider population of cells than previously thought, albeit at levels low enough to avoid detection with commonly used mRNA-based assays. Therefore, it is unlikely that these Gucy2d-cre mice will permit selective manipulation of inhibitory signaling mediated by spinal dynorphin interneurons, but this novel cre driver line may nevertheless be useful to target a broader population of inhibitory spinal dorsal horn neurons.


Asunto(s)
Dinorfinas , Proteína Fluorescente Roja , Asta Dorsal de la Médula Espinal , Ratones , Animales , Médula Espinal/metabolismo , Ratones Transgénicos , Interneuronas/metabolismo , Células del Asta Posterior/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Guanilato Ciclasa/metabolismo , Receptores de Superficie Celular/metabolismo
14.
Mol Pain ; 20: 17448069241233744, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38323375

RESUMEN

Methylglyoxal (MGO), a highly reactive dicarbonyl metabolite of glucose primarily formed during the glycolytic pathway, is a precursor of advanced glycation end-products (AGEs). Recently, numerous studies have shown that MGO accumulation can cause pain and hyperalgesia. However, the mechanism through which MGO induces pain in the spinal dorsal horn remains unclear. The present study investigated the effect of MGO on spontaneous excitatory postsynaptic currents (sEPSC) in rat spinal dorsal horn neurons using blind whole-cell patch-clamp recording. Perfusion of MGO increased the frequency and amplitude of sEPSC in spinal horn neurons in a concentration-dependent manner. Additionally, MGO administration increased the number of miniature EPSC (mEPSC) in the presence of tetrodotoxin, a sodium channel blocker. However, 6-cyano-7-nitroqiunocaline-2,3-dione (CNQX), an AMPA/kainate receptor antagonist, blocked the enhancement of sEPSC by MGO. HC-030031, a TRP ankyrin-1 (TRPA1) antagonist, and capsazepine, a TRP vanilloid-1 (TRPV1) antagonist, inhibited the action of MGO. Notably, the effects of MGO were completely inhibited by HC-030031 and capsazepine. MGO generates reactive oxygen species (ROS) via AGEs. ROS also potentially induce pain via TRPA1 and TRPV1 in the spinal dorsal horn. Furthermore, we examined the effect of MGO in the presence of N-tert-butyl-α-phenylnitrone (PBN), a non-selective ROS scavenger, and found that the effect of MGO was completely inhibited. These results suggest that MGO increases spontaneous glutamate release from the presynaptic terminal to spinal dorsal horn neurons through TRPA1, TRPV1, and ROS and could enhance excitatory synaptic transmission.


Asunto(s)
Acetanilidas , Capsaicina/análogos & derivados , Óxido de Magnesio , Purinas , Piruvaldehído , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Piruvaldehído/farmacología , Piruvaldehído/metabolismo , Ratas Sprague-Dawley , Óxido de Magnesio/metabolismo , Óxido de Magnesio/farmacología , Asta Dorsal de la Médula Espinal/metabolismo , Células del Asta Posterior/metabolismo , Dolor/metabolismo , Transmisión Sináptica/fisiología
15.
Neuroscience ; 543: 49-64, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38417539

RESUMEN

In males but not in females, brain derived neurotrophic factor (BDNF) plays an obligatory role in the onset and maintenance of neuropathic pain. Afferent terminals of injured peripheral nerves release colony stimulating factor (CSF-1) and other mediators into the dorsal horn. These transform the phenotype of dorsal horn microglia such that they express P2X4 purinoceptors. Activation of these receptors by neuron-derived ATP promotes BDNF release. This microglial-derived BDNF increases synaptic activation of excitatory dorsal horn neurons and decreases that of inhibitory neurons. It also alters the neuronal chloride gradient such the normal inhibitory effect of GABA is converted to excitation. By as yet undefined processes, this attenuated inhibition increases NMDA receptor function. BDNF also promotes the release of pro-inflammatory cytokines from astrocytes. All of these actions culminate in the increase dorsal horn excitability that underlies many forms of neuropathic pain. Peripheral nerve injury also alters excitability of structures in the thalamus, cortex and mesolimbic system that are responsible for pain perception and for the generation of co-morbidities such as anxiety and depression. The weight of evidence from male rodents suggests that this preferential modulation of excitably of supra-spinal pain processing structures also involves the action of microglial-derived BDNF. Possible mechanisms promoting the preferential release of BDNF in pain signaling structures are discussed. In females, invading T-lymphocytes increase dorsal horn excitability but it remains to be determined whether similar processes operate in supra-spinal structures. Despite its ubiquitous role in pain aetiology neither BDNF nor TrkB receptors represent potential therapeutic targets.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuralgia , Ratas , Animales , Femenino , Masculino , Ratas Sprague-Dawley , Factor Neurotrófico Derivado del Encéfalo/farmacología , Células del Asta Posterior , Asta Dorsal de la Médula Espinal , Neuralgia/tratamiento farmacológico , Hiperalgesia
16.
Cell Rep ; 43(2): 113718, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38294904

RESUMEN

How mechanical allodynia following nerve injury is encoded in patterns of neural activity in the spinal cord dorsal horn (DH) remains incompletely understood. We address this in mice using the spared nerve injury model of neuropathic pain and in vivo electrophysiological recordings. Surprisingly, despite dramatic behavioral over-reactivity to mechanical stimuli following nerve injury, an overall increase in sensitivity or reactivity of DH neurons is not observed. We do, however, observe a marked decrease in correlated neural firing patterns, including the synchrony of mechanical stimulus-evoked firing, across the DH. Alterations in DH temporal firing patterns are recapitulated by silencing DH parvalbumin+ (PV+) interneurons, previously implicated in mechanical allodynia, as are allodynic pain-like behaviors. These findings reveal decorrelated DH network activity, driven by alterations in PV+ interneurons, as a prominent feature of neuropathic pain and suggest restoration of proper temporal activity as a potential therapeutic strategy to treat chronic neuropathic pain.


Asunto(s)
Neuralgia , Percepción del Tiempo , Animales , Ratones , Hiperalgesia , Asta Dorsal de la Médula Espinal , Células del Asta Posterior , Interneuronas , Médula Espinal
17.
Neuropharmacology ; 247: 109858, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38286189

RESUMEN

The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".


Asunto(s)
Neuronas , Asta Dorsal de la Médula Espinal , Interneuronas/fisiología , Células del Asta Posterior
18.
Pain ; 165(1): 75-91, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37624905

RESUMEN

ABSTRACT: Nerve injury-induced aberrant changes in gene expression in spinal dorsal horn neurons are critical for the genesis of neuropathic pain. N6-methyladenine (m 6 A) modification of DNA represents an additional layer of gene regulation. Here, we report that peripheral nerve injury significantly decreased the level of m 6 A-specific DNA methyltransferase 1 ( N6amt1 ) in dorsal horn neurons. This decrease was attributed, at least partly, to a reduction in transcription factor Nr2f6 . Rescuing the decrease in N6amt1 reversed the loss of m 6 A at the promoter for inwardly rectifying potassium channel subfamily J member 16 ( Kcnj16 ), mitigating the nerve injury-induced upregulation of Kcnj16 expression in the dorsal horn and alleviating neuropathic pain hypersensitivities. Conversely, mimicking the downregulation of N6amt1 in naive mice erased DNA m 6 A at the Kcnj16 promoter, elevated Kcnj16 expression, and led to neuropathic pain-like behaviors. Therefore, decreased N6amt1 caused by NR2F6 is required for neuropathic pain, likely through its regulation of m 6 A-controlled KCNJ16 in dorsal horn neurons, suggesting that DNA m 6 A modification may be a potential new target for analgesic and treatment strategies.


Asunto(s)
Neuralgia , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica) , Animales , Ratones , Regulación hacia Abajo , Hiperalgesia/metabolismo , Neuralgia/genética , Neuralgia/metabolismo , Células del Asta Posterior/metabolismo , Asta Dorsal de la Médula Espinal/metabolismo , Regulación hacia Arriba , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
19.
Neurochem Res ; 49(2): 507-518, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37955815

RESUMEN

Previous studies suggested that postsynaptic neuroligin-2 may shift from inhibitory toward excitatory function under pathological pain conditions. We hypothesize that nerve injury may increase the expression of spinal MAM-domain GPI-anchored molecule 1 (MDGA1), which can bind to neuroligin-2 and thereby, alter its interactions with postsynaptic scaffolding proteins and increase spinal excitatory synaptic transmission, leading to neuropathic pain. Western blot, immunofluorescence staining, and co-immunoprecipitation studies were conducted to examine the critical role of MDGA1 in the lumbar spinal cord dorsal horn in rats after spinal nerve ligation (SNL). Small interfering ribonucleic acids (siRNAs) targeting MDGA1 were used to examine the functional roles of MDGA1 in neuropathic pain. Protein levels of MDGA1 in the ipsilateral dorsal horn were significantly upregulated at day 7 post-SNL, as compared to that in naïve or sham rats. The increased levels of GluR1 in the synaptosomal membrane fraction of the ipsilateral dorsal horn tissues at day 7 post-SNL was normalized to near sham level by pretreatment with intrathecal MDGA1 siRNA2308, but not scrambled siRNA or vehicle. Notably, knocking down MDGA1 with siRNAs reduced the mechanical and thermal pain hypersensitivities, and inhibited the increased excitatory synaptic interaction between neuroligin-2 with PSD-95, and prevented the decreased inhibitory postsynaptic interactions between neuroligin-2 and Gephyrin. Our findings suggest that SNL upregulated MDGA1 expression in the dorsal horn, which contributes to the pain hypersensitivity through increasing the net excitatory interaction mediated by neuroligin-2 and surface delivery of GluR1 subunit in dorsal horn neurons.


Asunto(s)
Neuralgia , Neuroliginas , Ratas , Animales , Regulación hacia Arriba , Ratas Sprague-Dawley , Asta Dorsal de la Médula Espinal/metabolismo , Células del Asta Posterior/metabolismo , Neuralgia/patología , Nervios Espinales , ARN Interferente Pequeño/metabolismo , Hiperalgesia/metabolismo , Médula Espinal/patología
20.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37989592

RESUMEN

Sensory systems are shaped in postnatal life by the refinement of synaptic connectivity. In the dorsal horn of the spinal cord, somatosensory circuits undergo postnatal activity-dependent reorganization, including the refinement of primary afferent A-fiber terminals from superficial to deeper spinal dorsal horn laminae which is accompanied by decreases in cutaneous sensitivity. Here, we show in the mouse that microglia, the resident immune cells in the CNS, phagocytose A-fiber terminals in superficial laminae in the first weeks of life. Genetic perturbation of microglial engulfment during the initial postnatal period in either sex prevents the normal process of A-fiber refinement and elimination, resulting in an altered sensitivity of dorsal horn cells to dynamic tactile cutaneous stimulation, and behavioral hypersensitivity to dynamic touch. Thus, functional microglia are necessary for the normal postnatal development of dorsal horn sensory circuits. In the absence of microglial engulfment, superfluous A-fiber projections remain in the dorsal horn, and the balance of sensory connectivity is disrupted, leading to lifelong hypersensitivity to dynamic touch.


Asunto(s)
Percepción del Tacto , Tacto , Animales , Ratones , Microglía , Asta Dorsal de la Médula Espinal , Fibras Nerviosas Mielínicas/fisiología , Médula Espinal/fisiología , Células del Asta Posterior
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA