Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Res Microbiol ; 172(7-8): 103881, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34543694

RESUMEN

Some bacterial stress responses are involved in survival under antibiotic treatment and contribute to less susceptible microbial forms selection. Here, we tested the role of cadaverine, one of the biogenic polyamines considered as universal adaptogens, in the processes. The expression of ldcC and cadA genes, encoding cadaverine-producing lysine decarboxylase, increased in Escherichia coli cells exposed to ß-lactams and fluoroquinolones but not aminoglycosides. The transcriptional regulators RpoS and SoxS controlled the expression of ldcC and cadA, respectively, in response to antibiotics. Exogenous cadaverine had little effect on E. coli antibiotic susceptibility, whereas non-antibiotic-induced endogenous cadaverine contributed to its tolerance to ß-lactams, fluoroquinolones, and aminoglycosides. Antibiotic-induced cadaverine synthesis promoted bacterial survival under fluoroquinolone exposure, as well as could contribute to low-resistant bacterial forms development. Selection under the fluoroquinolone levofloxacin exposure toward bacteria with an increased ability to synthesize cadaverine and negative correlation between LdcC activity and fluoroquinolone susceptibility in the selected forms were demonstrated. The same correlation in a special group of low-level resistant clinical E. coli isolates was revealed. So, cadaverine biosynthesis appeared to be a significant player in decreased E. coli antibiotic susceptibility development.


Asunto(s)
Antibacterianos/farmacología , Cadaverina/biosíntesis , Carboxiliasas/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Cadaverina/metabolismo , Cadaverina/farmacología , Carboxiliasas/metabolismo , Farmacorresistencia Bacteriana , Tolerancia a Medicamentos , Escherichia coli/genética , Infecciones por Escherichia coli/microbiología , Fluoroquinolonas/farmacología , Regulación Bacteriana de la Expresión Génica , Levofloxacino/farmacología , Pruebas de Sensibilidad Microbiana , Mutación , beta-Lactamas/farmacología
2.
Appl Biochem Biotechnol ; 193(2): 533-543, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33037593

RESUMEN

An economical source of nitrogen is one of the major limiting factors for sustainable cadaverine production. The utilization potential of soybean residue for enhanced cadaverine production by engineered Escherichia coli DFC1001 was investigated in this study. The SRH from soybean residue could get the protein extraction rate (PE) of 67.51% and the degree of protein hydrolysis (DH) of 22.49%. The protein molecular weights in SRH were mainly distributed in 565 Da (72.28%) and 1252 Da (17.11%). These proteins with small molecular weights and concentrated molecular weight distribution were favorable to be transformed by engineered E. coli DFC1001, and then SRH replaced completely yeast powder as an only nitrogen source for cadaverine production. The maximum cadaverine productivity was 0.52 g/L/h, achieved with a constant speed feeding strategy in the optimized SRH fermentation medium containing an initial total sugar concentration of 30 g/L and exogenous added minerals, which indicated that soybean residue could be a potential feedstock for economic cadaverine production.


Asunto(s)
Cadaverina/biosíntesis , Escherichia coli , Glycine max/química , Microorganismos Modificados Genéticamente , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/crecimiento & desarrollo
3.
Int J Biol Macromol ; 169: 8-17, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33301846

RESUMEN

Several approaches for efficient production of cadaverine, a bio-based diamine with broad industrial applications have been explored. Here, Serratia marcescens lysine decarboxylase (SmcadA) was expressed in E. coli; mild surfactants added in biotransformation reactions; the E. coli native lysine/cadaverine antiporter cadB, E. coli pyridoxal kinases pdxK and pdxY overexpressed and synthetic RBS libraries screened. Addition of mild surfactants and overexpression of antiporter cadB increased cadaverine biosynthesis of SmcadA. Moreover, expression of pdxY gene yielded 19.82 g/L in a reaction mixture containing added cofactor precursor pyridoxal (PL), without adding exogenous PLP. The screened synthetic RBS1, applied to fully exploit pdxY gene expression, ultimately resulted in PLP self-sufficiency, producing 27.02 g/L cadaverine using strain T7R1_PL. To boost SmcadA catalytic activity, the designed mutants Arg595Lys and Ser512Ala had significantly improved cumulative cadaverine production of 219.54 and 201.79 g/L respectively compared to the wild-type WT (181.62 g/L), after 20 h reaction. Finally, molecular dynamics simulations for WT and variants indicated that increased flexibility at the binding sites of the protein enhanced residue-ligand interactions, contributing to high cadaverine synthesis. This work demonstrates potential of harnessing different pull factors through integrated gene engineering of efficient biocatalysts and gaining insight into the mechanisms involved through MD simulations.


Asunto(s)
Cadaverina/biosíntesis , Cadaverina/aislamiento & purificación , Serratia marcescens/enzimología , Antiportadores/genética , Biotransformación/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Genética/métodos , Lisina/metabolismo , Ingeniería Metabólica/métodos , Biosíntesis de Proteínas , Procesamiento Proteico-Postraduccional , Piridoxal Quinasa/genética , Fosfato de Piridoxal/genética , Serratia marcescens/metabolismo
4.
J Biosci Bioeng ; 130(6): 553-562, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32792329

RESUMEN

Due to the limiting natural resources, greenhouse effect and global warming crisis, the bio-based chemicals which are environmentally friendly materials have gradually become urgent and important. Cadaverine, a 1,5-diaminopentane (DAP), is widely used as block chemicals for synthesis of biopolymer, which can be produced from lysine by lysine decarboxylase (EC 4.1.1.18) in Escherichia coli. However, the DAP will be further utilized into by-products through downstream genes of speE, puuA, speG and ygjG, which decrease the amount of product. In this study, two approaches including Lambda-Red system for gene knockout, and clustered regularly interspaced short palindromic repeats interference (CRISPRi) for gene knockdown; are explored to manipulate the metabolic flux among 26 genetic E. coli. As a result, CadA driven by inducible T7 promoter accumulated more DAP from CRISPRi targeted on single-gene repressive strains such as BT7AiE, BT7AiP, BT7AiG and BT7AiY. The highest DAP titer and productivity was obtained to 38 g/L and 2.67 g/L/h in BT7AiY (repression of ygjG). We also investigated the co-factor pyridoxal 5'-phosphate (PLP) effect on lysine consumption and DAP production from different E. coli derivatives. In contrast to CRISPRi-mediated strains, 4 genes knockout strain (BT7AdEPGY) deal with 98% lysine consumption and achieved 37.45 g/L DAP and 3.17 g/L/h DAP productivity. The metabolic regulation by CRISPRi is a simple strategy and the results are consistent with gene knockout to manipulate the pathway for DAP production.


Asunto(s)
Cadaverina/biosíntesis , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Eliminación de Gen , Ingeniería Metabólica/métodos , Regiones Promotoras Genéticas/genética
5.
Appl Microbiol Biotechnol ; 102(18): 7837-7847, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29998412

RESUMEN

A whole-cell (cadaverine-producing strain, Escherichia coli AST3) immobilization method was developed for improving catalytic activity and cadaverine tolerance during cadaverine production. Cell-immobilized beads were prepared by polyvinyl alcohol (PVA) and sodium alginate (SA) based on their advantages in biocatalyst activity recovery and mechanical strength. The following optimal immobilization conditions were established using response surface methodology: 3.62% SA, 4.71% PVA, 4.21% CaCl2, calcification, 12 h, and freezing for 16 h at - 80 °C, with a cell concentration of 0.3% (g dry cell weight (DCW) per 100 mL) of immobilized beads. After a 2-h bioconversion, the immobilized beads maintained 85% of their original biocatalyst activity, which was 1.8-fold higher than that of free cells. Furthermore, the effects of cell protectants on immobilized biocatalyst activity were examined by fed-batch bioconversion experiments. The results showed that the addition of polyvinylpyrrolidone (PVP) into the immobilized matrix effectively protected biocatalyst activity, with 95% of the relative activity remaining after the 2-h bioconversion. The performance of PVA-SA-PVP-immobilized E. coli AST3 showed continuous production of cadaverine, with an average cadaverine yield of 29 ± 1 g gDCW-1 h-1 after 12 h, suggesting that this method is capable of industrial scale cadaverine production.


Asunto(s)
Cadaverina/metabolismo , Cadaverina/farmacología , Citoprotección/efectos de los fármacos , Alginatos/metabolismo , Cadaverina/biosíntesis , Catálisis , Alcohol Polivinílico/metabolismo
6.
Sci Rep ; 8(1): 5856, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29643457

RESUMEN

Sustainable and eco-efficient alternatives for the production of platform chemicals, fuels and chemical building blocks require the development of stable, reusable and recyclable biocatalysts. Here we present a novel concept for the biocatalytic production of 1,5-diaminopentane (DAP, trivial name: cadaverine) using catalytically active inclusion bodies (CatIBs) of the constitutive L-lysine decarboxylase from E. coli (EcLDCc-CatIBs) to process L-lysine-containing culture supernatants from Corynebacterium glutamicum. EcLDCc-CatIBs can easily be produced in E. coli followed by a simple purification protocol yielding up to 43% dry CatIBs per dry cell weight. The stability and recyclability of EcLDCc-CatIBs was demonstrated in (repetitive) batch experiments starting from L-lysine concentrations of 0.1 M and 1 M. EcLDC-CatIBs exhibited great stability under reaction conditions with an estimated half-life of about 54 h. High conversions to DAP of 87-100% were obtained in 30-60 ml batch reactions using approx. 180-300 mg EcLDCc-CatIBs, respectively. This resulted in DAP titres of up to 88.4 g l-1 and space-time yields of up to 660 gDAP l-1 d-1 per gram dry EcLDCc-CatIBs. The new process for DAP production can therefore compete with the currently best fermentative process as described in the literature.


Asunto(s)
Cadaverina/biosíntesis , Carboxiliasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Cuerpos de Inclusión/enzimología , Técnicas de Cultivo Celular por Lotes/métodos , Biocatálisis , Reactores Biológicos/microbiología , Carboxiliasas/genética , Carboxiliasas/aislamiento & purificación , Corynebacterium glutamicum/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Lisina/metabolismo , Ingeniería Metabólica/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo
7.
Appl Biochem Biotechnol ; 185(4): 909-924, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29374336

RESUMEN

Cadaverine is used for the synthesis of the novel bio-polyamides 54, 56, and 510. Here, we examine the feasibility of using a lysine decarboxylase (LdcC) from Escherichia coli for high-level production of cadaverine. After sequential optimization of whole-cell biotransformation conditions, recombinant E. coli-overexpressing LdcC (EcLdcC) could produce 1.0 M cadaverine from 1.2 M crude L-lysine solution after 9 h. EcLdcC retained a higher cadaverine yield after being reused 10 times at acidic and alkaline pH values than that of a recombinant E. coli strain overexpressing an inducible lysine decarboxylase (CadA), a conventional cadaverine producer (90 vs. 51% at pH 6 and 55 vs. 15% at pH 8). This study reveals that EcLdcC is a promising whole-cell biocatalyst for the bio-based production of cadaverine from industrial grade L-lysine in comparison to EcCadA.


Asunto(s)
Cadaverina/biosíntesis , Carboxiliasas/biosíntesis , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/biosíntesis , Ingeniería Metabólica , Carboxiliasas/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Lisina/genética , Lisina/metabolismo
8.
Biotechnol Lett ; 40(4): 719-727, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29349625

RESUMEN

OBJECTIVE: To enhance the thermal and alkaline pH stability of the lysine decarboxylase from Escherichia coli (CadA) by engineering the decameric interface and explore its potential for industrial applications. RESULTS: The mutant T88S was designed for improved structural stability by computational analysis. The optimal pH and temperature of T88S were 7.0 and 55 °C (5.5 and 50 °C for wild-type). T88S showed higher thermostability with a 2.9-fold increase in the half-life at 70 °C (from 11 to 32 min) and increased melting temperature (from 76 to 78 °C). Additionally, the specific activity and pH stability (residual activity after 10 h incubation) of T88S at pH 8.0 were increased to 164 U/mg and 78% (58 U/mg and 57% for wild-type). The productivity of cadaverine with T88S (284 g L-lysine L-1 and 5 g DCW L-1) was 40 g L-1 h-1, in contrast to 28 g L-1 h-1 with wild-type. CONCLUSION: The mutant T88S showed high thermostability, pH stability, and activity at alkaline pH, indicating that this mutant is a promising biocatalyst for industrial production of cadaverine.


Asunto(s)
Cadaverina/biosíntesis , Carboxiliasas/química , Escherichia coli/enzimología , Ingeniería Genética , Cadaverina/química , Carboxiliasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Mutación
9.
PLoS One ; 12(9): e0185060, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28931053

RESUMEN

L-lysine decarboxylase (LDC, EC 4.1.1.18) is a key enzyme in the decarboxylation of L-lysine to 1,5-pentanediamine and efficiently contributes significance to biosynthetic capability. Metagenomic technology is a shortcut approach used to obtain new genes from uncultured microorganisms. In this study, a subtropical soil metagenomic library was constructed, and a putative LDC gene named ldc1E was isolated by function-based screening strategy through the indication of pH change by L-lysine decarboxylation. Amino acid sequence comparison and homology modeling indicated the close relation between Ldc1E and other putative LDCs. Multiple sequence alignment analysis revealed that Ldc1E contained a highly conserved motif Ser-X-His-Lys (Pxl), and molecular docking results showed that this motif was located in the active site and could combine with the cofactor pyridoxal 5'-phosphate. The ldc1E gene was subcloned into the pET-30a(+) vector and highly expressed in Escherichia coli BL21 (DE3) pLysS. The recombinant protein was purified to homogeneity. The maximum activity of Ldc1E occurred at pH 6.5 and 40°C using L-lysine monohydrochloride as the substrate. Recombinant Ldc1E had apparent Km, kcat, and kcat/Km values of 1.08±0.16 mM, 5.09±0.63 s-1, and 4.73×103 s-1 M-1, respectively. The specific activity of Ldc1E was 1.53±0.06 U mg-1 protein. Identifying a metagenome-derived LDC gene provided a rational reference for further gene modifications in industrial applications.


Asunto(s)
Carboxiliasas/genética , Carboxiliasas/metabolismo , Metagenoma , Microbiología del Suelo , Cadaverina/biosíntesis , Carboxiliasas/química , Dominio Catalítico , China , Clima , Clonación Molecular , Escherichia coli/genética , Concentración de Iones de Hidrógeno , Metales/química , Conformación Proteica , Homología Estructural de Proteína , Especificidad por Sustrato , Temperatura
10.
Enzyme Microb Technol ; 104: 9-15, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28648182

RESUMEN

Cadaverine, a five-carbon diamine (1,5-diaminopentane), can be made by fermentation or direct bioconversion and plays an important role as a building block of polyamides. Lysine decarboxylase (CadA) transforms L-lysine to cadaverine and pyridoxal 5'-phosphate (PLP) can increases conversion rate and yield as a cofactor. Biotransformation of cadaverine using whole Escherichia coli cells that overexpress the lysine decarboxylase has many merits, such as the rapid conversion of l-lysine to cadaverine, possible application of high concentration reactions up to the molar level, production of less byproduct and potential reuse of the enzyme by immobilization. However, the supply of PLP, which is a cofactor of lysine decarboxylase, is the major bottleneck in this system. Therefore, we initiated our study on PLP precursors and PLP-related enzymes and discovered that pyridoxal (PL) can be a viable alternative to supply PLP. Among various PLP systems examined, pyridoxal kinase (PdxY) showed the highest conversion of PL to PLP, resulting in more than 60% conversion of l-lysine to cadaverine with lysine decarboxylase. When the reaction with 0.4M l-lysine, 0.2mM PL and more whole cells was performed, it resulted in an 80% conversion yield. Furthermore, when barium-alginate immobilization was applied, it showed a 90% conversion yield in 1h with PL, suggesting that it is compatible with developed whole-cell systems without a direct supply of exogenous PLP.


Asunto(s)
Cadaverina/biosíntesis , Escherichia coli/metabolismo , Piridoxal Quinasa/metabolismo , Fosfato de Piridoxal/metabolismo , Biotecnología , Biotransformación , Carboxiliasas/metabolismo , Células Inmovilizadas , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lisina/metabolismo , Piridoxal/metabolismo
11.
Sci Rep ; 5: 15630, 2015 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-26490441

RESUMEN

Although the routes of de novo pyridoxal 5'-phosphate (PLP) biosynthesis have been well described, studies of the engineering of an intracellular PLP supply are limited, and the effects of cellular PLP levels on PLP-dependent enzyme-based whole-cell biocatalyst activity have not been described. To investigate the effects of PLP cofactor availability on whole-cell biocatalysis, the ribose 5-phosphate (R5P)-dependent pathway genes pdxS and pdxT of Bacillus subtilis were introduced into the lysine decarboxylase (CadA)-overexpressing Escherichia coli strain BL-CadA. This strain was then used as a whole-cell biocatalyst for cadaverine production from L-lysine. Co-expression strategies were evaluated, and the culture medium was optimised to improve the biocatalyst performance. As a result, the intracellular PLP concentration reached 1144 nmol/gDCW, and a specific cadaverine productivity of 25 g/gDCW/h was achieved; these values were 2.4-fold and 2.9-fold higher than those of unmodified BL-CadA, respectively. Additionally, the resulting strain AST3 showed a cadaverine titre (p = 0.143, α = 0.05) similar to that of the BL-CadA strain with the addition of 0.1 mM PLP. These approaches for improving intracellular PLP levels to enhance whole-cell lysine bioconversion activity show great promise for the engineering of a PLP cofactor to optimise whole-cell biocatalysis.


Asunto(s)
Biocatálisis , Cadaverina/biosíntesis , Ingeniería Metabólica , Fosfato de Piridoxal/biosíntesis , Bacillus subtilis/genética , Cadaverina/metabolismo , Carboxiliasas/genética , Escherichia coli/genética , Fosfato de Piridoxal/química , Fosfato de Piridoxal/genética
12.
Antimicrob Agents Chemother ; 59(12): 7214-23, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26349827

RESUMEN

Paracoccidioidomycosis (PCM), caused by Paracoccidioides species, is the main cause of death due to systemic mycoses in Brazil and other Latin American countries. Therapeutic options for PCM and other systemic mycoses are limited and time-consuming, and there are high rates of noncompliance, relapses, toxic side effects, and sequelae. Previous work has shown that the cyclopalladated 7a compound is effective in treating several kinds of cancer and parasitic Chagas disease without significant toxicity in animals. Here we show that cyclopalladated 7a inhibited the in vitro growth of Paracoccidioides lutzii Pb01 and P. brasiliensis isolates Pb18 (highly virulent), Pb2, Pb3, and Pb4 (less virulent) in a dose-response manner. Pb18 was the most resistant. Opportunistic Candida albicans and Cryptococcus neoformans were also sensitive. BALB/c mice showed significantly lighter lung fungal burdens when treated twice a day for 20 days with a low cyclopalladated 7a dose of 30 µg/ml/day for 30 days after intratracheal infection with Pb18. Electron microscopy images suggested that apoptosis- and autophagy-like mechanisms are involved in the fungal killing mechanism of cyclopalladated 7a. Pb18 yeast cells incubated with the 7a compound showed remarkable chromatin condensation, DNA degradation, superoxide anion production, and increased metacaspase activity suggestive of apoptosis. Autophagy-related killing mechanisms were suggested by increased autophagic vacuole numbers and acidification, as indicated by an increase in LysoTracker and monodansylcadaverine (MDC) staining in cyclopalladated 7a-treated Pb18 yeast cells. Considering that cyclopalladated 7a is highly tolerated in vivo and affects yeast fungal growth through general apoptosis- and autophagy-like mechanisms, it is a novel promising drug for the treatment of PCM and other mycoses.


Asunto(s)
Antifúngicos/farmacología , Compuestos Organometálicos/farmacología , Paladio/farmacología , Paracoccidioides/efectos de los fármacos , Paracoccidioidomicosis/tratamiento farmacológico , Animales , Antifúngicos/síntesis química , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Cadaverina/análogos & derivados , Cadaverina/biosíntesis , Candida albicans/efectos de los fármacos , Candida albicans/crecimiento & desarrollo , Caspasas/genética , Caspasas/metabolismo , Cromatina/efectos de los fármacos , Cromatina/patología , Cromatina/ultraestructura , Cryptococcus neoformans/efectos de los fármacos , Cryptococcus neoformans/crecimiento & desarrollo , Fragmentación del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expresión Génica , Pulmón/efectos de los fármacos , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Compuestos Organometálicos/síntesis química , Paladio/química , Paracoccidioides/genética , Paracoccidioides/crecimiento & desarrollo , Paracoccidioides/ultraestructura , Paracoccidioidomicosis/microbiología , Paracoccidioidomicosis/patología , Superóxidos/metabolismo , Vacuolas/efectos de los fármacos , Vacuolas/patología , Vacuolas/ultraestructura
13.
J Environ Sci Health B ; 50(11): 797-808, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26357890

RESUMEN

The aim of this study was to evaluate the combined effect of temperature (10, 20 and 37°C), pH (4, 5, 6, 7 and 8), and NaCl content (0, 1, 3, 4, 5 and 6% w/v) on the growth and putrescine and cadaverine production of Serratia marcescens CCM 303 under model conditions. The decarboxylase activity of S. marcescens was monitored in broth after cultivation. The cultivation medium was enriched with selected amino acids (ornithine, arginine and lysine; 0.2% w/v each) serving as precursors of biogenic amines. Levels of putrescine and cadaverine in broth were analysed by high-performance liquid chromatography after pre-column derivatisation with o-phthalaldehyde reagent. S. marcescens produced higher amounts of putrescine (up to 2096.8 mg L(-1)) compared to cadaverine content (up to 343.3 mg L(-1)) in all cultivation media. The highest putrescine and cadaverine concentrations were reached during cultivation at 10-20°C, pH 5-7 and NaCl content 1-3% w/v. On the other hand, the highest BAs production of individual cell (recalculated based on a cell; so called "yield factor") was observed at 10°C, pH 4 and salt concentration 3-5% w/v as a response to environmental stress.


Asunto(s)
Cadaverina/biosíntesis , Putrescina/biosíntesis , Serratia marcescens/crecimiento & desarrollo , Serratia marcescens/metabolismo , Aminas Biogénicas/metabolismo , Cadaverina/análisis , Cromatografía Líquida de Alta Presión , Medios de Cultivo/química , Medios de Cultivo/farmacología , Concentración de Iones de Hidrógeno , Putrescina/análisis , Serratia marcescens/efectos de los fármacos , Cloruro de Sodio/farmacología , Temperatura
14.
Appl Biochem Biotechnol ; 176(7): 2065-75, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26047931

RESUMEN

Corynebacterium glutamicum is an important microorganism in the biochemical industry for the production of various platform chemicals. However, despite its importance, a limited number of studies have been conducted on how to constitute gene expression cassettes in engineered C. glutamicum to obtain desired amounts of the target products. Therefore, in this study, six expression cassettes for the expression of the second lysine decarboxylase of Escherichia coli, LdcC, were constructed using six synthetic promoters with different strengths and were examined in C. glutamicum for the production of cadaverine. Among six expression cassettes, the expression of the E. coli ldcC gene under the PH30 promoter supported the highest production of cadaverine in flask and fed-batch cultivations. A fed-batch fermentation of recombinant C. glutamicum expressing E. coli ldcC gene under the PH30 promoter resulted in the production of 40.91 g/L of cadaverine in 64 h. This report is expected to contribute toward developing engineered C. glutamicum strains to have desired features.


Asunto(s)
Cadaverina/biosíntesis , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , ADN Recombinante/genética , Ingeniería Genética/métodos , Regiones Promotoras Genéticas/genética , Técnicas de Cultivo Celular por Lotes , Carboxiliasas/genética , Escherichia coli/genética , Fermentación , Expresión Génica
15.
Mol Microbiol ; 97(5): 791-807, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25994085

RESUMEN

The polyamine spermidine is absolutely required for growth and cell proliferation in eukaryotes, due to its role in post-translational modification of essential translation elongation factor eIF5A, mediated by deoxyhypusine synthase. We have found that free-living ciliates Tetrahymena and Paramecium lost the eukaryotic genes encoding spermidine biosynthesis: S-adenosylmethionine decarboxylase (AdoMetDC) and spermidine synthase (SpdSyn). In Tetrahymena, they were replaced by a gene encoding a fusion protein of bacterial AdoMetDC and SpdSyn, present as three copies. In Paramecium, a bacterial homospermidine synthase replaced the eukaryotic genes. Individual AdoMetDC-SpdSyn fusion protein paralogues from Tetrahymena exhibit undetectable AdoMetDC activity; however, when two paralogous fusion proteins are mixed, AdoMetDC activity is restored and spermidine is synthesized. Structural modelling indicates a functional active site is reconstituted by sharing critical residues from two defective protomers across the heteromer interface. Paramecium was found to accumulate homospermidine, suggesting it replaces spermidine for growth. To test this concept, a budding yeast spermidine auxotrophic strain was found to grow almost normally with homospermidine instead of spermidine. Biosynthesis of spermidine analogue aminopropylcadaverine, but not exogenously provided norspermidine, correlated with some growth. Finally, we found that diverse single-celled eukaryotic parasites and multicellular metazoan Schistosoma worms have lost the spermidine biosynthetic pathway but retain deoxyhypusine synthase.


Asunto(s)
Eucariontes/metabolismo , Paramecium/genética , Paramecium/metabolismo , Poliaminas/metabolismo , Espermidina/biosíntesis , Tetrahymena thermophila/genética , Tetrahymena thermophila/metabolismo , Adenosilmetionina Descarboxilasa/química , Adenosilmetionina Descarboxilasa/genética , Adenosilmetionina Descarboxilasa/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Secuencia de Aminoácidos , Animales , Vías Biosintéticas/genética , Cadaverina/análogos & derivados , Cadaverina/biosíntesis , Eucariontes/genética , Fusión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-NH/metabolismo , Procesamiento Proteico-Postraduccional , Schistosoma/genética , Alineación de Secuencia , Espermidina/análogos & derivados , Espermidina/farmacología , Espermidina Sintasa/genética , Espermidina Sintasa/metabolismo , Levaduras/efectos de los fármacos , Levaduras/genética , Levaduras/crecimiento & desarrollo
16.
J Sci Food Agric ; 95(6): 1157-62, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24976408

RESUMEN

BACKGROUND: Biogenic amines have gained a great deal of attention due to their toxic potential in humans. Carp is one of the most important freshwater fish species in China. Salt and sugar are capable of preserving food. There is a limited amount of information on the changes of biogenic amines in freshwater fish influenced by salt and sugar. This study aimed to detect the changes in biogenic amines, sensory attributes, total volatile basic nitrogen (TVB-N) and total viable counts (TVC) of carp influenced by different concentrations of salt and sugar stored at 4 °C. RESULTS: TVB-N and TVC increased with storage time, which was in accordance with the changes of sensory scores. The eight biogenic amines were detected in fresh carp. Putrescine and cadaverine were the main biogenic amines found in carp fillets stored at 4 °C; they had a significant (P < 0.05) correlation with TVB-N. CONCLUSION: Salt processing was found to inhibit the increase of TVB-N, TVC, putrescine and cadaverine in carp. High salt concentration had a positive effect on extending the shelf-life of the carp, compared to low salt concentration.


Asunto(s)
Aminas Biogénicas/biosíntesis , Carbohidratos , Carpas , Frío , Conservación de Alimentos , Alimentos Marinos/análisis , Cloruro de Sodio , Animales , Cadaverina/biosíntesis , Dieta , Microbiología de Alimentos , Conservantes de Alimentos , Almacenamiento de Alimentos/métodos , Humanos , Nitrógeno/metabolismo , Putrescina/biosíntesis , Alimentos Marinos/microbiología , Alimentos Marinos/normas , Gusto
17.
PLoS One ; 9(9): e106589, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25192335

RESUMEN

Polyamines are small molecules associated with a wide variety of physiological functions. Bacterial pathogens have developed subtle strategies to exploit polyamines or manipulate polyamine-related processes to optimize fitness within the host. During the transition from its innocuous E. coli ancestor, Shigella, the aetiological agent of bacillary dysentery, has undergone drastic genomic rearrangements affecting the polyamine profile. A pathoadaptation process involving the speG gene and the cad operon has led to spermidine accumulation and loss of cadaverine. While a higher spermidine content promotes the survival of Shigella within infected macrophages, the lack of cadaverine boosts the pathogenic potential of the bacterium in host tissues. Enteroinvasive E. coli (EIEC) display the same pathogenicity process as Shigella, but have a higher infectious dose and a higher metabolic activity. Pathoadaption events affecting the cad locus have occurred also in EIEC, silencing cadaverine production. Since EIEC are commonly regarded as evolutionary intermediates between E. coli and Shigella, we investigated on their polyamine profile in order to better understand which changes have occurred along the path to pathogenicity. By functional and molecular analyses carried out in EIEC strains belonging to different serotypes, we show that speG has been silenced in one strain only, favouring resistance to oxidative stress conditions and survival within macrophages. At the same time, we observe that the content of spermidine and putrescine, a relevant intermediate in the synthesis of spermidine, is higher in all strains as compared to E. coli. This may represent an evolutionary response to the lack of cadaverine. Indeed, restoring cadaverine synthesis decreases the expression of the speC gene, whose product affects putrescine production. In the light of these results, we discuss the possible impact of pathoadaptation events on the evolutionary emergence of a polyamine profile favouring to the pathogenic lifestyle of Shigella and EIEC.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Poliaminas/metabolismo , Shigella/genética , Shigella/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cadaverina/biosíntesis , Regulación Bacteriana de la Expresión Génica , Orden Génico , Redes y Vías Metabólicas , Ratones , Datos de Secuencia Molecular , Operón , Estrés Oxidativo , Espermidina/biosíntesis
18.
Sheng Wu Gong Cheng Xue Bao ; 30(2): 161-74, 2014 Feb.
Artículo en Chino | MEDLINE | ID: mdl-24941739

RESUMEN

Air pollution and global warming are increasingly deteriorating. Large amounts of polyamides derived from fossil fuel sources are consumed around the world. Cadaverine is an important building monomer block of bio-based polyamides, thus biotechnological processes for these polymers possess enormous ecological and economical potential. Currently, the engineered strains for biological production of cadaverine are Corynebacterium glutamicum and Escherichia coli. We review here the latest research progress of biosynthesis of cadaverine including metabolism of cadaverine in microorganisms, key enzymes and transport proteins in cadaverine synthesis pathway, optimum pathways and cadaverine yields.


Asunto(s)
Cadaverina/biosíntesis , Vías Biosintéticas , Biotecnología , Corynebacterium glutamicum/metabolismo , Escherichia coli/metabolismo
19.
J Ind Microbiol Biotechnol ; 41(4): 701-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24510022

RESUMEN

Cadaverine (1,5-pentanediamine, diaminopentane), the desired raw material of bio-polyamides, is an important industrial chemical with a wide range of applications. Biosynthesis of cadaverine in Corynebacterium glutamicum has been a competitive way in place of petroleum-based chemical synthesis method. To date, the cadaverine exporter has not been found in C. glutamicum. In order to improve cadaverine secretion, the cadaverine-lysine antiporter CadB from Escherichia coli was studied in C. glutamicum. Fusion expression of cadB and green fluorescent protein (GFP) gene confirmed that CadB could express in the cell membrane of C. glutamicum. Co-expression of cadB and ldc from Hafnia alvei in C. glutamicum showed that the cadaverine secretion rate increased by 22 % and the yield of total cadaverine and extracellular cadaverine increased by 30 and 73 %, respectively. Moreover, the recombinant strain cultured at acid and neutral pH separately hardly had any difference in cadaverine concentrations. These results suggested that CadB could be expressed in the cell membrane of C. glutamicum and that recombinant CadB could improve cadaverine secretion and the yield of cadaverine. Moreover, the pH value did not affect the function of recombinant CadB. These results may be a promising metabolic engineering strategy for improving the yield of the desired product by enhancing its export out of the cell.


Asunto(s)
Sistemas de Transporte de Aminoácidos/metabolismo , Antiportadores/metabolismo , Cadaverina/metabolismo , Corynebacterium glutamicum/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistemas de Transporte de Aminoácidos/genética , Antiportadores/genética , Cadaverina/biosíntesis , Corynebacterium glutamicum/genética , Proteínas de Escherichia coli/genética , Ingeniería Metabólica
20.
Int J Food Microbiol ; 165(3): 332-8, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23811038

RESUMEN

Studies of the molecular basis of microbial metabolic activities that are important for the changes in food quality are valuable in order to help in understanding the behavior of spoiling bacteria in food. The growth of a psychrotrophic Serratia proteamaculans strain was monitored in vitro and in artificially inoculated raw beef. Two growth temperatures (25°C and 4°C) were tested in vitro, while growth at 15°C and 4°C was monitored in beef. During growth, the expression of inducible lysine and ornithine-decarboxylase genes was evaluated by quantitative reverse transcription-PCR (qRT-PCR), while the presence of cadaverine and putrescine was quantified by LC-ESI-MS/MS. The expression of the decarboxylase genes, and the consequent production of cadaverine and putrescine were shown to be influenced by the temperature, as well as by the complexity of the growth medium. Generally, the maximum gene expression and amine production took place during the exponential and early stationary phase, respectively. In addition, lower temperatures caused slower growth and gene downregulation. Higher amounts of cadaverine compared to putrescine were found during growth in beef with the highest concentrations corresponding to microbial loads of ca. 9CFU/g. The differences found in gene expression evaluated in vitro and in beef suggested that such activities are more reliably investigated in situ in specific food matrices.


Asunto(s)
Cadaverina/biosíntesis , Carboxiliasas/genética , Regulación Bacteriana de la Expresión Génica , Carne/microbiología , Ornitina Descarboxilasa/genética , Putrescina/biosíntesis , Serratia , Animales , Cadaverina/análisis , Carboxiliasas/metabolismo , Bovinos , Microbiología de Alimentos , Carne/análisis , Ornitina Descarboxilasa/metabolismo , Putrescina/análisis , Serratia/enzimología , Serratia/genética , Espectrometría de Masas en Tándem , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...