Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 10(9): e0137175, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26340748

RESUMEN

BACKGROUND: Vascular patterning depends on coordinated timing of arteriovenous specification of endothelial cells and the concomitant hemodynamic forces supplied by the onset of cardiac function. Using a combination of 3D imaging by OPT and embryo registration techniques, we sought to identify structural differences between three different mouse models of cardiovascular perturbation. RESULTS: Endoglin mutant mice shared a high degree of similarity to Mlc2a mutant mice, which have been shown to have a primary developmental heart defect causing secondary vessel remodeling failures. Dll4 mutant mice, which have well-characterized arterial blood vessel specification defects, showed distinct differences in vascular patterning when compared to the disruptions seen in Mlc2a-/- and Eng-/- models. While Mlc2a-/- and Eng-/- embryos exhibited significantly larger atria than wild-type, Dll4-/- embryos had significantly smaller hearts than wild-type, but this quantitative volume decrease was not limited to the developing atrium. Dll4-/- embryos also had atretic dorsal aortae and smaller trunks, suggesting that the cardiac abnormalities were secondary to primary arterial blood vessel specification defects. CONCLUSIONS: The similarities in Eng-/- and Mlc2a-/- embryos suggest that Eng-/- mice may suffer from a primary heart developmental defect and secondary defects in vessel patterning, while defects in Dll4-/- embryos are consistent with primary defects in vessel patterning.


Asunto(s)
Cardiopatías Congénitas/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Miocardio/metabolismo , Cadenas Ligeras de Miosina/genética , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/crecimiento & desarrollo , Arterias/metabolismo , Arterias/patología , Proteínas de Unión al Calcio , Embrión de Mamíferos , Endoglina , Células Endoteliales/metabolismo , Células Endoteliales/patología , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/patología , Hemodinámica , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Proteínas de la Membrana/deficiencia , Ratones , Ratones Noqueados , Miocardio/patología , Cadenas Ligeras de Miosina/deficiencia , Neovascularización Fisiológica/genética , Organogénesis/genética
2.
J Biol Chem ; 290(17): 10703-16, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25733667

RESUMEN

In beating hearts, phosphorylation of myosin regulatory light chain (RLC) at a single site to 0.45 mol of phosphate/mol by cardiac myosin light chain kinase (cMLCK) increases Ca(2+) sensitivity of myofilament contraction necessary for normal cardiac performance. Reduction of RLC phosphorylation in conditional cMLCK knock-out mice caused cardiac dilation and loss of cardiac performance by 1 week, as shown by increased left ventricular internal diameter at end-diastole and decreased fractional shortening. Decreased RLC phosphorylation by conventional or conditional cMLCK gene ablation did not affect troponin-I or myosin-binding protein-C phosphorylation in vivo. The extent of RLC phosphorylation was not changed by prolonged infusion of dobutamine or treatment with a ß-adrenergic antagonist, suggesting that RLC is constitutively phosphorylated to maintain cardiac performance. Biochemical studies with myofilaments showed that RLC phosphorylation up to 90% was a random process. RLC is slowly dephosphorylated in both noncontracting hearts and isolated cardiac myocytes from adult mice. Electrically paced ventricular trabeculae restored RLC phosphorylation, which was increased to 0.91 mol of phosphate/mol of RLC with inhibition of myosin light chain phosphatase (MLCP). The two RLCs in each myosin appear to be readily available for phosphorylation by a soluble cMLCK, but MLCP activity limits the amount of constitutive RLC phosphorylation. MLCP with its regulatory subunit MYPT2 bound tightly to myofilaments was constitutively phosphorylated in beating hearts at a site that inhibits MLCP activity. Thus, the constitutive RLC phosphorylation is limited physiologically by low cMLCK activity in balance with low MLCP activity.


Asunto(s)
Miocardio/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica/fisiología , Miocitos Cardíacos/metabolismo , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Fosforilación , Ratas , Ratas Sprague-Dawley
3.
J Clin Invest ; 122(4): 1209-21, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22426213

RESUMEN

Actin-myosin interactions provide the driving force underlying each heartbeat. The current view is that actin-bound regulatory proteins play a dominant role in the activation of calcium-dependent cardiac muscle contraction. In contrast, the relevance and nature of regulation by myosin regulatory proteins (for example, myosin light chain-2 [MLC2]) in cardiac muscle remain poorly understood. By integrating gene-targeted mouse and computational models, we have identified an indispensable role for ventricular Mlc2 (Mlc2v) phosphorylation in regulating cardiac muscle contraction. Cardiac myosin cycling kinetics, which directly control actin-myosin interactions, were directly affected, but surprisingly, Mlc2v phosphorylation also fed back to cooperatively influence calcium-dependent activation of the thin filament. Loss of these mechanisms produced early defects in the rate of cardiac muscle twitch relaxation and ventricular torsion. Strikingly, these defects preceded the left ventricular dysfunction of heart disease and failure in a mouse model with nonphosphorylatable Mlc2v. Thus, there is a direct and early role for Mlc2 phosphorylation in regulating actin-myosin interactions in striated muscle contraction, and dephosphorylation of Mlc2 or loss of these mechanisms can play a critical role in heart failure.


Asunto(s)
Miosinas Cardíacas/fisiología , Insuficiencia Cardíaca/enzimología , Ventrículos Cardíacos/enzimología , Modelos Cardiovasculares , Contracción Miocárdica/fisiología , Cadenas Ligeras de Miosina/fisiología , Procesamiento Proteico-Postraduccional , Citoesqueleto de Actina/fisiología , Actomiosina/fisiología , Animales , Fenómenos Biomecánicos , Señalización del Calcio , Miosinas Cardíacas/química , Miosinas Cardíacas/deficiencia , Miosinas Cardíacas/genética , Insuficiencia Cardíaca/fisiopatología , Cinética , Ratones , Ratones Mutantes , Relajación Muscular/fisiología , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Fosforilación , Fosfoserina/química , Relación Estructura-Actividad , Disfunción Ventricular Izquierda/enzimología , Disfunción Ventricular Izquierda/fisiopatología
4.
J Biol Chem ; 284(40): 27377-83, 2009 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-19661065

RESUMEN

During cell division, the mechanisms by which myosin II is recruited to the contractile ring are not fully understood. Much recent work has focused on a model in which spatially restricted de novo filament assembly occurs at the cell equator via localized myosin II regulatory light chain (RLC) phosphorylation, stimulated by the RhoA-activating centralspindlin complex. Here, we show that a recombinant myosin IIA protein that assembles constitutively and is incapable of binding RLC still displays strong localization to the furrow in mammalian cells. Furthermore, this RLC-deficient myosin II efficiently drives cytokinesis, demonstrating that centralspindlin-based RLC phosphorylation is not necessary for myosin II localization during furrowing. Myosin II truncation analysis further reveals two distinct myosin II tail properties that contribute to furrow localization: a central tail domain mediating cortical furrow binding to heterologous binding partners and a carboxyl-terminal region mediating co-assembly with existing furrow myosin IIA or IIB filaments.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Citocinesis , Proteínas Asociadas a Microtúbulos/metabolismo , Miosina Tipo II/metabolismo , Fosfoproteínas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Eliminación de Gen , Antígenos HLA-D/genética , Antígenos HLA-D/metabolismo , Células HeLa , Humanos , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/genética , Fosforilación , Transporte de Proteínas , Proteínas Recombinantes de Fusión/metabolismo
5.
FASEB J ; 21(9): 2205-14, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17356007

RESUMEN

In skeletal muscle, the myosin molecule contains two sets of noncovalently attached low molecular weight proteins, the regulatory (RLC) and essential (ELC) light chains. To assess the functional and developmental significance of the fast skeletal isoform of the RLC (RLC-f), the murine fast skeletal RLC gene (Mylpf) was disrupted by homologous recombination. Heterozygotes containing an intronic neo cassette (RLC-/+) had approximately one-half of the amount of the RLC-f mRNA compared to wild-type (WT) mice but their muscles were histologically normal in both adults and neonates. In contrast, homozygous mice (RLC-/-) had no RLC-f mRNA or protein and completely lacked both fast and slow skeletal muscle. This was likely due to interference with mRNA processing in the presence of the neo cassette. These RLC-f null mice died immediately after birth, presumably due to respiratory failure since their diaphragms lacked skeletal muscle. The body weight of newborn RLC-f null mice was decreased 30% compared to heterozygous or WT newborn mice. The lack of skeletal muscle formation in the null mice did not affect the development of other organs including the heart. In addition, we found that WT mice did not express the ventricular/slow skeletal RLC isoform (RLC-v/s) until after birth, while it was expressed normally in the embryonic heart. The lack of skeletal muscle formation observed in RLC-f null mice indicates the total dependence of skeletal muscle development on the presence of RLC-f during embryogenesis. This observation, along with the normal function of the RLC-v/s in the heart, implicates a coupled, diverse pathway for RLC-v/s and RLC-f during embryogenesis, where RLC-v/s is responsible for heart development and RLC-f is necessary for skeletal muscle formation. In conclusion, in this study we demonstrate that the Mylpf gene is critically important for fast and slow skeletal muscle development.


Asunto(s)
Fibras Musculares de Contracción Rápida/patología , Fibras Musculares de Contracción Lenta/patología , Músculo Esquelético/anomalías , Cadenas Ligeras de Miosina/fisiología , Animales , Animales Recién Nacidos , Cruzamientos Genéticos , Femenino , Corazón Fetal/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes Letales , Genotipo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Esquelético/embriología , Músculo Esquelético/patología , Miocardio/patología , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Reacción en Cadena de la Polimerasa
6.
J Biochem ; 131(5): 641-5, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-11983069

RESUMEN

To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation.


Asunto(s)
Músculo Liso/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosinas/metabolismo , Actinas/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Pollos , Electroforesis en Gel de Poliacrilamida , Moluscos , Mutagénesis/genética , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Fragmentos de Péptidos/análisis , Fosforilación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Porcinos
7.
J Mol Cell Cardiol ; 33(1): 9-25, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11133219

RESUMEN

Within the last 10 years via gene targeting and transgenesis, numerous models of cardiovascular disease have been established and used to determine if a protein's presence or absence causes cardiovascular disease. By affecting the heart's protein complement in a defined manner, the function of the different mutated proteins or protein isoforms present in the contractile apparatus can be determined and pathogenic mechanism(s) explored. We can now remodel the cardiac protein profile and effect replacement of even the most abundant contractile proteins. Precise genetic manipulation allows exploration of the structure-function relationships which underlie cardiac function, and the consequences of defined mutations at the molecular, biochemical, cytological and physiologic levels can be determined.


Asunto(s)
Enfermedades Cardiovasculares/genética , Proteínas Contráctiles/genética , Modelos Animales de Enfermedad , Contracción Miocárdica/fisiología , Animales , Animales Modificados Genéticamente , Cardiomiopatía Hipertrófica/genética , Cardiomiopatía Hipertrófica/metabolismo , Enfermedades Cardiovasculares/metabolismo , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Proteínas Contráctiles/fisiología , Predicción , Marcación de Gen , Genes Dominantes , Humanos , Hipertrofia , Ratones , Ratones Noqueados , Ratones Mutantes , Modelos Animales , Mutación , Cadenas Pesadas de Miosina/deficiencia , Cadenas Pesadas de Miosina/genética , Cadenas Ligeras de Miosina/química , Cadenas Ligeras de Miosina/deficiencia , Cadenas Ligeras de Miosina/genética , Músculos Papilares/patología , Fenotipo , Subunidades de Proteína , Sarcómeros/metabolismo , Tropomiosina/química , Tropomiosina/deficiencia , Tropomiosina/fisiología , Troponina I/química , Troponina I/deficiencia , Troponina I/fisiología , Troponina T/deficiencia , Troponina T/genética , Troponina T/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA