Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 13.334
Filtrar
1.
PLoS One ; 19(5): e0302829, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38728342

RESUMEN

Restless Legs Syndrome (RLS) is a common sleep disorder characterized by an urge to move the legs that is responsive to movement (particularly during rest), periodic leg movements during sleep, and hyperarousal. Recent evidence suggests that the involvement of the adenosine system may establish a connection between dopamine and glutamate dysfunction in RLS. Transcranial magnetic stimulation (TMS) is a non-invasive electrophysiological technique widely applied to explore brain electrophysiology and neurochemistry under different experimental conditions. In this pilot study protocol, we aim to investigate the effects of dipyridamole (a well-known enhancer of adenosinergic transmission) and caffeine (an adenosine receptor antagonist) on measures of cortical excitation and inhibition in response to TMS in patients with primary RLS. Initially, we will assess cortical excitability using both single- and paired-pulse TMS in patients with RLS. Then, based on the measures obtained, we will explore the effects of dipyridamole and caffeine, in comparison to placebo, on various TMS parameters related to cortical excitation and inhibition. Finally, we will evaluate the psycho-cognitive performance of RLS patients to screen them for cognitive impairment and/or mood-behavioral dysfunction, thus aiming to correlate psycho-cognitive findings with TMS data. Overall, this study protocol will be the first to shed lights on the neurophysiological mechanisms of RLS involving the modulation of the adenosine system, thus potentially providing a foundation for innovative "pharmaco-TMS"-based treatments. The distinctive TMS profile observed in RLS holds indeed the potential utility for both diagnosis and treatment, as well as for patient monitoring. As such, it can be considered a target for both novel pharmacological (i.e., drug) and non-pharmacological (e.g., neuromodulatory), "TMS-guided", interventions.


Asunto(s)
Cafeína , Dipiridamol , Síndrome de las Piernas Inquietas , Estimulación Magnética Transcraneal , Humanos , Síndrome de las Piernas Inquietas/tratamiento farmacológico , Síndrome de las Piernas Inquietas/fisiopatología , Estimulación Magnética Transcraneal/métodos , Cafeína/farmacología , Cafeína/uso terapéutico , Proyectos Piloto , Dipiridamol/farmacología , Dipiridamol/uso terapéutico , Masculino , Adenosina/metabolismo , Adulto , Femenino , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Antagonistas de Receptores Purinérgicos P1/farmacología , Persona de Mediana Edad , Prueba de Estudio Conceptual
2.
J Int Soc Sports Nutr ; 21(1): 2352779, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38725238

RESUMEN

RATIONALE: Intense exercise promotes fatigue and can impair cognitive function, particularly toward the end of competition when decision-making is often critical for success. For this reason, athletes often ingest caffeinated energy drinks prior to or during exercise to help them maintain focus, reaction time, and cognitive function during competition. However, caffeine habituation and genetic sensitivity to caffeine (CA) limit efficacy. Paraxanthine (PX) is a metabolite of caffeine reported to possess nootropic properties. This study examined whether ingestion of PX with and without CA affects pre- or post-exercise cognitive function. METHODS: 12 trained runners were randomly assigned to consume in a double-blind, randomized, and crossover manner 400 mg of a placebo (PL); 200 mg of PL + 200 mg of CA; 200 mg of PL + 200 mg of PX (ENFINITY®, Ingenious Ingredients); or 200 mg PX + 200 mg of CA (PX+CA) with a 7-14-day washout between treatments. Participants donated fasting blood samples and completed pre-supplementation (PRE) side effects questionnaires, the Berg-Wisconsin Card Sorting Test (BCST), and the Psychomotor Vigilance Task Test (PVTT). Participants then ingested the assigned treatment and rested for 60 minutes, repeated tests (PRE-EX), performed a 10-km run on a treadmill at a competition pace, and then repeated tests (POST-EX). Data were analyzed using General Linear Model (GLM) univariate analyses with repeated measures and percent changes from baseline with 95% confidence intervals. RESULTS: BCST correct responses in the PX treatment increased from PRE-EX to POST-EX (6.8% [1.5, 12.1], p = 0.012). The error rate in the PL (23.5 [-2.8, 49.8] %, p = 0.078) and CA treatment (31.5 [5.2, 57.8] %, p = 0.02) increased from PRE-EX values with POST-EX errors tending to be lower with PX treatment compared to CA (-35.7 [-72.9, 1.4] %, p = 0.059). POST-EX perseverative errors with PAR rules were significantly lower with PX treatment than with CA (-26.9 [-50.5, -3.4] %, p = 0.026). Vigilance analysis revealed a significant interaction effect in Trial #2 mean reaction time values (p = 0.049, ηp2 = 0.134, moderate to large effect) with POST-EX reaction times tending to be faster with PX and CA treatment. POST-EX mean reaction time of all trials with PX treatment was significantly faster than PL (-23.2 [-43.4, -2.4] %, p = 0.029) and PX+CA (-29.6 [-50.3, -8.80] %, p = 0.006) treatments. There was no evidence that PX ingestion adversely affected ratings of side effects associated with stimulant intake or clinical blood markers. CONCLUSIONS: Results provide some evidence that pre-exercise PX ingestion improves prefrontal cortex function, attenuates attentional decline, mitigates cognitive fatigue, and improves reaction time and vigilance. Adding CA to PX did not provide additional benefits. Therefore, PX ingestion may serve as a nootropic alternative to CA.


Asunto(s)
Cafeína , Cognición , Estudios Cruzados , Carrera , Humanos , Cafeína/administración & dosificación , Cafeína/farmacología , Método Doble Ciego , Cognición/efectos de los fármacos , Carrera/fisiología , Masculino , Adulto , Teofilina/farmacología , Teofilina/administración & dosificación , Femenino , Tiempo de Reacción/efectos de los fármacos , Adulto Joven , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/farmacología
3.
Nutrients ; 16(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38674836

RESUMEN

This study aimed to explore the effects of acute ingestion of caffeine capsules on muscle strength and muscle endurance. We searched the PubMed, Web of Science, Cochrane, Scopus, and EBSCO databases. Data were pooled using the weighted mean difference (WMD) and 95% confidence interval. Fourteen studies fulfilled the inclusion criteria. The acute ingestion of caffeine capsules significantly improved muscle strength (WMD, 7.09, p < 0.00001) and muscle endurance (WMD, 1.37; p < 0.00001), especially in males (muscle strength, WMD, 7.59, p < 0.00001; muscle endurance, WMD, 1.40, p < 0.00001). Subgroup analyses showed that ≥ 6 mg/kg body weight of caffeine (WMD, 6.35, p < 0.00001) and ingesting caffeine 45 min pre-exercise (WMD, 8.61, p < 0.00001) were more effective in improving muscle strength, with the acute ingestion of caffeine capsules having a greater effect on lower body muscle strength (WMD, 10.19, p < 0.00001). In addition, the acute ingestion of caffeine capsules had a greater effect in moderate-intensity muscle endurance tests (WMD, 1.76, p < 0.00001). An acute ingestion of caffeine capsules significantly improved muscle strength and muscle endurance in the upper body and lower body of males.


Asunto(s)
Cafeína , Cápsulas , Fuerza Muscular , Resistencia Física , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Cafeína/administración & dosificación , Cafeína/farmacología , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Resistencia Física/efectos de los fármacos
4.
Behav Pharmacol ; 35(4): 156-160, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38651975

RESUMEN

Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.


Asunto(s)
Ansiedad , Conducta Animal , Cafeína , Animales , Cafeína/farmacología , Cafeína/administración & dosificación , Masculino , Ansiedad/tratamiento farmacológico , Femenino , Ratas , Conducta Animal/efectos de los fármacos , Estimulantes del Sistema Nervioso Central/farmacología , Ansiolíticos/farmacología , Ratas Sprague-Dawley , Actividad Motora/efectos de los fármacos
5.
PLoS One ; 19(4): e0299501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603673

RESUMEN

Mathematical models of epidermal and dermal transport are essential for optimization and development of products for percutaneous delivery both for local and systemic indication and for evaluation of dermal exposure to chemicals for assessing their toxicity. These models often help directly by providing information on the rate of drug penetration through the skin and thus on the dermal or systemic concentration of drugs which is the base of their pharmacological effect. The simulations are also helpful in analyzing experimental data, reducing the number of experiments and translating the in vitro investigations to an in-vivo setting. In this study skin penetration of topically administered caffeine cream was investigated in a skin-on-a-chip microfluidic diffusion chamber at room temperature and at 32°C. Also the transdermal penetration of caffeine in healthy and diseased conditions was compared in mouse skins from intact, psoriatic and allergic animals. In the last experimental setup dexamethasone, indomethacin, piroxicam and diclofenac were examined as a cream formulation for absorption across the dermal barrier. All the measured data were used for making mathematical simulation in a three-compartmental model. The calculated and measured results showed a good match, which findings indicate that our mathematical model might be applied for prediction of drug delivery through the skin under different circumstances and for various drugs in the novel, miniaturized diffusion chamber.


Asunto(s)
Cafeína , Absorción Cutánea , Animales , Ratones , Cafeína/farmacología , Composición de Medicamentos , Microfluídica , Administración Cutánea , Piel/metabolismo , Modelos Teóricos
6.
Biofabrication ; 16(3)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38569494

RESUMEN

The ever-stricter regulations on animal experiments in the field of cosmetic testing have prompted a surge in skin-related research with a special focus on recapitulation of thein vivoskin structurein vitro. In vitrohuman skin models are seen as an important tool for skin research, which in recent years attracted a lot of attention and effort, with researchers moving from the simplest 2-layered models (dermis with epidermis) to models that incorporate other vital skin structures such as hypodermis, vascular structures, and skin appendages. In this study, we designed a microfluidic device with a reverse flange-shaped anchor that allows culturing of anin vitroskin model in a conventional 6-well plate and assessing its barrier function without transferring the skin model to another device or using additional contraptions. Perfusion of the skin model through vascular-like channels improved the morphogenesis of the epidermis compared with skin models cultured under static conditions. This also allowed us to assess the percutaneous penetration of the tested caffeine permeation and vascular absorption, which is one of the key metrics for systemic drug exposure evaluation.


Asunto(s)
Epidermis , Piel , Animales , Piel/metabolismo , Epidermis/química , Epidermis/metabolismo , Absorción Cutánea , Cafeína/farmacología , Cafeína/análisis , Cafeína/metabolismo , Perfusión
7.
Asian Pac J Cancer Prev ; 25(4): 1419-1424, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38680003

RESUMEN

BACKGROUND: Cancer is the second leading cause of death in the world. Colorectal cancer is the third leading cause of cancer death. Today, there are several options for treating colorectal cancer such as chemotherapy, surgery, radiotherapy, immunotherapy, and gene therapy. 5-Fluorouracil is known as a suitable candidate for the treatment of various cancers, especially colorectal cancer. However, the use of this drug is limited, so it is usually used in combination with other drugs and agents. Based on the evidence obtained, this study attempted to evaluate the combined effects of 5-fluorouracil and caffeine on colorectal cancer cells. METHODS: In this study, initially HCT116 and HEK293 cell lines were cultured as cancer and normal cells, respectively. These cell lines were then evaluated for cytotoxicity, induction of apoptosis, and rate of cell migration. All data were analyzed by statistical methods. RESULTS: The results indicated that a combination of caffeine and 5-FU augmented their cytotoxicity in HCT116 cells but reduced cytotoxicity in HEK293 cells. No reduction was observed in the migration of HCT116 cells that were treated with caffeine or a combination of caffeine and 5-FU. Also, it seems that caffeine reverses the apoptotic effect of 5-FU in HCT116 cells.


Asunto(s)
Apoptosis , Cafeína , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales , Fluorouracilo , Humanos , Cafeína/farmacología , Fluorouracilo/farmacología , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/tratamiento farmacológico , Apoptosis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células HEK293 , Células HCT116 , Células Tumorales Cultivadas , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Antimetabolitos Antineoplásicos/farmacología
8.
Scand J Med Sci Sports ; 34(4): e14629, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38646853

RESUMEN

BACKGROUND: Athletes commonly use creatine, caffeine, and sodium bicarbonate for performance enhancement. While their isolated effects are well-described, less is known about their potential additive effects. METHODS: Following a baseline trial, we randomized 12 endurance-trained males (age: 25 ± 5 years, VO2max: 56.7 ± 4.6 mL kg-1 min-1; mean ± SD) and 11 females (age: 25 ± 3 years, VO2max: 50.2 ± 3.4 mL kg-1 min-1) to 5 days of creatine monohydrate (0.3 g kg-1 per day) or placebo loading, followed by a daily maintenance dose (0.04 g kg-1) throughout the study. After the loading period, subjects completed four trials in randomized order where they ingested caffeine (3 mg kg-1), sodium bicarbonate (0.3 g kg-1), placebo, or both caffeine and sodium bicarbonate before a maximal voluntary contraction (MVC), 15-s sprint, and 6-min time trial. RESULTS: Compared to placebo, mean power output during 15-s sprint was higher following loading with creatine than placebo (+34 W, 95% CI: 10 to 58, p = 0.008), but with no additional effect of caffeine (+10 W, 95% CI: -7 to 24, p = 0.156) or sodium bicarbonate (+5 W, 95% CI: -4 to 13, p = 0.397). Mean power output during 6-min time trial was higher with caffeine (+12 W, 95% CI: 5 to 18, p = 0.001) and caffeine + sodium bicarbonate (+8 W, 95% CI: 0 to 15, p = 0.038), whereas sodium bicarbonate (-1 W, 95% CI: -7 to 6, p = 0.851) and creatine (-6 W, 95% CI: -15 to 4, p = 0.250) had no effects. CONCLUSION: While creatine and caffeine can enhance sprint- and time trial performance, respectively, these effects do not seem additive. Therefore, supplementing with either creatine or caffeine appears sufficient to enhance sprint or short intense exercise performance.


Asunto(s)
Rendimiento Atlético , Cafeína , Creatina , Sustancias para Mejorar el Rendimiento , Bicarbonato de Sodio , Humanos , Cafeína/farmacología , Cafeína/administración & dosificación , Bicarbonato de Sodio/administración & dosificación , Bicarbonato de Sodio/farmacología , Masculino , Creatina/administración & dosificación , Creatina/farmacología , Adulto , Femenino , Adulto Joven , Sustancias para Mejorar el Rendimiento/administración & dosificación , Sustancias para Mejorar el Rendimiento/farmacología , Rendimiento Atlético/fisiología , Resistencia Física/efectos de los fármacos , Entrenamiento Aeróbico , Método Doble Ciego , Consumo de Oxígeno/efectos de los fármacos
9.
Brain Res ; 1833: 148866, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38494098

RESUMEN

Caffeine has been extensively studied in the context of CNS pathologies as many researchers have shown that consuming it reduces pro-inflammatory biomarkers, potentially delaying the progression of neurodegenerative pathologies. Several lines of evidence suggest that adenosine receptors, especially A1 and A2A receptors, are the main targets of its neuroprotective action. We found that caffeine pretreatment 15 min before LPS administration reduced the expression of Il1b in the hippocampus and striatum. The harmful modulation of caffeine-induced inflammatory response involved the downregulation of the expression of A2A receptors, especially in the hippocampus. Caffeine treatment alone promoted the downregulation of the adenosinergic receptor Adora2A; however, this promotion effect was reversed by LPS. Although administering caffeine increased the expression of the enzymes DNA methyltransferases 1 and 3A and decreased the expression of the demethylase enzyme Tet1, this effect was reversed by LPS in the hippocampus of mice that were administered Caffeine + LPS, relative to the basal condition; no significant differences were observed in the methylation status of the promoter regions of adenosine receptors. Finally, the bioinformatics analysis of the expanded network demonstrated the following results: the Adora2B gene connects the extended networks of the adenosine receptors Adora1 and Adora2A; the Mapk3 and Esr1 genes connect the extended Adora1 network; the Mapk4 and Arrb2 genes connect the extended Adora2A network with the extended network of the proinflammatory cytokine Il1ß. These results indicated that the anti-inflammatory effects of acute caffeine administration in the hippocampus may be mediated by a complex network of interdependencies between the Adora2B and Adora2A genes.


Asunto(s)
Cafeína , Regulación hacia Abajo , Hipocampo , Lipopolisacáridos , Enfermedades Neuroinflamatorias , Fármacos Neuroprotectores , Receptor de Adenosina A2A , Animales , Lipopolisacáridos/farmacología , Receptor de Adenosina A2A/metabolismo , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Cafeína/farmacología , Masculino , Regulación hacia Abajo/efectos de los fármacos , Ratones , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/inducido químicamente , Fármacos Neuroprotectores/farmacología , Ratones Endogámicos C57BL , Interleucina-1beta/metabolismo , Inflamación/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/inducido químicamente
10.
Nutrients ; 16(5)2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38474796

RESUMEN

The ergogenic effects of acute caffeine intake on endurance cycling performance lasting ~1 h have been well documented in controlled laboratory studies. However, the potential benefits of caffeine supplementation in cycling disciplines such as cross-country/mountain biking have been rarely studied. In cross-country cycling, performance is dependent on endurance capacity, which may be enhanced by caffeine, but also on the technical ability of the cyclist to overcome the obstacles of the course. So, it is possible that the potential benefits of caffeine are not translated to cross-country cycling. The main objective of this study was to investigate the effects of acute caffeine intake, in the form of coffee, on endurance performance during a cross-country cycling time trial. Eleven recreational cross-country cyclists (mean ± SD: age: 22 ± 3 years; nine males and two females) participated in a single-blinded, randomised, counterbalanced and crossover experiment. After familiarisation with the cross-country course, participants completed two identical experimental trials after the ingestion of: (a) 3.00 mg/kg of caffeine in the form of soluble coffee or (b) 0.04 mg/kg of caffeine in the form of decaffeinated soluble coffee as a placebo. Drinks were ingested 60 min before performing a 13.90 km cross-country time trial over a course with eight sectors of varying technical difficulty. The time to complete the trial and the mean and the maximum speed were measured through Global Positioning System (GPS) technology. Heart rate was obtained through a heart rate monitor. At the end of the time trial, participants indicated their perceived level of fatigue using the traditional Borg scale. In comparison to the placebo, caffeine intake in the form of coffee significantly reduced the time to complete the trial by 4.93 ± 4.39% (43.20 ± 7.35 vs. 41.17 ± 6.18 min; p = 0.011; effect size [ES] = 0.300). Caffeine intake reduced the time to complete four out of eight sectors with different categories of technical difficulty (p ≤ 0.010; ES = 0.386 to 0.701). Mean heart rate was higher with caffeine (169 ± 6 vs. 162 ± 13 bpm; p = 0.046; ES = 0.788) but the rating of perceived exertion at the end of the trial was similar with caffeinated coffee than with the placebo (16 ± 1 vs. 16 ± 2 a.u.; p = 0.676; ES = 0.061). In conclusion, the intake of 3 mg/kg of caffeine delivered via soluble coffee reduced the time to complete a cross-country cycling trial in recreational cyclists. These results suggest that caffeine ingested as coffee may be an ergogenic substance for cross-country cycling.


Asunto(s)
Rendimiento Atlético , Cafeína , Sustancias para Mejorar el Rendimiento , Adulto , Femenino , Humanos , Masculino , Adulto Joven , Rendimiento Atlético/fisiología , Cafeína/farmacología , Café/química , Estudios Cruzados
11.
J Chem Phys ; 160(12)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38516974

RESUMEN

Alzheimer's disease is a detrimental neurological disorder caused by the formation of amyloid fibrils due to the aggregation of amyloid-ß peptide. The primary therapeutic approaches for treating Alzheimer's disease are targeted to prevent this amyloid fibril formation using potential inhibitor molecules. The discovery of such inhibitor molecules poses a formidable challenge to the design of anti-amyloid drugs. This study investigates the effect of caffeine on dimer formation of the full-length amyloid-ß using a combined approach of all-atom, explicit water molecular dynamics simulations and the three-dimensional reference interaction site model theory. The change in the hydration free energy of amyloid-ß dimer, with and without the inhibitor molecules, is calculated with respect to the monomeric amyloid-ß, where the hydration free energy is decomposed into energetic and entropic components, respectively. Dimerization is accompanied by a positive change in the partial molar volume. Dimer formation is spontaneous, which implies a decrease in the hydration free energy. However, a reverse trend is observed for the dimer with inhibitor molecules. It is observed that the negatively charged residues primarily contribute for the formation of the amyloid-ß dimer. A residue-wise decomposition reveals that hydration/dehydration of the side-chain atoms of the charged amino acid residues primarily contribute to dimerization.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Cafeína/farmacología , Péptidos beta-Amiloides/química , Amiloide , Simulación de Dinámica Molecular , Fragmentos de Péptidos/química
12.
Nutrients ; 16(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542805

RESUMEN

Caffeine (1,3,7-trimethylxanthine) is a widely consumed bioactive substance worldwide. Our recent study showed that a reduction in both reproduction and yolk protein production (vitellogenesis) caused by caffeine intake were improved by vitamin B12 supplementation, which is an essential co-factor in methionine metabolism. In the current study, we investigated the role of methionine in the reproduction of caffeine-ingested animals (CIAs). We assessed the effect of methionine metabolism on CIAs and found that caffeine intake decreased both methionine levels and essential enzymes related to the methionine cycle. Furthermore, we found that the caffeine-induced impairment of methionine metabolism decreased vitellogenesis and increased germ cell apoptosis in an LIN-35/RB-dependent manner. Interestingly, the increased germ cell apoptosis was restored to normal levels by methionine supplementation in CIAs. These results indicate that methionine supplementation plays a beneficial role in germ cell health and offspring development by regulating vitellogenesis.


Asunto(s)
Caenorhabditis elegans , Metionina , Animales , Metionina/farmacología , Metionina/metabolismo , Cafeína/farmacología , Cafeína/metabolismo , Apoptosis , Células Germinativas , Racemetionina/metabolismo , Suplementos Dietéticos
13.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542281

RESUMEN

Epilepsy ranks as the second-most prevalent neurological disease, and is characterized by seizures resulting in neurobiological and behavioral impairment. Naturally occurring in coffee beans or tea leaves, the alkaloid caffeine (CAF) is the most prevalent global stimulant. Caffeine has been observed to influence epileptic seizures and the efficacy of antiepileptic medications, with a notable impact on topiramate (TPM). This study aimed to explore the influence of CAF on TPM's anticonvulsant effects in zebrafish larvae within a PTZ-induced seizure model, concurrently determining TPM concentrations through a sophisticated analytical approach based on ultrahigh-performance liquid chromatography and subsequent mass spectrometric detection. Zebrafish larvae four days post-fertilization were incubated for 18 h with varying doses of TPM or combinations of CAF + TPM, and locomotor activity was then assessed. Seizures were induced by introducing a PTZ solution to achieve a final concentration of 20 mM. Utilizing liquid chromatography-mass spectrometry (LC-MS/MS), TPM levels in the larvae were quantified. CAF co-administration (especially in higher doses) with TPM caused a decrease in the average locomotor activity in the larvae compared to TPM alone. Moreover, CAF decreased TPM levels in the larvae at all investigated doses. In conclusion, these findings offer a novel perspective on the interplay between CAF and TPM, shedding light on previously unexplored facets. The potential impact of CAF consumption in assisting with epileptic seizure control, unless proven otherwise, suggests a noteworthy consideration for future research and clinical practices.


Asunto(s)
Epilepsia , Pez Cebra , Animales , Topiramato/uso terapéutico , Pentilenotetrazol/toxicidad , Cafeína/farmacología , Cafeína/uso terapéutico , Cromatografía Liquida , Fructosa/efectos adversos , Espectrometría de Masas en Tándem , Convulsiones/inducido químicamente , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/efectos adversos , Epilepsia/tratamiento farmacológico
14.
Int J Sport Nutr Exerc Metab ; 34(3): 137-144, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38458183

RESUMEN

There is a lack of evidence on the additional benefits of combining caffeine (CAF) and creatine (CRE) supplementation on anaerobic power and capacity. Thus, the aim of the present study was to test the effects of combined and isolated supplementation of CAF and CRE on anaerobic power and capacity. Twenty-four healthy men performed a baseline Wingate anaerobic test and were then allocated into a CRE (n = 12) or placebo (PLA; n = 12) group. The CRE group ingested 20 g/day of CRE for 8 days, while the PLA group ingested 20 g/day of maltodextrin for the same period. On the sixth and eighth days of the loading period, both groups performed a Wingate anaerobic test 1 hr after either CAF (5 mg/kg of body mass; CRE + CAF and PLA + CAF conditions) or PLA (5 mg/kg of body mass of cellulose; CRE + PLA and PLA + PLA conditions) ingestion. After the loading period, changes in body mass were greater (p < .05) in the CRE (+0.87 ± 0.23 kg) than in the PLA group (+0.13 ± 0.27 kg). In both groups, peak power was higher (p = .01) in the CAF (1,033.4 ± 209.3 W) than in the PLA trial (1,003.3 ± 204.4 W), but mean power was not different between PLA and CAF trials (p > .05). In conclusion, CAF, but not CRE ingestion, increases anaerobic power. Conversely, neither CRE nor CAF has an effect on anaerobic capacity.


Asunto(s)
Cafeína , Creatina , Humanos , Masculino , Anaerobiosis , Cafeína/farmacología , Estudios Cruzados , Método Doble Ciego , Poliésteres
15.
Scand J Med Sci Sports ; 34(3): e14595, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38458991

RESUMEN

We investigated the acute effects of caffeine supplementation (6 mgï½¥kg-1 ) on 60-m sprint performance and underlying components with a step-to-step ground reaction force measurement in 13 male sprinters. After the first round sprint as a control, caffeine supplementation-induced improvement in 60-m sprint times (7.811 s at the first versus 7.648 s at the second round, 2.05%) were greater compared with the placebo condition (7.769 s at the first versus 7.768 s at the second round, 0.02%). Using average values for every four steps, in the caffeine condition, higher running speed (all six step groups), higher step frequency (5th-16th and 21st-24th step groups), shorter support time (all the step groups except for 13th-16th step) and shorter braking time (9th-24th step groups) were found. Regarding ground reaction forces variables, greater braking mean force (13th-19th step group), propulsive mean force (1st-12th and 17th-20th step groups), and effective vertical mean force (9th-12th step group) were found in the caffeine condition. For the block clearance phase at the sprint start, push-off and reaction times did not change, while higher total anteroposterior mean force, average horizontal external power, and ratio of force were found in the caffeine condition. These results indicate that, compared with placebo, acute caffeine supplementation improved sprint performance regardless of sprint sections during the entire acceleration phase from the start through increases in step frequency with decreases in support time. Moreover, acute caffeine supplementation promoted increases in the propulsive mean force, resulting in the improvement of sprint performance.


Asunto(s)
Rendimiento Atlético , Cafeína , Humanos , Masculino , Fenómenos Biomecánicos , Cafeína/farmacología , Cinética , Aceleración , Suplementos Dietéticos
16.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473910

RESUMEN

Caffeine is one of the most widely consumed psychoactive drugs in the world. It easily crosses the blood-brain barrier, and caffeine-interacting adenosine and ryanodine receptors are distributed in various areas of the brain, including the hypothalamus and pituitary. Caffeine intake may have an impact on reproductive and immune function. Therefore, in the present study performed on the ewe model, we decided to investigate the effect of peripheral administration of caffeine (30 mg/kg) on the secretory activity of the hypothalamic-pituitary unit which regulates the reproductive function in females during both a physiological state and an immune/inflammatory challenge induced by lipopolysaccharide (LPS; 400 ng/kg) injection. It was found that caffeine stimulated (p < 0.01) the biosynthesis of gonadotropin-releasing hormone (GnRH) in the hypothalamus of ewe under both physiological and inflammatory conditions. Caffeine also increased (p < 0.05) luteinizing hormone (LH) secretion in ewes in a physiological state; however, a single administration of caffeine failed to completely release the LH secretion from the inhibitory influence of inflammation. This could result from the decreased expression of GnRHR in the pituitary and it may also be associated with the changes in the concentration of neurotransmitters in the median eminence (ME) where GnRH neuron terminals are located. Caffeine and LPS increased (p < 0.05) dopamine in the ME which may explain the inhibition of GnRH release. Caffeine treatment also increased (p < 0.01) cortisol release, and this stimulatory effect was particularly evident in sheep under immunological stress. Our studies suggest that caffeine affects the secretory activity of the hypothalamic-pituitary unit, although its effect appears to be partially dependent on the animal's immune status.


Asunto(s)
Cafeína , Hormona Liberadora de Gonadotropina , Femenino , Ovinos , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Cafeína/farmacología , Hormona Luteinizante/metabolismo , Lipopolisacáridos/farmacología , Hipotálamo/metabolismo
17.
J Int Soc Sports Nutr ; 21(1): 2323919, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38466174

RESUMEN

Caffeine is a popular ergogenic aid that has a plethora of evidence highlighting its positive effects. A Google Scholar search using the keywords "caffeine" and "exercise" yields over 200,000 results, emphasizing the extensive research on this topic. However, despite the vast amount of available data, it is intriguing that uncertainties persist regarding the effectiveness and safety of caffeine. These include but are not limited to: 1. Does caffeine dehydrate you at rest? 2. Does caffeine dehydrate you during exercise? 3. Does caffeine promote the loss of body fat? 4. Does habitual caffeine consumption influence the performance response to acute caffeine supplementation? 5. Does caffeine affect upper vs. lower body performance/strength differently? 6. Is there a relationship between caffeine and depression? 7. Can too much caffeine kill you? 8. Are there sex differences regarding caffeine's effects? 9. Does caffeine work for everyone? 10. Does caffeine cause heart problems? 11. Does caffeine promote the loss of bone mineral? 12. Should pregnant women avoid caffeine? 13. Is caffeine addictive? 14. Does waiting 1.5-2.0 hours after waking to consume caffeine help you avoid the afternoon "crash?" To answer these questions, we performed an evidence-based scientific evaluation of the literature regarding caffeine supplementation.


Asunto(s)
Cafeína , Sustancias para Mejorar el Rendimiento , Masculino , Embarazo , Humanos , Femenino , Cafeína/farmacología , Tejido Adiposo , Ejercicio Físico , Sustancias para Mejorar el Rendimiento/farmacología , Suplementos Dietéticos
18.
Nutrients ; 16(6)2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38542677

RESUMEN

This study examined the effect of creatine nitrate and caffeine alone and combined on exercise performance and cognitive function in resistance-trained athletes. In a double-blind, randomized crossover trial, twelve resistance-trained male athletes were supplemented with 7 days of creatine nitrate (5 g/day), caffeine (400 mg/day), and a combination of creatine nitrate and caffeine. The study involved twelve resistance-trained male athletes who initially provided a blood sample for comprehensive safety analysis, including tests for key enzymes and a lipid profile, and then performed standardized resistance exercises-bench and leg press at 70% 1RM-and a Wingate anaerobic power test. Cognitive function and cardiovascular responses were also examined forty-five minutes after supplementation. Creatine nitrate and caffeine that were co-ingested significantly enhanced cognitive function, as indicated by improved scores in the Stroop Word-Color Interference test (p = 0.04; effect size = 0.163). Co-ingestion was more effective than caffeine alone in enhancing cognitive performance. In contrast, no significant enhancements in exercise performance were observed. The co-ingestion of creatine nitrate and caffeine improved cognitive function, particularly in cognitive interference tasks, without altering short-term exercise performance. Furthermore, no adverse events were reported. Overall, the co-ingestion of creatine nitrate and caffeine appears to enhance cognition without any reported side effects for up to seven days.


Asunto(s)
Cafeína , Nitratos , Humanos , Masculino , Cafeína/farmacología , Cognición , Creatina/farmacología , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Ejercicio Físico , Nitratos/farmacología
19.
Int J Dev Neurosci ; 84(3): 227-250, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38459740

RESUMEN

Preterm infants often experience frequent intermittent hypoxia (IH) episodes which are associated with neuroinflammation. We tested the hypotheses that early caffeine and/or non-steroidal inflammatory drugs (NSAIDs) confer superior therapeutic benefits for protection against IH-induced neuroinflammation than late treatment. Newborn rats were exposed to IH or hyperoxia (50% O2) from birth (P0) to P14. For early treatment, the pups were administered: 1) daily caffeine (Caff) citrate (Cafcit, 20 mg/kg IP loading on P0, followed by 5 mg/kg from P1-P14); 2) ketorolac (Keto) topical ocular solution in both eyes from P0 to P14; 3) ibuprofen (Ibu, Neoprofen, 10 mg/kg loading dose on P0 followed by 5 mg/kg/day on P1 and P2); 4) Caff+Keto co-treatment; 5) Caff+Ibu co-treatment; or 6) equivalent volume saline (Sal). On P14, animals were placed in room air (RA) with no further treatment until P21. For late treatment, pups were exposed from P0 to P14, then placed in RA during which they received similar treatments from P15-P21 (Sal, Caff, and/or Keto), or P15-P17 (Ibu). RA controls were similarly treated. At P21, whole brains were assessed for histopathology, apoptosis, myelination, and biomarkers of inflammation. IH caused significant brain injury and hemorrhage, inflammation, reduced myelination, and apoptosis. Early treatment with Caff alone or in combination with NSAIDs conferred better neuroprotection against IH-induced damage than late treatment. Early postnatal treatment during a critical time of brain development, may be preferable for the prevention of IH-induced brain injury in preterm infants.


Asunto(s)
Animales Recién Nacidos , Antiinflamatorios no Esteroideos , Cafeína , Ratas Sprague-Dawley , Animales , Ratas , Antiinflamatorios no Esteroideos/farmacología , Cafeína/farmacología , Cafeína/uso terapéutico , Enfermedades Neuroinflamatorias/prevención & control , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Hipoxia/complicaciones , Femenino , Masculino , Modelos Animales de Enfermedad , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Ibuprofeno/farmacología , Ibuprofeno/uso terapéutico , Ketorolaco/farmacología , Ketorolaco/uso terapéutico
20.
Int J Dev Neurosci ; 84(3): 251-261, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38469915

RESUMEN

OBJECTIVE: The aim of this study is to evaluate whether exogenous melatonin (MEL) mitigates the deleterious effects of high-dose caffeine (CAF) administration in pregnant rats upon the fetal hippocampus. MATERIALS AND METHODS: A total of 32 adult Wistar albino female rats were divided into four groups after conception (n = 8). At 9-20 days of pregnancy, intraperitoneal (i.p.) MEL was administered at a dose of 10 mg/kg/day in the MEL group, while i.p. CAF was administered at a dose of 60 mg/kg/day in the CAF group. In the CAF plus MEL group, i.p. CAF and MEL were administered at a dose of 60 and 10 mg/kg/day, respectively, at the same period. Following extraction of the brains of the fetuses sacrificed on the 21st day of pregnancy, their hippocampal regions were analyzed by hematoxylin and eosin and Cresyl Echt Violet, anti-GFAP, and antisynaptophysin staining methods. RESULTS: While there was a decrease in fetal and brain weights in the CAF group, it was found that the CAF plus MEL group had a closer weight average to that of the control group. Histologically, it was observed that the pyramidal cell layer consisted of 8-10 layers of cells due to the delay in migration in hippocampal neurons in the CAF group, while the MEL group showed similar characteristics with the control group. It was found that these findings decreased in the CAF plus MEL group. CONCLUSION: It is concluded that high-dose CAF administration causes a delay in neurogenesis of the fetal hippocampus, and exogenous MEL is able to mitigate its deleterious effects.


Asunto(s)
Cafeína , Hipocampo , Melatonina , Fármacos Neuroprotectores , Ratas Wistar , Animales , Femenino , Melatonina/farmacología , Melatonina/administración & dosificación , Hipocampo/efectos de los fármacos , Embarazo , Cafeína/administración & dosificación , Cafeína/farmacología , Ratas , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/administración & dosificación , Estimulantes del Sistema Nervioso Central/toxicidad , Estimulantes del Sistema Nervioso Central/administración & dosificación , Relación Dosis-Respuesta a Droga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...