Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
J Hazard Mater ; 471: 134378, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38691926

RESUMEN

The worldwide emergence of antimicrobial resistance (AMR) poses a substantial risk to human health and environmental stability. In agriculture, organic amendments (derived from organic sources such as manure, and plant residues) are beneficial in restoring soil properties and providing essential nutrients to crops but raise concerns about harboring antibiotic resistance, which emphasizes the need for vigilant monitoring and strategic interventions in their application. The current study assessed the impact of farming practices (organic and conventional) in a three-year field experiment with pigeonpea-wheat cropping system, focusing on the transmission of AMR using culture-dependent and -independent approaches, and soil nutrient content. Markers for antibiotic resistance genes (ARGs) (aminoglycoside-aacA, ß-lactam-blaTEM, chloramphenicol-cmlA1, macrolide-ermB, sulfonamides-sul1, sul2, and tetracycline-tetO) and integrons (intl1 and intl2) were targeted using qPCR. Manure amendments, particularly FYM1, exhibited a higher abundance of copies of ARGs compared to the rhizospheric soil. Organic farming was associated with higher copies of intl2, sul1, blaTEM, and tetO genes, while conventional farming showed increased copies of sul2 and ermB genes in the rhizosphere. Significant positive correlations were observed among soil nutrient contents, ARGs, and MGEs. The notable prevalence of ARGs linked to manure amendments serves as a cautionary note, demanding responsible management practices.


Asunto(s)
Cajanus , Estiércol , Microbiología del Suelo , Triticum , Cajanus/genética , Estiércol/microbiología , Triticum/genética , Antibacterianos/farmacología , Suelo/química , Genes Bacterianos , Agricultura Orgánica , Productos Agrícolas , Farmacorresistencia Microbiana/genética , Agricultura , Integrones/genética
2.
Int. microbiol ; 27(2): 477-490, Abr. 2024. graf
Artículo en Inglés | IBECS | ID: ibc-232294

RESUMEN

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.(AU)


Asunto(s)
Humanos , Microbiología del Suelo , Agricultura/métodos , Bacterias , Cajanus/microbiología , Ecosistema , Suelo/química
3.
Plant Cell Rep ; 43(4): 110, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564104

RESUMEN

KEY MESSAGE: Nanoparticle pretreatment improved the health of aged Cajanus cajan seeds viz., regulation of redox status, gene expression, and restoration of hormonal homeostasis. Ageing deteriorates the quality of seeds by lowering their vigor and viability, and terminating with loss of germination. These days, nanotechnology has been seen to revolutionize the agricultural sectors, and particularly nano zinc oxide (nZnO) has gained considerable interests due to its distinctive properties. The aim of the present work was to decipher the possibilities of using nZnO to rejuvenate accelerated aged (AA) seeds of Cajanus cajan. Both chemically (CnZnO) and green (GnZnO; synthesized using Moringa oleifera) fabricated nZnOs were characterized via standard techniques to interpret their purity, size, and shape. Experimental results revealed erratic germination with a decline in viability and membrane stability as outcomes of reactive oxygen intermediate (ROI) buildup in AA seeds. Application of nZnO substantially rebated the accrual of ROI, along with enhanced production of antioxidants, α-amylase activity, total sugar, protein and DNA content. Higher level of zinc was assessed qualitatively/ histologically and quantitatively in nZnO pulsed AA seeds, supporting germination without inducing toxicity. Meantime, augmentation in the gibberellic acid with a simultaneous reduction in the abscisic acid level were noted in nZnO invigorated seeds than that determined in the AA seeds, suggesting possible involvement of ROI in hormonal signalling. Furthermore, nZnO-subjected AA seeds unveiled differential expression of aquaporins and cell cycle regulatory genes. Summarizing, among CnZnO and GnZnO, later one holds better potential for a revival of AA seeds of Cajanus cajan by providing considerable tolerance against ageing-associated deterioration via recouping the cellular redox homeostasis, hormonal signaling, and alteration in expression patterns of aquaporin and cell cycle regulatory genes.


Asunto(s)
Acuaporinas , Cajanus , Óxido de Zinc , Óxido de Zinc/farmacología , Genes Reguladores , Ciclo Celular
5.
Plant Cell Rep ; 43(5): 129, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38652319

RESUMEN

KEY MESSAGE: We have identified and analyzed 28 SUMO-pathway proteins from pigeonpea. Enhanced transcripts of pathway genes and increased SUMO conjugation under drought signifies the role of SUMO in regulating stress. Being a protein-rich and nutrient-dense legume crop, pigeonpea (Cajanus cajan) holds a vital position in a vegetarian meal. It is a resilient crop capable of striving in harsh climates and provides a means of subsistence to small-holding farmers. Nevertheless, extremes of water scarcity and drought conditions, especially during seedling and reproductive stages, remains a major issue severely impacting the growth and overall productivity of pigeonpea. Small ubiquitin-like modifier (SUMO), a post-translational modification system, plays a pivotal role in fortifying plants against stressful conditions by rapid reprogramming of molecular events. In this study, we have scanned the entire pigeonpea genome and identified 28 candidates corresponding to SUMO machinery components of pigeonpea. qRT-PCR analysis of different SUMO machinery genes validated their presence under natural conditions. The analysis of the promoters of identified SUMO machinery genes revealed the presence of abiotic stress-related cis-regulatory elements highlighting the potential involvement of the genes in abiotic stress responses. The transcript level analysis of selected SUMO machinery genes and global SUMO status of pigeonpea proteins in response to drought stress suggests an integral role of SUMO in regulating drought stress conditions in pigeonpea. Collectively, the work puts forward a detailed in silico analysis of pigeonpea SUMO machinery candidates and highlights the essential role of SUMOylation in drought stress responses. Being the first report on a pulse crop, the study will serve as a resource for devising strategies for counteracting drought stress in pigeonpea that can be further extended to other pulse crops.


Asunto(s)
Cajanus , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Cajanus/genética , Cajanus/fisiología , Cajanus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Regiones Promotoras Genéticas/genética , Filogenia
6.
J Ethnopharmacol ; 330: 118199, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38631486

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Nocardiosis is an uncommon infectious disease that bears certain similarities to tuberculosis, with a continuous increase in its incidence and a poor prognosis. In traditional Chinese medicine, the leaves of Cajanus cajan (L.) Millsp. are employed to treat wounds, malaria, coughs, and abdominal pain. AIM OF THE STUDY: In this study, we investigated the effects and mechanisms of longistylin A (LGA), a natural stilbene isolated from C. cajan, as a potential antibiotic against nocardiosis. MATERIALS AND METHODS: LGA was isolated from the leaves of C. cajan and assessed using a minimum bactericidal concentration (MBC) determination against Nocardia seriolae. Multi-omics analysis encompassing genes, proteins, and metabolites was conducted to investigate the impact of LGA treatment on N. seriolae. Additionally, quantitative analysis of 40 cytokinins in N. seriolae mycelium was performed to assess the specific effects of LGA treatment on cytokinin levels. Cryo-scanning electron microscopy was utilized to examine morphological changes induced by LGA treatment, particularly in the presence of exogenous trans-zeatin-O-glucoside (tZOG). The therapeutic effect of LGA was investigated by feeding N. seriolae-infected largemouth bass. RESULTS: LGA exhibited significant efficacy against N. seriolae, with MBC value of 2.56 µg/mL. Multi-omics analysis revealed that LGA disrupted glycerophospholipid metabolism and hormone biosynthesis by notably reducing the expression of glycerol-3-phosphate dehydrogenase and calmodulin-like protein. Treatment with LGA markedly disrupted 12 distinct cytokinins in N. seriolae mycelium. Additionally, the addition of exogenous tZOG counteracted the inhibitory effects of LGA on filamentous growth, resulting in mycelial elongation and branching. Furthermore, LGA treatment improved the survival rate of largemouth bass infected with N. seriolae. CONCLUSIONS: We found for the first time that LGA from C. cajan exhibited significant efficacy against N. seriolae by interfering with glycerophospholipid metabolism and cytokinin biosynthesis.


Asunto(s)
Antibacterianos , Cajanus , Citocininas , Glicerofosfolípidos , Nocardia , Nocardia/metabolismo , Nocardia/efectos de los fármacos , Citocininas/farmacología , Citocininas/biosíntesis , Citocininas/metabolismo , Glicerofosfolípidos/metabolismo , Glicerofosfolípidos/biosíntesis , Antibacterianos/farmacología , Pruebas de Sensibilidad Microbiana , Hojas de la Planta
7.
Gene ; 914: 148417, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38555003

RESUMEN

This study is a thorough characterization of pigeonpea dirigent gene (CcDIR) family, an important component of the lignin biosynthesis pathway. Genome-wide analysis identified 25 CcDIR genes followed by a range of analytical approaches employed to unravel their structural and functional characteristics. Structural examination revealed a classic single exon and no intron arrangement in CcDIRs contributing to our understanding on evolutionary dynamics. Phylogenetic analysis elucidated evolutionary relationships among CcDIR genes with six DIR sub-families, while motif distribution analysis displayed and highlighted ten conserved protein motifs in CcDIRs. Promoter analyses of all the dirigent genes detected 18 stress responsive cis-acting elements offering insights into transcriptional regulation. While spatial expression analyses across six plant tissues showed preferential expression of CcDIR genes, exposure to salt (CcDIR2 and CcDIR9) and herbivory (CcDIR1, CcDIR2, CcDIR3 and CcDIR11), demonstrated potential roles of specific DIRs in plant defense. Interestingly, increased gene expression during herbivory, also correlated with increased lignin content authenticating the specific response. Furthermore, exogenous application of stress hormones, SA and MeJA on leaves significantly induced the expression of CcDIRs that responded to herbivory. Taken together, these findings contribute to a comprehensive understanding of CcDIR genes impacting development and stress response in the important legume pigeonpea.


Asunto(s)
Cajanus , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Filogenia , Proteínas de Plantas , Estrés Fisiológico , Cajanus/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Regiones Promotoras Genéticas , Genoma de Planta , Lignina/biosíntesis , Lignina/metabolismo , Lignina/genética , Herbivoria
8.
Protein J ; 43(2): 333-350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38347326

RESUMEN

A novel trypsin inhibitor from Cajanus cajan (TIC) fresh leaves was partially purified by affinity chromatography. SDS-PAGE revealed one band with about 15 kDa with expressive trypsin inhibitor activity by zymography. TIC showed high affinity for trypsin (Ki = 1.617 µM) and was a competitive inhibitor for this serine protease. TIC activity was maintained after 24 h of treatment at 70 °C, after 1 h treatments with different pH values, and ß-mercaptoethanol increasing concentrations, and demonstrated expressive structural stability. However, the activity of TIC was affected in the presence of oxidizing agents. In order to study the effect of TIC on secreted serine proteases, as well as on the cell culture growth curve, SK-MEL-28 metastatic human melanoma cell line and CaCo-2 colon adenocarcinoma was grown in supplemented DMEM, and the extracellular fractions were submitted salting out and affinity chromatography to obtain new secreted serine proteases. TIC inhibited almost completely, 96 to 89%, the activity of these serine proteases and reduced the melanoma and colon adenocarcinoma cells growth of 48 and 77% respectively. Besides, it is the first time that a trypsin inhibitor was isolated and characterized from C. cajan leaves and cancer serine proteases were isolated and partial characterized from SK-MEL-28 and CaCo-2 cancer cell lines. Furthermore, TIC shown to be potent inhibitor of tumor protease affecting cell growth, and can be one potential drug candidate to be employed in chemotherapy of melanoma and colon adenocarcinoma.


Asunto(s)
Cajanus , Hojas de la Planta , Humanos , Cajanus/química , Hojas de la Planta/química , Células CACO-2 , Proliferación Celular/efectos de los fármacos , Línea Celular Tumoral , Inhibidores de Tripsina/farmacología , Inhibidores de Tripsina/química , Inhibidores de Tripsina/aislamiento & purificación , Proteínas de Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/aislamiento & purificación , Serina Proteasas/química , Serina Proteasas/aislamiento & purificación , Serina Proteasas/metabolismo
9.
Funct Plant Biol ; 512024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38354689

RESUMEN

The SPL gene family (for Squamosa Promoter-binding like Proteins) represents specific transcription factors that have significant roles in abiotic stress tolerance, development and the growth processes of different plants, including initiation of the leaf, branching and development of shoot and fruits. The SPL gene family has been studied in different plant species; however, its role is not yet fully explored in pigeon pea (Cajanus cajan ). In the present study, 11 members of the CcSPL gene family were identified in C. cajan . The identified SPLs were classified into nine groups based on a phylogenetic analysis involving SPL protein sequences from C. cajan , Arabidopsis thaliana , Cicer arietinum , Glycine max , Phaseolus vulgaris , Vigna unguiculata and Arachis hypogaea . Further, the identification of gene structure, motif analysis, domain analysis and presence of cis -regulatory elements in the SPL family members were studied. Based on RNA-sequencing data, gene expression analysis was performed, revealing that CcSPL2.1, 3 and 13A were significantly upregulated for salt-tolerance and CcSPL14 and 15 were upregulated in a salt-susceptible cultivar. Real-time qPCR validation indicated that CcSPL3, 4, 6 and 13A were upregulated under salt stress conditions. Therefore, molecular docking was performed against the proteins of two highly expressed genes (CcSPL3 and CcSPL14 ) with three ligands: abscisic acid, gibberellic acid and indole-3-acetic acid. Afterward, their binding affinity was obtained and three-dimensional structures were predicted. In the future, our study may open avenues for harnessing CcSPL genes in pigeon pea for enhanced abiotic stress resistance and developmental traits.


Asunto(s)
Cajanus , Cajanus/genética , Cajanus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Filogenia , Simulación del Acoplamiento Molecular , Estrés Fisiológico/genética , Flores/metabolismo
10.
Funct Plant Biol ; 512024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38266279

RESUMEN

Pigeonpea (Cajanus cajan ) production can be affected by the spotted pod borer (Maruca vitrata ). Here, we identified biochemical changes in plant parts of pigeonpea after M. vitrata infestation. Two pigeonpea genotypes (AL 1747, moderately resistant; and MN 1, susceptible) were compared for glyoxalase and non-glyoxalase enzyme systems responsible for methylglyoxal (MG) detoxification, γ-glutamylcysteine synthetase (γ-GCS), glutathione-S-transferase (GST) and glutathione content in leaves, flowers and pods under control and insect-infested conditions. MN 1 had major damage due to M. vitrata infestation compared to AL 1747. Lower accumulation of MG in AL 1747 was due to higher activities of enzymes of GSH-dependent (glyoxylase I, glyoxylase II), GSH-independent (glyoxalase III) pathway, and enzyme of non-glyoxalase pathway (methylglyoxal reductase, MGR), which convert MG to lactate. Decreased glyoxylase enzymes and MGR activities in MN 1 resulted in higher accumulation of MG. Higher lactate dehydrogenase (LDH) activity in AL 1747 indicates utilisation of MG detoxification pathway. Higher glutathione content in AL 1747 genotype might be responsible for efficient working of MG detoxification pathway under insect infestation. Higher activity of γ-GCS in AL 1747 maintains the glutathione pool, necessary for the functioning of glyoxylase pathway to carry out the detoxification of MG. Higher activities of GST and GPX in AL 1747 might be responsible for detoxification of toxic products that accumulates following insect infestation, and elevated activities of glyoxylase and non-glyoxylase enzyme systems in AL 1747 after infestation might be responsible for reducing reactive cabanoyl stress. Our investigation will help the future development of resistant cultivars.


Asunto(s)
Cajanus , Mariposas Nocturnas , Animales , Cajanus/química , Cajanus/genética , Piruvaldehído , Mariposas Nocturnas/fisiología , Hojas de la Planta , Glutatión
11.
BMC Genomics ; 25(1): 95, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38262915

RESUMEN

BACKGROUND: Evolutionarily conserved in plants, the enzyme D-myo-inositol-3-phosphate synthase (MIPS; EC 5.5.1.4) regulates the initial, rate-limiting reaction in the phytic acid biosynthetic pathway. They are reported to be transcriptional regulators involved in various physiological functions in the plants, growth, and biotic/abiotic stress responses. Even though the genomes of most legumes are fully sequenced and available, an all-inclusive study of the MIPS family members in legumes is still ongoing. RESULTS: We found 24 MIPS genes in ten legumes: Arachis hypogea, Cicer arietinum, Cajanus cajan, Glycine max, Lablab purpureus, Medicago truncatula, Pisum sativum, Phaseolus vulgaris, Trifolium pratense and Vigna unguiculata. The total number of MIPS genes found in each species ranged from two to three. The MIPS genes were classified into five clades based on their evolutionary relationships with Arabidopsis genes. The structural patterns of intron/exon and the protein motifs that were conserved in each gene were highly group-specific. In legumes, MIPS genes were inconsistently distributed across their genomes. A comparison of genomes and gene sequences showed that this family was subjected to purifying selection and the gene expansion in MIPS family in legumes was mainly caused by segmental duplication. Through quantitative PCR, expression patterns of MIPS in response to various abiotic stresses, in the vegetative tissues of various legumes were studied. Expression pattern shows that MIPS genes control the development and differentiation of various organs, and have significant responses to salinity and drought stress. CONCLUSION: The MIPS genes in the genomes of legumes have been identified, characterized and their expression was analysed. The findings pave way for understanding their molecular functions and evolution, and lead to identify the putative MIPS genes associated with different cell and tissue development.


Asunto(s)
Arabidopsis , Cajanus , Cicer , Phaseolus , Verduras , Glycine max
12.
Int J Biol Macromol ; 257(Pt 2): 128559, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38061506

RESUMEN

Pigeonpea [Cajanus cajan (L.) Millspaugh] is an important grain legume crop with a broad range of 90 to 300 days for maturity. To identify the genomic variations associated with the early maturity, we conducted whole-genome resequencing of an early-maturing pigeonpea mutant TAT-10 and its wild type parent T21. A total of 135.67 and 146.34 million sequencing reads were generated for T21 and TAT-10, respectively. From this resequencing data, 1,397,178 and 1,419,904 SNPs, 276,741 and 292,347 InDels, and 87,583 and 92,903 SVs were identified in T21 and TAT-10, respectively. We identified 203 genes in the pigeonpea genome that are homologs of flowering-related genes in Arabidopsis and found 791 genomic variations unique to TAT-10 linked to 94 flowering-related genes. We identified three candidate genes for early maturity in TAT-10; Suppressor of FRI 4 (SUF4), Early Flowering In Short Days (EFS), and Probable Lysine-Specific Demethylase ELF6. The variations in ELF6 were predicted to be possibly damaging and the expression profiles of EFS and ELF6 also supported their probable role during early flowering in TAT-10. The present study has generated information on genomic variations associated with candidate genes for early maturity, which can be further studied and exploited for developing the early-maturing pigeonpea cultivars.


Asunto(s)
Cajanus , Polimorfismo de Nucleótido Simple , Polimorfismo de Nucleótido Simple/genética , Genoma de Planta/genética , Genes de Plantas , Sitios de Carácter Cuantitativo , Genómica , Cajanus/genética
13.
Int Microbiol ; 27(2): 535-544, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37505307

RESUMEN

Cajaninstilbene acid (CSA), longistylin A (LLA), and longistylin C (LLC) are three characteristic stilbenes isolated from pigeon pea. The objective of this study was to evaluate the antibacterial activity of these stilbenes against Staphylococcus aureus and even methicillin-resistant Staphylococcus aureus (MRSA) and test the possibility of inhibiting biofilm formation. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of these stilbenes were evaluated. And the results showed that LLA was most effective against tested strains with MIC and MBC values of 1.56 µg/mL followed by LLC with MIC and MBC values of 3.12 µg/mL and 6.25 µg/mL as well as CSA with MIC and MBC values of 6.25 µg/mL and 6.25-12.5 µg/mL. Through growth curve and cytotoxicity analysis, the concentrations of these stilbenes were determined to be set at their respective 1/4 MIC in the follow-up research. In an anti-biofilm formation assay, these stilbenes were found to be effectively inhibited bacterial proliferation, biofilm formation, and key gene expressions related to the adhesion and virulence of MRSA. It is the first time that the anti-S. aureus and MRSA activities of the three stilbenes have been systematically reported. Conclusively, these findings provide insight into the anti-MRSA mechanism of stilbenes from pigeon pea, indicating these compounds may be used as antimicrobial agents or additives for food with health functions, and contribute to the development as well as application of pigeon pea in food science.


Asunto(s)
Cajanus , Staphylococcus aureus Resistente a Meticilina , Estilbenos , Antibacterianos/farmacología , Estilbenos/farmacología , Pruebas de Sensibilidad Microbiana , Anticuerpos/farmacología , Biopelículas
14.
Int Microbiol ; 27(2): 477-490, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37500936

RESUMEN

Excessive use of chemicals to enhance soil nutrient status and crop yield has resulted in a decline in soil health. Organic farming promotes organic amendments, which help to balance the ecosystem. Understanding the dynamic patterns of belowground microbial populations is essential for developing sustainable agricultural systems. Therefore, the study was designed to evaluate the effect of different agri-practices on rhizospheric bacterial diversity and crop yield in an Indian agricultural system. A 3-year field experiment was set up in a randomized block design using Cajanus cajan as a model crop, comparing conventional farming with organic practice (with animal manure and bio-compost as amendments). Plant and rhizospheric soil samples were collected at the harvest stage for assessing various growth attributes, and for characterizing rhizospheric bacterial diversity. Enhanced crop productivity was seen in conventional farming, with a 2.2-fold increase in grain yield over control. However, over the 3 years, an overall positive impact was observed in the bio-compost-based organic amendment, in terms of bacterial abundance, over other treatments. At the harvest stage of the third cropping season, the bacterial diversity in the organic treatments showed little similarity to the initial bacterial community composition of the amendment applied, indicating stabilization along the growth cycles. The study emphasizes the significance of the choice of the amendment for ushering in agricultural sustainability.


Asunto(s)
Cajanus , Cajanus/microbiología , Ecosistema , Agricultura/métodos , Suelo/química , Bacterias , Microbiología del Suelo
15.
Plant Biotechnol J ; 22(1): 181-199, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37776153

RESUMEN

Aluminium (Al) toxicity decreases crop production in acid soils in general, but many crops have evolved complex mechanisms to resist it. However, our current understanding of how plants cope with Al stress and perform Al resistance is still at the initial stage. In this study, the citrate transporter CcMATE35 was identified to be involved in Al stress response. The release of citrate was increased substantially in CcMATE35 over-expression (OE) lines under Al stress, indicating enhanced Al resistance. It was demonstrated that transcription factor CcNFYB3 regulated the expression of CcMATE35, promoting the release of citrate from roots to increase Al resistance in pigeon pea. We also found that a Long noncoding RNA Targeting Citrate Synthase (CcLTCS) is involved in Al resistance in pigeon pea. Compared with controls, overexpression of CcLTCS elevated the expression level of the Citrate Synthase gene (CcCS), leading to increases in root citrate level and citrate release, which forms another module to regulate Al resistance in pigeon pea. Simultaneous overexpression of CcNFYB3 and CcLTCS further increased Al resistance. Taken together, these findings suggest that the two modules, CcNFYB3-CcMATE35 and CcLTCS-CcCS, jointly regulate the efflux and synthesis of citrate and may play an important role in enhancing the resistance of pigeon pea under Al stress.


Asunto(s)
Cajanus , ARN Largo no Codificante , Ácido Cítrico/metabolismo , Cajanus/genética , Aluminio/toxicidad , Aluminio/metabolismo , Citrato (si)-Sintasa , Citratos/metabolismo
16.
Plant Biotechnol J ; 22(1): 98-115, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37688588

RESUMEN

As a multifunctional hormone-like molecule, melatonin exhibits a pleiotropic role in plant salt stress tolerance. While actin cytoskeleton is essential to plant tolerance to salt stress, it is unclear if and how actin cytoskeleton participates in the melatonin-mediated alleviation of plant salt stress. Here, we report that melatonin alleviates salt stress damage in pigeon pea by activating a kinase-like protein, which interacts with an actin-depolymerizing factor. Cajanus cajan Actin-Depolymerizing Factor 9 (CcADF9) has the function of severing actin filaments and is highly expressed under salt stress. The CcADF9 overexpression lines (CcADF9-OE) showed a reduction of transgenic root length and an increased sensitivity to salt stress. By using CcADF9 as a bait to screen an Y2H library, we identified actin depolymerizing factor-related phosphokinase 1 (ARP1), a novel protein kinase that interacts with CcADF9. CcARP1, induced by melatonin, promotes salt resistance of pigeon pea through phosphorylating CcADF9, inhibiting its severing activity. The CcARP1 overexpression lines (CcARP1-OE) displayed an increased transgenic root length and resistance to salt stress, whereas CcARP1 RNA interference lines (CcARP1-RNAi) presented the opposite phenotype. Altogether, our findings reveal that melatonin-induced CcARP1 maintains F-actin dynamics balance by phosphorylating CcADF9, thereby promoting root growth and enhancing salt tolerance.


Asunto(s)
Cajanus , Melatonina , Melatonina/farmacología , Melatonina/metabolismo , Actinas/metabolismo , Cajanus/genética , Destrina/metabolismo , Tolerancia a la Sal/genética , Fosforilación , Citoesqueleto de Actina/metabolismo
17.
Genes Genomics ; 46(1): 65-94, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37985548

RESUMEN

BACKGROUND: Despite plant's ability to adapt and withstand challenging environments, drought poses a severe threat to their growth and development. Although pigeon pea is already quite resistant to drought, the prolonged dehydration induced by the aberrant climate poses a serious threat to their survival and productivity. OBJECTIVE: Comparative physiological and transcriptome analyses of drought-tolerant (CO5) and drought-sensitive (CO1) pigeon pea genotypes subjected to drought stress were carried out in order to understand the molecular basis of drought tolerance in pigeon pea. METHODS: The transcriptomic analysis allowed us to examine how drought affects the gene expression of C. cajan. Using bioinformatics tools, the unigenes were de novo assembled, annotated, and functionally evaluated. Additionally, a homology-based sequence search against the droughtDB database was performed to identify the orthologs of the DEGs. RESULTS: 1102 potential drought-responsive genes were found to be differentially expressed genes (DEGs) between drought-tolerant and drought-sensitive genotypes. These included Abscisic acid insensitive 5 (ABI5), Nuclear transcription factor Y subunit A-7 (NF-YA7), WD40 repeat-containing protein 55 (WDR55), Anthocyanidin reductase (ANR) and Zinc-finger homeodomain protein 6 (ZF-HD6) and were highly expressed in the tolerant genotype. Further, GO analysis revealed that the most enriched classes belonged to biosynthetic and metabolic processes in the biological process category, binding and catalytic activity in the molecular function category and nucleus and protein-containing complex in the cellular component category. Results of KEGG pathway analysis revealed that the DEGs were significantly abundant in signalling pathways such as plant hormone signal transduction and MAPK signalling pathways. Consequently, in our investigation, we have identified and validated by qPCR a group of genes involved in signal reception and propagation, stress-specific TFs, and basal regulatory genes associated with drought response. CONCLUSION: In conclusion, our comprehensive transcriptome dataset enabled the discovery of candidate genes connected to pathways involved in pigeon pea drought response. Our research uncovered a number of unidentified genes and transcription factors that could be used to understand and improve susceptibility to drought.


Asunto(s)
Cajanus , Transcriptoma , Cajanus/genética , Sequías , Perfilación de la Expresión Génica , Genotipo
18.
J Ethnopharmacol ; 322: 117623, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38128890

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Cajanus cajan (L) Millsp (Fabaceae) seed decoction is used by traditional healers in Nigeria as nerve tonic, hence, could be beneficial in the treatment of Parkinson's disease (PD), a progressive and debilitating neurodegenerative disease that imposes great burden on the healthcare system globally. AIM OF THE STUDY: This study aimed at investigating the neuroprotective effect of ethanol seed extract of Cajanus cajan (CC) in the treatment of rotenone-induced motor symptoms and non-motor symptoms associated with PD. MATERIALS AND METHODS: To assess the protective action of CC on rotenone-induced motor- and non-motor symptoms of PD, mice were first pretreated with CC (50, 100 or 200 mg/kg, p.o.) an hour before oral administration of rotenone (1 mg/kg, p.o, 0.5% in carboxyl-methylcellulose) for 28 consecutive days and weekly behavioural tests including motor assessment (open field test (OFT), rotarod, pole and cylinder tests) and non-motor assessment (novel object recognition (NOR), Y-maze test (YM), forced swim and tail suspension, gastric emptying and intestinal fluid accumulation tests) were carried out. The animals were euthanized on day 28 followed by the collection of brain for assessment of oxidative stress, inflammatory markers and immunohistochemical analysis of the striatum (STR) and substantia nigra (SN). Phytochemicals earlier isolated from CC were docked with protein targets linked with PD pathology such as; catechol-O-methyltransferase (COMT), tyrosine hydroxylase (TH) and Leucine rich receptor kinase (LRRK). RESULTS: this study showed that CC significantly reduced rotenone-induced spontaneous motor impairment in OFT, pole, cylinder and rotarod tests in mice as well as significant improvement in non-motor features (significant reversal of rotenone-induced deficits discrimination index and spontaneous alternation behaviour in NORT and YM test, respectively, reduction in immobility time in forced swim/tail suspension test, gastrointestinal disturbance in intestinal transit time in mice. Moreso, rotenone-induced neurodegeneration, oxidative stress and neuroinflammation were significantly attenuated by CC administration. In addition, docking analysis showed significant binding affinity of CC phytochemicals with COMT, TH and LRRK2 receptors. CONCLUSION: Cajanus cajan seeds extract prevented both motor and non-motor features of Parkinson disease in mice through its antioxidant and anti-inflammatory effects. Hence, could be a potential phytotherapeutic adjunct in the management of Parkinson disease.


Asunto(s)
Cajanus , Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratones , Animales , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/complicaciones , Rotenona/toxicidad , Catecol O-Metiltransferasa/farmacología , Catecol O-Metiltransferasa/uso terapéutico , Neuroprotección , Estrés Oxidativo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Modelos Animales de Enfermedad
19.
Chemosphere ; 346: 140681, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37951403

RESUMEN

Cadmium (Cd) is absorbed by plant roots from soil along with essential nutrients and affects plant growth and productivity. Methyl jasmonate (Me-JA) play important roles to mitigate Cd toxicity in plants. We have investigated the role of Me-JA to ameliorate Cd toxicity in Pigeon pea (Cajanus cajan). Plant root growth, biomass, cellular antioxidant defense system and expression of key regulatory genes in molecular and signaling process have been analyzed. Two Cajanus cajan varieties AL-882 and PAU-881 were grown at 25 °C, 16/8h light/dark conditions in three biological replicates at 5 mM Cd concentration, three concentration of Me-JA (0, 10 nM, 100 nM) and two concentrations in combination of Me-JA + Cd (10 nM Me-JA +5 mM Cd, 100 nM Me-JA +5 mM Cd). The seedlings were exposed to Cd stress consequently plants showed decrease in primary root growth (60.71%, in AL-882 and 8.33%, in PAU-881), shoot and root biomass and antioxidant enzymes activities. Me-JA treatment resulted in increased primary root growth (63.64%, in AL-882) and overall plant biomass. Oxidative stress generated due to Cd stress was counter balanced by Me-JA treatment. Me-JA reduced H2O2 free radicals formation and enhanced antioxidant enzyme activities and phenolic content in stressed seedlings. Me-JA treatment increased expression of CALM, IP3, CDPK2, MPKs (involved in calcium and kinase signaling pathways) and reduced expression of metal transporters (IRT1 and HMA3) genes. This reduction in metal transporters gene expression is a probable reason for low toxicity effect of Cd in root after Me-JA treatment which has potential implications in reducing the risk of Cd in the food chain.


Asunto(s)
Antioxidantes , Cajanus , Antioxidantes/farmacología , Antioxidantes/metabolismo , Cadmio/metabolismo , Cajanus/metabolismo , Fenol/metabolismo , Fenoles/metabolismo , Plantones , Flavonoides
20.
Sci Rep ; 13(1): 16627, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37789026

RESUMEN

The study investigated the effect of germination on pigeon pea flour's physico-functional (pH, color, water and oil absorption capacities, swelling and foaming capacities and bulk densities) and proximate, total polyphenols and antioxidant activity. The physico-functional and proximate parameters were determined using standard protocols. The color analysis showed that germination significantly increased the flour samples' lightness (L*) (70.7; p = 0.009) by almost 1.5-fold. Germination resulted in almost 1.1 times higher oil absorption capacity than the control (219.9%; p = 0.022). The foaming capacity of the germinated samples significantly (p = 0.015) increased by 6.4%. Germination significantly reduced the loose bulk density (0.54 vs 0.63; p = 0.012) but significantly increased the tapped bulk density (0.84 vs 0.77; p = 0.002). The germinated samples recorded significantly (1.62%; p = 0.010) lower crude fat, about 1.2 times lower than the raw flour. Germination significantly increased the flour's total ash (4.2% vs 3.6%; p = 0.003) and crude protein (11.6% vs 9.4%; p = 0.047) content. Germinated pigeon pea flour will perform better in formulating baked products, aerated foods and food extenders than non-germinated pigeon pea flour. Hence, the germination of pigeon peas should be encouraged because it harnesses the functional and proximate attributes measured.


Asunto(s)
Cajanus , Ingredientes Alimentarios , Cajanus/metabolismo , Harina/análisis , Alimentos Funcionales , Antioxidantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...