Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.125
Filtrar
1.
Cells ; 13(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38727287

RESUMEN

Currently, more and more people are suffering from chronic kidney disease (CKD). It is estimated that CKD affects over 10% of the population worldwide. This is a significant issue, as the kidneys largely contribute to maintaining homeostasis by, among other things, regulating blood pressure, the pH of blood, and the water-electrolyte balance and by eliminating unnecessary metabolic waste products from blood. What is more, this disease does not show any specific symptoms at the beginning. The development of CKD is predisposed by certain conditions, such as diabetes mellitus or hypertension. However, these disorders are not the only factors promoting the onset and progression of CKD. The primary purpose of this review is to examine renin-angiotensin-aldosterone system (RAAS) activity, transforming growth factor-ß1 (TGF-ß1), vascular calcification (VC), uremic toxins, and hypertension in the context of their impact on the occurrence and the course of CKD. We firmly believe that a deeper comprehension of the cellular and molecular mechanisms underlying CKD can lead to an enhanced understanding of the disease. In the future, this may result in the development of medications targeting specific mechanisms involved in the decline of kidney function. Our paper unveils the selected processes responsible for the deterioration of renal filtration abilities.


Asunto(s)
Progresión de la Enfermedad , Insuficiencia Renal Crónica , Sistema Renina-Angiotensina , Humanos , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Sistema Renina-Angiotensina/fisiología , Animales , Hipertensión/fisiopatología , Hipertensión/patología , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/fisiopatología , Factor de Crecimiento Transformador beta1/metabolismo , Riñón/patología , Riñón/metabolismo , Riñón/fisiopatología
2.
Gut Microbes ; 16(1): 2351532, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38727248

RESUMEN

Emerging evidence indicates that alteration of gut microbiota plays an important role in chronic kidney disease (CKD)-related vascular calcification (VC). We aimed to investigate the specific gut microbiota and the underlying mechanism involved in CKD-VC. We identified an increased abundance of Prevotella copri (P. copri) in the feces of CKD rats (induced by using 5/6 nephrectomy followed by a high calcium and phosphate diet) with aortic calcification via amplicon sequencing of 16S rRNA genes. In patients with CKD, we further confirmed a positive correlation between abundance of P. copri and aortic calcification scores. Moreover, oral administration of live P. copri aggravated CKD-related VC and osteogenic differentiation of vascular smooth muscle cells in vivo, accompanied by intestinal destruction, enhanced expression of Toll-like receptor-4 (TLR4), and elevated lipopolysaccharide (LPS) levels. In vitro and ex vivo experiments consistently demonstrated that P. copri-derived LPS (Pc-LPS) accelerated high phosphate-induced VC and VSMC osteogenic differentiation. Mechanistically, Pc-LPS bound to TLR4, then activated the nuclear factor κB (NF-κB) and nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3 (NLRP3) inflammasome signals during VC. Inhibition of NF-κB reduced NLRP3 inflammasome and attenuated Pc-LPS-induced VSMC calcification. Our study clarifies a novel role of P. copri in CKD-related VC, by the mechanisms involving increased inflammation-regulating metabolites including Pc-LPS, and activation of the NF-κB/NLRP3 signaling pathway. These findings highlight P. copri and its-derived LPS as potential therapeutic targets for VC in CKD.


Asunto(s)
Microbioma Gastrointestinal , Lipopolisacáridos , FN-kappa B , Prevotella , Insuficiencia Renal Crónica , Transducción de Señal , Receptor Toll-Like 4 , Calcificación Vascular , Animales , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , FN-kappa B/metabolismo , Lipopolisacáridos/metabolismo , Ratas , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/microbiología , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/patología , Humanos , Masculino , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Prevotella/metabolismo , Ratas Sprague-Dawley , Miocitos del Músculo Liso/metabolismo , Osteogénesis/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Heces/microbiología , Inflamasomas/metabolismo
3.
Atherosclerosis ; 392: 117527, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583286

RESUMEN

BACKGROUND AND AIMS: Diabetic atherosclerotic vascular disease is characterized by extensive vascular calcification. However, an elevated blood glucose level alone does not explain this pathogenesis. We investigated the metabolic markers underlying diabetic atherosclerosis and whether extracellular Hsp90α (eHsp90α) triggers vascular endothelial calcification in this particular metabolic environment. METHODS: A parallel human/animal model metabolomics approach was used. We analyzed 40 serum samples collected from 24 patients with atherosclerosis and from the STZ-induced ApoE-/- mouse model. A multivariate statistical analysis of the data was performed, and mouse aortic tissue was collected for the assessment of plaque formation. In vitro, the effects of eHsp90α on endothelial cell calcification were assessed by serum analysis, Western blotting and immunoelectron microscopy. RESULTS: Diabetic ApoE-/- mice showed more severe plaque lesions and calcification damage. Stearamide, oleamide, l-thyroxine, l-homocitrulline and l-citrulline are biomarkers of diabetic ASVD; l-thyroxine was downregulated in both groups, and the thyroid sensitivity index was correlated with serum Hsp90α concentration. In vitro studies showed that eHsp90α increased Runx2 expression in endothelial cells through the LRP1 receptor. l-thyroxine reduced the increase in Runx2 levels caused by eHsp90α and affected the distribution and expression of LRP1 through hydrogen bonding with glutamine at position 1054 in the extracellular segment of LRP1. CONCLUSIONS: This study provides a mechanistic link between characteristic serum metabolites and diabetic atherosclerosis and thus offers new insight into the role of extracellular Hsp90α in promoting vascular calcification.


Asunto(s)
Diabetes Mellitus Experimental , Proteínas HSP90 de Choque Térmico , Ratones Noqueados para ApoE , Placa Aterosclerótica , Tiroxina , Calcificación Vascular , Humanos , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Masculino , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Tiroxina/sangre , Femenino , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad/metabolismo , Persona de Mediana Edad , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/patología , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/patología , Angiopatías Diabéticas/etiología , Metabolómica/métodos , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Metaboloma/efectos de los fármacos , Anciano , Ratones Endogámicos C57BL , Enfermedades de la Aorta/metabolismo , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/sangre , Biomarcadores/sangre , Células Endoteliales de la Vena Umbilical Humana/metabolismo
4.
Front Immunol ; 15: 1370516, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38605946

RESUMEN

Background: Abdominal aortic calcification (AAC) pathogenesis is intricately linked with inflammation. The pan-immune-inflammation value (PIV) emerges as a potential biomarker, offering reflection into systemic inflammatory states and assisting in the prognosis of diverse diseases. This research aimed to explore the association between PIV and AAC. Methods: Employing data from the National Health and Nutrition Examination Survey (NHANES), this cross-sectional analysis harnessed weighted multivariable regression models to ascertain the relationship between PIV and AAC. Trend tests probed the evolving relationship among PIV quartiles and AAC. The study also incorporated subgroup analysis and interaction tests to determine associations within specific subpopulations. Additionally, the least absolute shrinkage and selection operator (LASSO) regression and multivariable logistic regression were used for characteristics selection to construct prediction model. Nomograms were used for visualization. The receiver operator characteristic (ROC) curve, calibration plot and decision curve analysis were applied for evaluate the predictive performance. Results: From the cohort of 3,047 participants, a distinct positive correlation was observed between PIV and AAC. Subsequent to full adjustments, a 100-unit increment in PIV linked to an elevation of 0.055 points in the AAC score (ß=0.055, 95% CI: 0.014-0.095). Categorizing PIV into quartiles revealed an ascending trend: as PIV quartiles increased, AAC scores surged (ß values in Quartile 2, Quartile 3, and Quartile 4: 0.122, 0.437, and 0.658 respectively; P for trend <0.001). Concurrently, a marked rise in SAAC prevalence was noted (OR values for Quartile 2, Quartile 3, and Quartile 4: 1.635, 1.842, and 2.572 respectively; P for trend <0.01). Individuals aged 60 or above and those with a history of diabetes exhibited a heightened association. After characteristic selection, models for predicting AAC and SAAC were constructed respectively. The AUC of AAC model was 0.74 (95%CI=0.71-0.77) and the AUC of SAAC model was 0.84 (95%CI=0.80-0.87). According to the results of calibration plots and DCA, two models showed high accuracy and clinical benefit. Conclusion: The research findings illuminate the potential correlation between elevated PIV and AAC presence. Our models indicate the potential utility of PIV combined with other simple predictors in the assessment and management of individuals with AAC.


Asunto(s)
Calcificación Vascular , Humanos , Estudios Transversales , Encuestas Nutricionales , Factores de Riesgo , Calcificación Vascular/epidemiología , Calcificación Vascular/patología , Inflamación/complicaciones
5.
Cell Signal ; 119: 111189, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670475

RESUMEN

In patients on maintenance hemodialysis (MHD), vascular calcification (VC) is an independent predictor of cardiovascular disease (CVD), which is the primary cause of death in chronic kidney disease (CKD). The main component of VC in CKD is the vascular smooth muscle cells (VSMCs). VC is an ordered, dynamic activity. Under the stresses of oxidative stress and calcium-­phosphorus imbalance, VSMCs undergo osteogenic phenotypic transdifferentiation, which promotes the formation of VC. In addition to traditional epigenetics like RNA and DNA control, post-translational modifications have been discovered to be involved in the regulation of VC in recent years. It has been reported that the process of osteoblast differentiation is impacted by catalytic histone or non-histone arginine methylation. Its function in the osteogenic process is comparable to that of VC. Thus, we propose that arginine methylation regulates VC via many signaling pathways, including as NF-B, WNT, AKT/PI3K, TGF-/BMP/SMAD, and IL-6/STAT3. It might also regulate the VC-related calcification regulatory factors, oxidative stress, and endoplasmic reticulum stress. Consequently, we propose that arginine methylation regulates the calcification of the arteries and outline the regulatory mechanisms involved.


Asunto(s)
Arginina , Calcificación Vascular , Arginina/metabolismo , Humanos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Metilación , Animales , Transducción de Señal , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Estrés Oxidativo
6.
Exp Cell Res ; 438(1): 114031, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38616032

RESUMEN

Diabetes is closely associated with vascular calcification (VC). Exorbitant glucose concentration activates pro-calcific effects in vascular smooth muscle cells (VSMCs). This study enrolled 159 elderly patients with type 2 diabetes and divided them into three groups, T1, T2 and T3, according to brachial-ankle pulse wave velocity(BaPWV). There were statistically significant differences in the waist circumference, waist hip ratio, systolic blood pressure, 12,13-diHOME (a lipokin) concentration among T1, T2 and T3. 12,13-diHOME levels were positively correlated to high density lipoprotein cholesterol and total cholesterol, but negatively correlated to with waist circumference, waist hip ratio, systolic blood pressure and baPWV. Studies in vitro showed that 12,13-diHOME effectively inhibits calcification in VSMCs under high glucose conditions. Notably, 12,13-diHOME suppressed the up-regulation of carnitine O-palmitoyltransferase 1 (CPT1A) and CPT1A-induced succinylation of HMGB1. The succinylation of HMGB1 at the K90 promoted the protein stability and induced the enrichment of HMGB1 in cytoplasm, which induced the calcification in VSMCs. Together, 12,13-diHOME attenuates high glucose-induced calcification in VSMCs through repressing CPT1A-mediated HMGB1 succinylation.


Asunto(s)
Carnitina O-Palmitoiltransferasa , Glucosa , Proteína HMGB1 , Músculo Liso Vascular , Miocitos del Músculo Liso , Calcificación Vascular , Humanos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Músculo Liso Vascular/efectos de los fármacos , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética , Proteína HMGB1/metabolismo , Glucosa/metabolismo , Glucosa/farmacología , Masculino , Anciano , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Femenino , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Células Cultivadas
8.
BMJ Open Diabetes Res Care ; 12(1)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38336383

RESUMEN

INTRODUCTION: There is conflicting evidence whether lower extremity arterial calcification coincides with coronary arterial calcification (CAC). The aims of this study were to investigate the associations between (1) femoral and crural calcification with CAC, and (2) femoral and crural calcification pattern with CAC. RESEARCH DESIGN AND METHODS: This cross-sectional study included 405 individuals (74% men, 62.6±10.9 years) from the ARTEMIS cohort study at high risk of cardiovascular disease (CVD) who underwent a CT scan of the femoral, crural and coronary arteries. High CVD risk was defined as history/presence of cerebrovascular disease, coronary artery disease, abdominal aortic aneurysm, renal artery stenosis, peripheral artery disease or CVD risk factors: diabetes mellitus type 2, hypertension, hyperlipidemia. Calcification score within each arterial bed was expressed in Agatston units. Dominant calcification patterns (intimal, medial, absent/indistinguishable) were determined via a CT-guided histologically validated scoring algorithm. Multivariable-adjusted multinomial logistic regression analyses were used. Replication was performed in an independent population of individuals with diabetes mellitus type 2 (Early-HFpEF cohort study). RESULTS: Every 100-point increase in femoral and crural calcification score was associated with 1.23 (95% CI=1.09 to 1.37, p<0.001) and 1.28 (95% CI=1.11 to 1.47, p=0.001) times higher odds of having CAC within tertile 3 (high) versus tertile 1 (low), respectively. The association appeared stronger for crural versus femoral arteries. Moreover, the presence of femoral intimal (OR=10.81, 95% CI=4.23 to 27.62, p<0.001), femoral medial (OR=10.37, 95% CI=3.92 to 27.38, p<0.001) and crural intimal (OR=6.70, 95% CI=2.73 to 16.43, p<0.001) calcification patterns were associated with higher odds of having CAC within tertile 3 versus tertile 1, independently from concomitant calcification score. This association appeared stronger for intimal versus medial calcification patterns. The replication analysis yielded similar results. CONCLUSIONS: Higher femoral and crural calcification scores were associated with higher CAC. Moreover, the presence of femoral intimal, femoral medial and crural intimal calcification patterns was associated with increased CAC. It appears that arterial calcification is a systemic process which occurs simultaneously in various arterial beds.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Calcificación Vascular , Masculino , Humanos , Femenino , Vasos Coronarios/patología , Estudios de Cohortes , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología , Calcificación Vascular/patología , Estudios Transversales , Factores de Riesgo , Volumen Sistólico , Diabetes Mellitus Tipo 2/complicaciones , Extremidad Inferior
9.
Circulation ; 149(3): 251-266, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38227718

RESUMEN

Coronary artery calcification (CAC) accompanies the development of advanced atherosclerosis. Its role in atherosclerosis holds great interest because the presence and burden of coronary calcification provide direct evidence of the presence and extent of coronary artery disease; furthermore, CAC predicts future events independently of concomitant conventional cardiovascular risk factors and to a greater extent than any other noninvasive biomarker of this disease. Nevertheless, the relationship between CAC and the susceptibility of a plaque to provoke a thrombotic event remains incompletely understood. This review summarizes the current understanding and literature on CAC. It outlines the pathophysiology of CAC and reviews laboratory, histopathological, and genetic studies, as well as imaging findings, to characterize different types of calcification and to elucidate their implications. Some patterns of calcification such as microcalcification portend increased risk of rupture and cardiovascular events and may improve prognosis assessment noninvasively. However, contemporary computed tomography cannot assess early microcalcification. Limited spatial resolution and blooming artifacts may hinder estimation of degree of coronary artery stenosis. Technical advances such as photon counting detectors and combination with nuclear approaches (eg, NaF imaging) promise to improve the performance of cardiac computed tomography. These innovations may speed achieving the ultimate goal of providing noninvasively specific and clinically actionable information.


Asunto(s)
Aterosclerosis , Calcinosis , Enfermedad de la Arteria Coronaria , Calcificación Vascular , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/complicaciones , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/patología , Angiografía Coronaria/métodos , Medición de Riesgo , Aterosclerosis/patología , Calcinosis/diagnóstico por imagen , Calcinosis/patología , Calcificación Vascular/patología , Factores de Riesgo
10.
Int J Med Sci ; 21(2): 306-318, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38169576

RESUMEN

Vascular calcification (VC) is a known predictor of cardiovascular events in patients with atherosclerosis and chronic renal disease. However, the exact relationship between VC and cardiovascular mortality remains unclear. Herein, we investigated the underlying mechanisms between VC progression, arterial stiffness, and cardiac dysfunction. C57BL/6 mice were administered intraperitoneally vitamin D3 (VD3) at a dosage of 35×104 IU/day for 14 days. At day 42, VC extent, artery elasticity, carotid artery blood flow, aorta pulse propagation velocity, cardiac function, and pathological changes were evaluated. Heart apoptosis was detected using TUNEL and immunohistochemistry staining. In vitro, rat cardiomyocytes H9C2 were exposed to media from calcified rat vascular smooth muscle cells (VSMCs) cultured in calcification medium, and then H9C2 apoptosis and gene expression related to cardiac function were assessed. VD3-treated mice displayed a significant aortic calcification, increased pulse propagation velocity of aortae, and reduced cardiac function. Aortae showed increased calcification and elastolysis, with increased heart apoptosis. Hearts demonstrated higher levels of ANP, BNP, MMP2, and lower levels of bcl2/bax. Moreover, calcified rat VSMC media induced H9C2 apoptosis and upregulated genes expression linked to cardiac dysfunction. Our data provide evidence that VC accelerates cardiac dysfunction, partially by inducing cardiomyocytes apoptosis.


Asunto(s)
Cardiopatías , Calcificación Vascular , Humanos , Ratas , Ratones , Animales , Músculo Liso Vascular/metabolismo , Miocitos Cardíacos/patología , Ratones Endogámicos C57BL , Calcificación Vascular/patología , Apoptosis , Miocitos del Músculo Liso/metabolismo
11.
Transl Res ; 264: 1-14, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37690706

RESUMEN

Cardiovascular calcification is a significant public health issue whose pathophysiology is not fully understood. NOR-1 regulates critical processes in cardiovascular remodeling, but its contribution to ectopic calcification is unknown. NOR-1 was overexpressed in human calcific aortic valves and calcified atherosclerotic lesions colocalizing with RUNX2, a factor essential for osteochondrogenic differentiation and calcification. NOR-1 and osteogenic markers were upregulated in calcifying human valvular interstitial cells (VICs) and human vascular smooth muscle cells (VSMCs). Gain- and loss-of-function approaches demonstrated that NOR-1 negatively modulates the expression of osteogenic genes relevant for the osteogenic transdifferentiation (RUNX2, IL-6, BMP2, and ALPL) and calcification of VICs. VSMCs from transgenic mice overexpressing NOR-1 in these cells (TgNOR-1VSMC) expressed lower basal levels of osteogenic genes (IL-6, BMP2, ALPL, OPN) than cells from WT littermates, and their upregulation by a high-phosphate osteogenic medium (OM) was completely prevented by NOR-1 transgenesis. Consistently, this was associated with a dramatic reduction in the calcification of both transgenic VSMCs and aortic rings from TgNOR-1VSMC mice exposed to OM. Atherosclerosis and calcification were induce in mice by the administration of AAV-PCSK9D374Y and a high-fat/high-cholesterol diet. Challenged-TgNOR-1VSMC mice exhibited decreased vascular expression of osteogenic markers, and both less atherosclerotic burden (assessed in whole aorta and lesion size in aortic arch and brachiocephalic artery) and less vascular calcification (assessed either by near-infrared fluorescence imaging or histological analysis) than WT mice. Our data indicate that NOR-1 negatively modulates the expression of genes critically involved in the osteogenic differentiation of VICs and VSMCs, thereby restraining ectopic cardiovascular calcification.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcificación Vascular , Animales , Humanos , Ratones , Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Células Cultivadas , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Interleucina-6/genética , Músculo Liso Vascular/fisiología , Osteogénesis/genética , Proproteína Convertasa 9/genética , Regulación hacia Arriba , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología
12.
Ter Arkh ; 95(6): 468-474, 2023 Aug 17.
Artículo en Ruso | MEDLINE | ID: mdl-38158965

RESUMEN

AIM: To clarify the role of the uremic toxin indoxyl sulfate (IS) and inflammation in the development of vascular calcification and cardiovascular complications in chronic kidney disease (CKD). MATERIALS AND METHODS: One hundred fifteen patients aged 25 to 68 years with CKD stage C3-C5D were examined. Serum concentrations of IS, interleukin 6 (IL-6), tumor necrosis factor (TNF-α), troponin I, parathyroid hormone were determined by enzyme immunoassay using kits from BluGene biotech (Shanghai, China), Cloud-Clone Corp. (USA), ELISA Kit (Biomedica, Austria). RESULTS: An increase in the serum concentration of IS, IL-6, TNF-α was revealed, which was significantly associated with a deterioration in renal function and changes in the morphological and functional parameters of the heart and aorta. CONCLUSION: High concentrations of IS, IL-6, TNF-α, which are closely associated with an increase in renal failure and cardiovascular complications, indicate their significant role in vascular calcification, which underlies the damage to the cardiovascular system in CKD.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Indicán , Tóxinas Urémicas , Factor de Necrosis Tumoral alfa , Interleucina-6 , Relevancia Clínica , China , Calcificación Vascular/diagnóstico , Calcificación Vascular/etiología , Calcificación Vascular/patología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/diagnóstico , Inflamación
13.
Sci Rep ; 13(1): 18110, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872298

RESUMEN

It can be difficult/impossible to fully expand a coronary artery stent in a heavily calcified coronary artery lesion. Under-expanded stents are linked to later complications. Here we used machine/deep learning to analyze calcifications in pre-stent intravascular optical coherence tomography (IVOCT) images and predicted the success of vessel expansion. Pre- and post-stent IVOCT image data were obtained from 110 coronary lesions. Lumen and calcifications in pre-stent images were segmented using deep learning, and lesion features were extracted. We analyzed stent expansion along the lesion, enabling frame, segmental, and whole-lesion analyses. We trained regression models to predict the post-stent lumen area and then computed the stent expansion index (SEI). Best performance (root-mean-square-error = 0.04 ± 0.02 mm2, r = 0.94 ± 0.04, p < 0.0001) was achieved when we used features from both lumen and calcification to train a Gaussian regression model for segmental analysis of 31 frames in length. Stents with minimum SEI > 80% were classified as "well-expanded;" others were "under-expanded." Under-expansion classification results (e.g., AUC = 0.85 ± 0.02) were significantly improved over a previous, simple calculation, as well as other machine learning solutions. Promising results suggest that such methods can identify lesions at risk of under-expansion that would be candidates for intervention lesion preparation (e.g., atherectomy).


Asunto(s)
Calcinosis , Enfermedad de la Arteria Coronaria , Intervención Coronaria Percutánea , Calcificación Vascular , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/cirugía , Enfermedad de la Arteria Coronaria/patología , Vasos Coronarios/diagnóstico por imagen , Vasos Coronarios/cirugía , Vasos Coronarios/patología , Tomografía de Coherencia Óptica/métodos , Resultado del Tratamiento , Valor Predictivo de las Pruebas , Stents , Calcinosis/patología , Angiografía Coronaria , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/patología
14.
Cardiovasc Res ; 119(15): 2563-2578, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37603848

RESUMEN

AIMS: Vascular calcification (VC) predicts the morbidity and mortality in cardiovascular diseases. Vascular smooth muscle cells (VSMCs) osteogenic transdifferentiation is the crucial pathological basis for VC. To date, the molecular pathogenesis is still largely unclear. Notably, C5a-C5aR1 contributes to the development of cardiovascular diseases, and its closely related to physiological bone mineralization which is similar to VSMCs osteogenic transdifferentiation. However, the role and underlying mechanisms of C5a-C5aR1 in VC remain unexplored. METHODS AND RESULTS: A cross-sectional clinical study was utilized to examine the association between C5a and VC. Chronic kidney diseases mice and calcifying VSMCs models were established to investigate the effect of C5a-C5aR1 in VC, evaluated by changes in calcium deposition and osteogenic markers. The cross-sectional study identified that high level of C5a was associated with increased risk of VC. C5a dose-responsively accelerated VSMCs osteogenic transdifferentiation accompanying with increased the expression of C5aR1. Meanwhile, the antagonists of C5aR1, PMX 53, reduced calcium deposition, and osteogenic transdifferentiation both in vivo and in vitro. Mechanistically, C5a-C5aR1 induced endoplasmic reticulum (ER) stress and then activated PERK-eIF2α-ATF4 pathway to accelerated VSMCs osteogenic transdifferentiation. In addition, cAMP-response element-binding protein 3-like 1 (CREB3L1) was a key downstream mediator of PERK-eIF2α-ATF4 pathway which accelerated VSMCs osteogenic transdifferentiation by promoting the expression of COL1α1. CONCLUSIONS: High level of C5a was associated with increased risk of VC, and it accelerated VC by activating the receptor C5aR1. PERK-eIF2α-ATF4-CREB3L1 pathway of ER stress was activated by C5a-C5aR1, hence promoting VSMCs osteogenic transdifferentiation. Targeting C5 or C5aR1 may be an appealing therapeutic target for VC.


Asunto(s)
Enfermedades Cardiovasculares , Complemento C5 , Estrés del Retículo Endoplásmico , Calcificación Vascular , Animales , Ratones , Calcio , Estudios Transversales , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 2 Eucariótico de Iniciación/farmacología , Transducción de Señal , Calcificación Vascular/patología , Complemento C5/metabolismo
15.
Brain Pathol ; 33(6): e13189, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37505935

RESUMEN

Calcification of the cerebral microvessels in the basal ganglia in the absence of systemic calcium and phosphate imbalance is a hallmark of primary familial brain calcification (PFBC), a rare neurodegenerative disorder. Mutation in genes encoding for sodium-dependent phosphate transporter 2 (SLC20A2), xenotropic and polytropic retrovirus receptor 1 (XPR1), platelet-derived growth factor B (PDGFB), platelet-derived growth factor receptor beta (PDGFRB), myogenesis regulating glycosidase (MYORG), and junctional adhesion molecule 2 (JAM2) are known to cause PFBC. Loss-of-function mutations in XPR1, the only known inorganic phosphate exporter in metazoans, causing dominantly inherited PFBC was first reported in 2015 but until now no studies in the brain have addressed whether loss of one functional allele leads to pathological alterations in mice, a commonly used organism to model human diseases. Here we show that mice heterozygous for Xpr1 (Xpr1WT/lacZ ) present with reduced inorganic phosphate levels in the cerebrospinal fluid and age- and sex-dependent growth of vascular calcifications in the thalamus. Vascular calcifications are surrounded by vascular basement membrane and are located at arterioles in the smooth muscle layer. Similar to previously characterized PFBC mouse models, vascular calcifications in Xpr1WT/lacZ mice contain bone matrix proteins and are surrounded by reactive astrocytes and microglia. However, microglial activation is not confined to calcified vessels but shows a widespread presence. In addition to vascular calcifications, we observed vessel tortuosity and transmission electron microscopy analysis revealed microangiopathy-endothelial swelling, phenotypic alterations in vascular smooth muscle cells, and thickening of the basement membrane.


Asunto(s)
Encefalopatías , Enfermedades Neurodegenerativas , Calcificación Vascular , Humanos , Animales , Ratones , Encefalopatías/patología , Fosfatos/metabolismo , Encéfalo/patología , Receptor de Retrovirus Xenotrópico y Politrópico , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Enfermedades Neurodegenerativas/patología , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo III/metabolismo
17.
Turk Kardiyol Dern Ars ; 51(4): 266-273, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37272155

RESUMEN

OBJECTIVE: The primary function of sclerostin is the regulation of bone metabolism. Research investigating the cardiovascular effects of sclerostin had conflicting results. We aimed to study serum sclerostin levels in coronary artery plaque types. METHODS: Coronary calcium scores of 175 patients were evaluated. Patients with normal coronary arteries and calcium score of greater than zero constituted control (n = 47) and study groups (n = 83), respectively. Patients' plaques were further categorized as non-calcified plaque, calcified plaque, or mixed plaque (n = 45, n = 40, and n = 43, respectively). RESULTS: The study group had increased serum sclerostin levels than that of controls. Moreover, sclerostin levels were significantly higher in patients with calcified or mixed plaques compared to those without plaque or non-calcified plaque (median 248.5, 60.7-790.4) pg/mL and 1085.8 (185.8-3902.2) pg/mL versus 68.7 (34.0-141.3) pg/mL, and 67.7 (48.6-94.9) pg/mL, P < 0.001, respectively). Sclerostin showed a high correlation with coronary calcium scores (r = 0.95, P < 0.001). Serum sclerostin concentration of 106.27 pg/mL had 97.5% sensitivity and 67.4% specificity for the prediction of calcific plaque, whereas the level of 308.55 pg/mL had 95.3% sensitivity and 90.9% specificity for the prediction of mixed plaque. Coronary calcium scores, serum sclerostin, and C-reactive protein levels were significant predictors of 1-year major adverse cardiac events. CONCLUSIONS: Increased serum sclerostin level is a marker of coronary atherosclerosis burden and has a value for the prediction of 1-year major adverse cardiac events.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Aterosclerosis , Calcificación Vascular , Humanos , Calcificación Vascular/sangre , Calcificación Vascular/patología , Vasos Coronarios/patología , Estudios Transversales , Masculino , Femenino , Persona de Mediana Edad , Creatina/sangre , Proteínas Adaptadoras Transductoras de Señales/sangre , Aterosclerosis/sangre , Aterosclerosis/patología
18.
Nefrologia (Engl Ed) ; 43(1): 63-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37268501

RESUMEN

Chronic kidney disease (CKD) is a pathology with a high worldwide incidence and an upward trend affecting the elderly. When CKD is very advanced, the use of renal replacement therapies is required to prolong its life (dialysis or kidney transplantation). Although dialysis improves many complications of CKD, the disease does not reverse completely. These patients present an increase in oxidative stress, chronic inflammation and the release of extracellular vesicles (EVs), which cause endothelial damage and the development of different cardiovascular diseases (CVD). CKD patients develop premature diseases associated with advanced age, such as CVD. EVs play an essential role in developing CVD in patients with CKD since their number increases in plasma and their content is modified. The EVs of patients with CKD cause endothelial dysfunction, senescence and vascular calcification. In addition, miRNAs free or transported in EVs together with other components carried in these EVs promote endothelial dysfunction, thrombotic and vascular calcification in CKD, among other effects. This review describes the classic factors and focuses on the role of new mechanisms involved in the development of CVD associated with CKD, emphasizing the role of EVs in the development of cardiovascular pathologies in the context of CKD. Moreover, the review summarized the EVs' role as diagnostic and therapeutic tools, acting on EV release or content to avoid the development of CVD in CKD patients.


Asunto(s)
Enfermedades Cardiovasculares , MicroARNs , Insuficiencia Renal Crónica , Calcificación Vascular , Humanos , Anciano , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/epidemiología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/diagnóstico , Calcificación Vascular/etiología , Calcificación Vascular/patología , Inflamación
19.
Eur J Med Genet ; 66(8): 104803, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37379879

RESUMEN

Generalized Arterial Calcifications of Infancy (GACI) is an extremely rare autosomal recessive genetic condition, mostly due to pathogenic variations in the ENPP1 gene (GACI1, MIM #208000, ENPP1, MIM #173335). To date 46 likely pathogenic or pathogenic distinct variations in ENPP1 have been described, including nonsense, frameshift, missense, splicing variations, and large deletions. Here we report a case of GACI in a male newborn with a homozygous stop-loss variant in ENPP1 treated in Nancy Regional University Maternity Hospital. Based on proband main clinical signs, clinical exome sequencing was performed and showed a deletion of one nucleotide leading to frameshift and stop-loss (NM_006208.3 (ENPP1):c.2746del,p.(Thr916Hisfs*23)). Clinical presentation is characterized by primary neonatal arterial hypertension resulting in hypertrophic cardiomyopathy decompensated by three cardiogenic shocks and a neonatal deep right sylvian stroke. The child died at 24 days of life. This is the first report of a pathogenic stop-loss variant in ENPP1. It is an opportunity to remind clinicians of GACI disease, a rare and severe etiology in neonates with severe hypertension, and possibility of bisphosphonates therapy.


Asunto(s)
Hipertensión , Accidente Cerebrovascular , Calcificación Vascular , Niño , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Embarazo , Mutación del Sistema de Lectura , Mutación , Calcificación Vascular/tratamiento farmacológico , Calcificación Vascular/genética , Calcificación Vascular/patología
20.
Gene ; 872: 147457, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37141952

RESUMEN

BACKGROUND: Patients with chronic kidney disease (CKD) suffered from vascular calcification (VC), one major contributor for their increased mortality rate. Hedgehog (Hh) signaling plays a crucial role in physiological bone mineralization and is associated with several cardiovascular diseases. However, the molecular changes underlying VC is ill defined and it remains unclear whether Hh signaling intervention affects VC. METHODS: We constructed human primary vascular smooth muscle cell (VSMC) calcification model and performed RNA sequencing. Alizarin red staining and calcium content assay were conducted to identify the occurrence of VC. Three different R packages were applied to determine differentially expressed genes (DEGs). Enrichment analysis and protein-protein interaction (PPI) network analysis were carried out to explore the biological roles of DEGs. qRT-PCR assay was then applied to validate the expression of key genes. By using Connectivity Map (CMAP) analysis, several small molecular drugs targeting these key genes were obtained, including SAG (Hedgehog signaling activator) and cyclopamine (CPN) (Hedgehog signaling inhibitor), which were subsequently used to treat VSMC. RESULTS: Obvious Alizarin red staining and increased calcium content identified the occurrence of VC. By integrating results from three R packages, we totally obtained 166 DEGs (86 up-regulated and 80 down-regulated), which were significantly enriched in ossification, osteoblast differentiation, and Hh signaling. PPI network analysis identified 10 key genes and CMAP analysis predicted several small molecular drugs targeting these key genes including chlorphenamine, isoeugenol, CPN and phenazopyridine. Notably, our in vitro experiment showed that SAG markedly alleviated VSMC calcification, whereas CPN significantly exacerbated VC. CONCLUSIONS: Our research provided deeper insight to the pathogenesis of VC and indicated that targeting Hh signaling pathway may represent a potential and effective therapy for VC.


Asunto(s)
Proteínas Hedgehog , Calcificación Vascular , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Calcio/metabolismo , Calcificación Vascular/genética , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Transducción de Señal , Miocitos del Músculo Liso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...