Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.480
Filtrar
1.
Nucleic Acids Res ; 52(8): 4422-4439, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38567724

RESUMEN

Efficient repair of DNA double-strand breaks in the Ig heavy chain gene locus is crucial for B-cell antibody class switch recombination (CSR). The regulatory dynamics of the repair pathway direct CSR preferentially through nonhomologous end joining (NHEJ) over alternative end joining (AEJ). Here, we demonstrate that the histone acetyl reader BRD2 suppresses AEJ and aberrant recombination as well as random genomic sequence capture at the CSR junctions. BRD2 deficiency impairs switch (S) region synapse, optimal DNA damage response (DDR), and increases DNA break end resection. Unlike BRD4, a similar bromodomain protein involved in NHEJ and CSR, BRD2 loss does not elevate RPA phosphorylation and R-loop formation in the S region. As BRD2 stabilizes the cohesion loader protein NIPBL in the S regions, the loss of BRD2 or NIPBL shows comparable deregulation of S-S synapsis, DDR, and DNA repair pathway choice during CSR. This finding extends beyond CSR, as NIPBL and BRD4 have been linked to Cornelia de Lange syndrome, a developmental disorder exhibiting defective NHEJ and Ig isotype switching. The interplay between these proteins sheds light on the intricate mechanisms governing DNA repair and immune system functionality.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Cambio de Clase de Inmunoglobulina , Factores de Transcripción , Cambio de Clase de Inmunoglobulina/genética , Animales , Ratones , Reparación del ADN por Unión de Extremidades/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Roturas del ADN de Doble Cadena , Reparación del ADN , Linfocitos B/inmunología , Linfocitos B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Humanos , Recombinación Genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas que Contienen Bromodominio
2.
Sci Rep ; 14(1): 7370, 2024 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548819

RESUMEN

Class switch recombination (CSR) plays an important role in adaptive immune response by enabling mature B cells to replace the initial IgM by another antibody class (IgG, IgE or IgA). CSR is preceded by transcription of the IgH constant genes and is controlled by the super-enhancer 3' regulatory region (3'RR) in an activation-specific manner. The 3'RR is composed of four enhancers (hs3a, hs1-2, hs3b and hs4). In mature B cells, 3'RR activity correlates with transcription of its enhancers. CSR can also occur in primary developing B cells though at low frequency, but in contrast to mature B cells, the transcriptional elements that regulate the process in developing B cells are ill-known. In particular, the role of the 3'RR in the control of constant genes' transcription and CSR has not been addressed. Here, by using a mouse line devoid of the 3'RR and a culture system that highly enriches in pro-B cells, we show that the 3'RR activity is indeed required for switch transcription and CSR, though its effect varies in an isotype-specific manner and correlates with transcription of hs4 enhancer only.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Súper Potenciadores , Cadenas Pesadas de Inmunoglobulina/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Cambio de Clase de Inmunoglobulina/genética , Linfocitos B , Isotipos de Inmunoglobulinas/genética , Elementos de Facilitación Genéticos
3.
Proc Natl Acad Sci U S A ; 121(13): e2313672121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38502693

RESUMEN

Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.


Asunto(s)
Cambio de Clase de Inmunoglobulina , Células B de Memoria , Humanos , Linfocitos B , Antígenos , Inmunoglobulina G , Inmunoglobulina M , Memoria Inmunológica
4.
J Clin Immunol ; 44(3): 66, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38363477

RESUMEN

B cells and their secreted antibodies are fundamental for host-defense against pathogens. The generation of high-affinity class switched antibodies results from both somatic hypermutation (SHM) of the immunoglobulin (Ig) variable region genes of the B-cell receptor and class switch recombination (CSR) which alters the Ig heavy chain constant region. Both of these processes are initiated by the enzyme activation-induced cytidine deaminase (AID), encoded by AICDA. Deleterious variants in AICDA are causal of hyper-IgM syndrome type 2 (HIGM2), a B-cell intrinsic primary immunodeficiency characterised by recurrent infections and low serum IgG and IgA levels. Biallelic variants affecting exons 2, 3 or 4 of AICDA have been identified that impair both CSR and SHM in patients with autosomal recessive HIGM2. Interestingly, B cells from patients with autosomal dominant HIGM2, caused by heterozygous variants (V186X, R190X) located in AICDA exon 5 encoding the nuclear export signal (NES) domain, show abolished CSR but variable SHM. We herein report the immunological and functional phenotype of two related patients presenting with common variable immunodeficiency who were found to have a novel heterozygous variant in AICDA (L189X). This variant led to a truncated AID protein lacking the last 10 amino acids of the NES at the C-terminal domain. Interestingly, patients' B cells carrying the L189X variant exhibited not only greatly impaired CSR but also SHM in vivo, as well as CSR and production of IgG and IgA in vitro. Our findings demonstrate that the NES domain of AID can be essential for SHM, as well as for CSR, thereby refining the correlation between AICDA genotype and SHM phenotype as well as broadening our understanding of the pathophysiology of HIGM disorders.


Asunto(s)
Citidina Desaminasa , Síndrome de Inmunodeficiencia con Hiper-IgM , Cambio de Clase de Inmunoglobulina , Humanos , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Síndrome de Inmunodeficiencia con Hiper-IgM/genética , Inmunoglobulina A/genética , Cambio de Clase de Inmunoglobulina/genética , Inmunoglobulina G/genética , Fenotipo , Hipermutación Somática de Inmunoglobulina
5.
J Allergy Clin Immunol ; 153(5): 1392-1405, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38280573

RESUMEN

BACKGROUND: Ataxia telangiectasia (AT) is characterized by cerebellar ataxia, telangiectasia, immunodeficiency, and increased cancer susceptibility and is caused by mutations in the ataxia telangiectasia mutated (ATM) gene. The immunodeficiency comprises predominantly immunoglobulin deficiency, mainly IgA and IgG2, with a variable severity. So far, the exact mechanisms underlying the immunoglobulin deficiency, especially the variable severity, remain unelucidated. OBJECTIVE: We characterized the clinical impact of immunoglobulin deficiencies in AT and elucidated their mechanisms in AT. METHODS: We analyzed long-term immunoglobulin levels, immunophenotyping, and survival time in our cohort (n = 87, median age 16 years; maximum 64 years). Somatic hypermutation and class-switch junctions in B cells were analyzed by next-generation sequencing. Furthermore, an in vitro class-switching induction assay was performed, followed by RNA sequencing, to assess the effect of ATM inhibition. RESULTS: Only the hyper-IgM AT phenotype significantly worsened survival time, while IgA or IgG2 deficiencies did not. The immunoglobulin levels showed predominantly decreased IgG2 and IgA. Moreover, flow cytometric analysis demonstrated reduced naive B and T lymphocytes and a deficiency of class-switched IgG2 and IgA memory B cells. Somatic hypermutation frequencies were lowered in IgA- and IgG2-deficient patients, indicating hampered germinal center reaction. In addition, the microhomology of switch junctions was elongated, suggesting alternative end joining during class-switch DNA repair. The in vitro class switching and proliferation were negatively affected by ATM inhibition. RNA sequencing analysis showed that ATM inhibitor influenced expression of germinal center reaction genes. CONCLUSION: Immunoglobulin deficiency in AT is caused by disturbed development of class-switched memory B cells. ATM deficiency affects both germinal center reaction and choice of DNA-repair pathway in class switching.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada , Ataxia Telangiectasia , Linfocitos B , Cambio de Clase de Inmunoglobulina , Humanos , Ataxia Telangiectasia/inmunología , Ataxia Telangiectasia/genética , Adulto , Adolescente , Masculino , Femenino , Persona de Mediana Edad , Niño , Proteínas de la Ataxia Telangiectasia Mutada/deficiencia , Proteínas de la Ataxia Telangiectasia Mutada/genética , Linfocitos B/inmunología , Adulto Joven , Anciano , Hipermutación Somática de Inmunoglobulina , Preescolar , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre
6.
Nat Commun ; 15(1): 163, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167945

RESUMEN

Monocarboxylate transporter 1 (MCT1) exhibits essential roles in cellular metabolism and energy supply. Although MCT1 is highly expressed in activated B cells, it is not clear how MCT1-governed monocarboxylates transportation is functionally coupled to antibody production during the glucose metabolism. Here, we report that B cell-lineage deficiency of MCT1 significantly influences the class-switch recombination (CSR), rendering impaired IgG antibody responses in Mct1f/fMb1Cre mice after immunization. Metabolic flux reveals that glucose metabolism is significantly reprogrammed from glycolysis to oxidative phosphorylation in Mct1-deficient B cells upon activation. Consistently, activation-induced cytidine deaminase (AID), is severely suppressed in Mct1-deficient B cells due to the decreased level of pyruvate metabolite. Mechanistically, MCT1 is required to maintain the optimal concentration of pyruvate to secure the sufficient acetylation of H3K27 for the elevated transcription of AID in activated B cells. Clinically, we found that MCT1 expression levels are significantly upregulated in systemic lupus erythematosus patients, and Mct1 deficiency can alleviate the symptoms of bm12-induced murine lupus model. Collectively, these results demonstrate that MCT1-mediated pyruvate metabolism is required for IgG antibody CSR through an epigenetic dependent AID transcription, revealing MCT1 as a potential target for vaccine development and SLE disease treatment.


Asunto(s)
Linfocitos B , Cambio de Clase de Inmunoglobulina , Animales , Humanos , Ratones , Acetilación , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Glucosa/metabolismo , Isotipos de Inmunoglobulinas , Piruvatos/metabolismo
7.
Nucleic Acids Res ; 52(2): 784-800, 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38000394

RESUMEN

Activation-induced cytidine deaminase (AID) interacts with replication protein A (RPA), the major ssDNA-binding protein, to promote deamination of cytosine to uracil in transcribed immunoglobulin (Ig) genes. Uracil-DNA glycosylase (UNG) acts in concert with AID during Ig diversification. In addition, UNG preserves genome integrity by base-excision repair (BER) in the overall genome. How UNG is regulated to support both mutagenic processing and error-free repair remains unknown. UNG is expressed as two isoforms, UNG1 and UNG2, which both contain an RPA-binding helix that facilitates uracil excision from RPA-coated ssDNA. However, the impact of this interaction in antibody diversification and genome maintenance has not been investigated. Here, we generated B-cell clones with targeted mutations in the UNG RPA-binding motif, and analysed class switch recombination (CSR), mutation frequency (5' Ig Sµ), and genomic uracil in clones representing seven Ung genotypes. We show that the UNG:RPA interaction plays a crucial role in both CSR and repair of AID-induced uracil at the Ig loci. By contrast, the interaction had no significant impact on total genomic uracil levels. Thus, RPA coordinates UNG during CSR and pre-replicative repair of mutagenic uracil in ssDNA but is not essential in post-replicative and canonical BER of uracil in dsDNA.


Asunto(s)
Proteína de Replicación A , Uracil-ADN Glicosidasa , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , Reparación del ADN/genética , ADN de Cadena Simple/genética , Cambio de Clase de Inmunoglobulina/genética , Isotipos de Inmunoglobulinas/genética , Inmunoglobulinas/genética , Mutágenos , Proteína de Replicación A/genética , Proteína de Replicación A/metabolismo , Uracilo/metabolismo , Uracil-ADN Glicosidasa/genética , Uracil-ADN Glicosidasa/metabolismo , Humanos , Animales , Ratones
9.
Front Immunol ; 14: 1266370, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022602

RESUMEN

Patients with inflammatory arthritis (IA) are at increased risk of severe COVID-19 due to medication-induced immunosuppression that impairs host defenses. The aim of this study was to assess antibody and B cell responses to COVID-19 mRNA vaccination in IA patients receiving immunomodulatory therapies. Adults with IA were enrolled through the Johns Hopkins Arthritis Center and compared with healthy controls (HC). Paired plasma and peripheral blood mononuclear cell (PBMC) samples were collected prior to and 30 days or 6 months following the first two doses of mRNA vaccines (D2; HC=77 and IA=31 patients), or 30 days following a third dose of mRNA vaccines (D3; HC=11 and IA=96 patients). Neutralizing antibody titers, total binding antibody titers, and B cell responses to vaccine and Omicron variants were analyzed. Anti-Spike (S) IgG and S-specific B cells developed appropriately in most IA patients following D3, with reduced responses to Omicron variants, and negligible effects of medication type or drug withholding. Neutralizing antibody responses were lower compared to healthy controls after both D2 and D3, with a small number of individuals demonstrating persistently undetectable neutralizing antibody levels. Most IA patients respond as well to mRNA COVID-19 vaccines as immunocompetent individuals by the third dose, with no evidence of improved responses following medication withholding. These data suggest that IA-associated immune impairment may not hinder immunity to COVID-19 mRNA vaccines in most individuals.


Asunto(s)
Formación de Anticuerpos , Artritis , Vacunas contra la COVID-19 , COVID-19 , Adulto , Humanos , Anticuerpos Neutralizantes , Artritis/tratamiento farmacológico , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Inmunomodulación , Leucocitos Mononucleares , Cambio de Clase de Inmunoglobulina , Vacunas de ARNm/inmunología , Linfocitos B/inmunología , Anticuerpos Antivirales
10.
Sci Rep ; 13(1): 19615, 2023 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-37949972

RESUMEN

Activation-induced cytidine deaminase (AID) is the key mediator of antibody diversification in activated B-cells by the process of somatic hypermutation (SHM) and class switch recombination (CSR). Targeting AID to the Ig genes requires transcription (initiation and elongation), enhancers, and its interaction with numerous factors. Furthermore, the HIRA chaperon complex, a regulator of chromatin architecture, is indispensable for SHM. The HIRA chaperon complex consists of UBN1, ASF1a, HIRA, and CABIN1 that deposit H3.3 onto the DNA, the SHM hallmark. We explored whether UBN1 interacts with AID using computational and in-vitro experiments. Interestingly, our in-silico studies, such as molecular docking and molecular dynamics simulation results, predict that AID interacts with UBN1. Subsequently, co-immunoprecipitation and pull-down experiments established interactions between UBN1 and AID inside B-cells. Additionally, a double immunofluorescence assay confirmed that AID and UBN1 were co-localized in the human and chicken B-cell lines. Moreover, proximity ligation assay studies validated that AID interacts with UBN1. Ours is the first report on the interaction of genome mutator enzyme AID with UBN1. Nevertheless, the fate of interaction between UBN1 and AID is yet to be explored in the context of SHM or CSR.


Asunto(s)
Cromatina , Factores de Transcripción , Humanos , Citidina Desaminasa/genética , Cambio de Clase de Inmunoglobulina , Inmunoglobulinas/genética , Chaperonas Moleculares/genética , Simulación del Acoplamiento Molecular , Proteínas Nucleares/genética , Hipermutación Somática de Inmunoglobulina , Factores de Transcripción/genética
11.
Cell Cycle ; 22(18): 2070-2087, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37909747

RESUMEN

Secondary immunoglobulin diversification by somatic hypermutation and class switch recombination in B cells is instrumental for an adequate adaptive humoral immune response. These genetic events may, however, also introduce aberrations into other cellular genes and thereby cause B cell malignancies. While the basic mechanism of somatic hypermutation and class switch recombination is now well understood, their regulation and in particular the mechanism of their specific targeting to immunoglobulin genes is still rather mysterious. In this review, we summarize the current knowledge on the mechanism and regulation of secondary immunoglobulin diversification and discuss known mechanisms of physiological targeting to immunoglobulin genes and mistargeting to other cellular genes. We summarize open questions in the field and provide an outlook on future research.


Asunto(s)
Linfocitos B , Inmunoglobulinas , Inmunoglobulinas/genética , Cambio de Clase de Inmunoglobulina/genética , Hipermutación Somática de Inmunoglobulina/genética , Citidina Desaminasa
12.
Clin Immunol ; 257: 109817, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37925120

RESUMEN

A subset of autoimmune diseases is characterized by predominant pathogenic IgG4 autoantibodies (IgG4-AID). Why IgG4 predominates in these disorders is unknown. We hypothesized that dysregulated B cell maturation or aberrant class switching causes overrepresentation of IgG4+ B cells and plasma cells. Therefore, we compared the B cell compartment of patients from four different IgG4-AID with two IgG1-3-AID and healthy donors, using flow cytometry. Relative subset abundance at all maturation stages was normal, except for a, possibly treatment-related, reduction in immature and naïve CD5+ cells. IgG4+ B cell and plasma cell numbers were normal in IgG4-AID patients, however they had a (sub)class-independent 8-fold increase in circulating CD20-CD138+ cells. No autoreactivity was found in this subset. These results argue against aberrant B cell development and rather suggest the autoantibody subclass predominance to be antigen-driven. The similarities between IgG4-AID suggest that, despite displaying variable clinical phenotypes, they share a similar underlying immune profile.


Asunto(s)
Autoanticuerpos , Enfermedades Autoinmunes , Humanos , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Linfocitos B
13.
Front Immunol ; 14: 1237498, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37691918

RESUMEN

Introduction: Defective lymphatic drainage and translocation of B-cells in inflamed (Bin) joint-draining lymph node sinuses are pathogenic phenomena in patients with severe rheumatoid arthritis (RA). However, the molecular mechanisms underlying this lymphatic dysfunction remain poorly understood. Herein, we utilized multi-omic spatial and single-cell transcriptomics to evaluate altered cellular composition (including lymphatic endothelial cells, macrophages, B-cells, and T-cells) in the joint-draining lymph node sinuses and their associated phenotypic changes and cell-cell interactions during RA development using the tumor necrosis factor transgenic (TNF-Tg) mouse model. Methods: Popliteal lymph nodes (PLNs) from wild-type (n=10) and TNF-Tg male mice with "Early" (5 to 6-months of age; n=6) and "Advanced" (>8-months of age; n=12) arthritis were harvested and processed for spatial transcriptomics. Single-cell RNA sequencing (scRNAseq) was performed in PLNs from the TNF-Tg cohorts (n=6 PLNs pooled/cohort). PLN histopathology and ELISPOT along with ankle histology and micro-CT were evaluated. Histopathology of human lymph nodes and synovia was performed for clinical correlation. Results: Advanced PLN sinuses exhibited an increased Ighg2b/Ighm expression ratio (Early 0.5 ± 0.1 vs Advanced 1.4 ± 0.5 counts/counts; p<0.001) that significantly correlated with reduced talus bone volumes in the afferent ankle (R2 = 0.54, p<0.001). Integration of single-cell and spatial transcriptomics revealed the increased IgG2b+ plasma cells localized in MARCO+ peri-follicular medullary sinuses. A concomitant decreased Fth1 expression (Early 2.5 ± 0.74 vs Advanced 1.0 ± 0.50 counts, p<0.001) within Advanced PLN sinuses was associated with accumulation of iron-laden Prussian blue positive macrophages in lymph nodes and synovium of Advanced TNF-Tg mice, and further validated in RA clinical samples. T-cells were increased 8-fold in Advanced PLNs, and bioinformatic pathway assessment identified the interaction between ALCAM+ macrophages and CD6+ T-cells as a plausible co-stimulatory mechanism to promote IgG2b class-switching. Discussion: Collectively, these data support a model of flare in chronic TNF-induced arthritis in which loss of lymphatic flow through affected joint-draining lymph nodes facilitates the interaction between effluxing macrophages and T-cells via ALCAM-CD6 co-stimulation, initiating IgG2b class-switching and plasma cell differentiation of the expanded Bin population. Future work is warranted to investigate immunoglobulin clonality and potential autoimmune consequences, as well as the efficacy of anti-CD6 therapy to prevent these pathogenic events.


Asunto(s)
Artritis Reumatoide , Cambio de Clase de Inmunoglobulina , Inmunoglobulina G , Animales , Humanos , Masculino , Ratones , Molécula de Adhesión Celular del Leucocito Activado , Células Endoteliales , Multiómica
14.
Biochimie ; 214(Pt A): 167-175, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37678746

RESUMEN

Immunoglobulin (Ig) genes carry the unique ability to be reshaped in peripheral B lymphocytes after these cells encounter a specific antigen. B cells can then further improve their affinity, acquire new functions as memory cells and eventually end up as antibody-secreting cells. Ig class switching is an important change that occurs in this context, thanks to local DNA lesions initiated by the enzyme activation-induced deaminase (AID). Several cis-acting elements of the Ig heavy (IgH) chain locus make it accessible to the AID-mediated lesions that promote class switch recombination (CSR). DNA repeats, with a non-template strand rich in G-quadruplexes (G4)-DNA, are prominent cis-targets of AID and define the so-called "switch" (S) regions specifically targeted for CSR. By analyzing the structure of the human IgH locus, we uncover that abundant DNA repeats, some with a putative G4-rich template strand, are additionally present in downstream portions of the IgH coding genes. These like-S (LS) regions stand as 3' mirror-images of S regions and also show analogies to some previously reported repeats associated with the IgH locus 3' super-enhancer. A regulatory role of LS repeats is strongly suggested by their specific localization close to exons encoding the membrane form of Ig molecules, and by their conservation during mammalian evolution.


Asunto(s)
Cadenas Pesadas de Inmunoglobulina , Ácidos Nucleicos , Humanos , Linfocitos B/metabolismo , Citidina Desaminasa/genética , Citidina Desaminasa/metabolismo , ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Secuencias Reguladoras de Ácidos Nucleicos , Cadenas Pesadas de Inmunoglobulina/genética
15.
PLoS One ; 18(8): e0285159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540725

RESUMEN

PHRF1 is an E3 ligase that promotes TGF-ß signaling by ubiquitinating a homeodomain repressor TG-interacting factor (TGIF). The suppression of PHRF1 activity by PML-RARα facilitates the progression of acute promyelocytic leukemia (APL). PHRF1 also contributes to non-homologous end-joining in response to DNA damage by linking H3K36me3 and NBS1 with DNA repair machinery. However, its role in class switch recombination (CSR) is not well understood. In this study, we report the importance of PHRF1 in IgA switching in CH12F3-2A cells and CD19-Cre mice. Our studies revealed that Crispr-Cas9 mediated PHRF1 knockout and shRNA-silenced CH12F3-2A cells reduced IgA production, as well as decreased the amounts of PARP1, NELF-A, and NELF-D. The introduction of PARP1 could partially restore IgA production in PHRF1 knockout cells. Intriguingly, IgA, as well as IgG1, IgG2a, and IgG3, switchings were not significantly decreased in PHRF1 deficient splenic B lymphocytes isolated from CD19-Cre mice. The levels of PARP1 and NELF-D were not decreased in PHRF1-depleted primary splenic B cells. Overall, our findings suggest that PHRF1 may modulate IgA switching in CH12F3-2A cells.


Asunto(s)
Proteínas de Unión al ADN , Cambio de Clase de Inmunoglobulina , Ratones , Animales , Proteínas de Unión al ADN/genética , Cambio de Clase de Inmunoglobulina/genética , Reparación del ADN , Reparación del ADN por Unión de Extremidades , Inmunoglobulina A/genética
16.
Proc Natl Acad Sci U S A ; 120(35): e2216521120, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37603748

RESUMEN

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here, we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2, or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 and BA.1 strains of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality but also for binding and neutralization of antigenically drifted viruses.


Asunto(s)
Anticuerpos Antivirales , COVID-19 , Inmunoglobulina G , Gripe Humana , Inmunoglobulina G/inmunología , Anticuerpos Antivirales/inmunología , Fragmentos Fab de Inmunoglobulinas/inmunología , Formación de Anticuerpos , Gripe Humana/inmunología , Gripe Humana/virología , COVID-19/inmunología , COVID-19/virología , Cambio de Clase de Inmunoglobulina , SARS-CoV-2/fisiología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Humanos , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Virus de la Influenza A/fisiología
17.
J Biomed Sci ; 30(1): 62, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37533081

RESUMEN

BACKGROUND: Excess polymorphonuclear neutrophil (PMN) recruitment or excessive neutrophil extracellular trap (NET) formation can lead to the development of multiple organ dysfunction during sepsis. M2 macrophage-derived exosomes (M2-Exos) have exhibited anti-inflammatory activities in some inflammatory diseases to mediate organ functional protection, but their role in treating sepsis-related acute lung injury (ALI) remains unclear. In this study, we sought to investigate whether M2-Exos could prevent potentially deleterious inflammatory effects during sepsis-related ALI by modulating abnormal PMN behaviours. METHODS: C57BL/6 wild-type mice were subjected to a caecal ligation and puncture (CLP) mouse model to mimic sepsis in vivo, and M2-Exos were administered intraperitoneally 1 h after CLP. H&E staining, immunofluorescence and immunohistochemistry were conducted to investigate lung tissue injury, PMN infiltration and NET formation in the lung. We further demonstrated the role of M2-Exos on PMN function and explored the potential mechanisms through an in vitro coculture experiment using PMNs isolated from both healthy volunteers and septic patients. RESULTS: Here, we report that M2-Exos inhibited PMN migration and NET formation, alleviated lung injury and reduced mortality in a sepsis mouse model. In vitro, M2-Exos significantly decreased PMN migration and NET formation capacity, leading to lipid mediator class switching from proinflammatory leukotriene B4 (LTB4) to anti-inflammatory lipoxin A4 (LXA4) by upregulating 15-lipoxygenase (15-LO) expression in PMNs. Treatment with LXA4 receptor antagonist attenuated the effect of M2-Exos on PMNs and lung injury. Mechanistically, prostaglandin E2 (PGE2) enriched in M2-Exos was necessary to increase 15-LO expression in PMNs by functioning on the EP4 receptor, upregulate LXA4 production to downregulate chemokine (C-X-C motif) receptor 2 (CXCR2) and reactive oxygen species (ROS) expressions, and finally inhibit PMN function. CONCLUSIONS: Our findings reveal a previously unknown role of M2-Exos in regulating PMN migration and NET formation through lipid mediator class switching, thus highlighting the potential application of M2-Exos in controlling PMN-mediated tissue injury in patients with sepsis.


Asunto(s)
Trampas Extracelulares , Lesión Pulmonar , Sepsis , Ratones , Animales , Dinoprostona/metabolismo , Dinoprostona/farmacología , Neutrófilos/metabolismo , Infiltración Neutrófila , Lesión Pulmonar/metabolismo , Cambio de Clase de Inmunoglobulina , Ratones Endogámicos C57BL , Macrófagos , Factor de Activación Plaquetaria/metabolismo , Factor de Activación Plaquetaria/farmacología
18.
Trends Immunol ; 44(10): 782-791, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640588

RESUMEN

The DNA double-strand break (DSB) repair factor 53BP1 has long been implicated in V(D)J and class switch recombination (CSR) of mammalian lymphocyte receptors. However, the dissection of the underlying molecular activities is hampered by a paucity of studies [V(D)J] and plurality of phenotypes (CSR) associated with 53BP1 deficiency. Here, we revisit the currently accepted roles of 53BP1 in antibody diversification in view of the recent identification of its downstream effectors in DSB protection and latest advances in genome architecture. We propose that, in addition to end protection, 53BP1-mediated end-tethering stabilization is essential for CSR. Furthermore, we support a pre-DSB role during V(D)J recombination. Our perspective underscores the importance of evaluating repair of DSBs in relation to their dynamic architectural contexts.


Asunto(s)
Anticuerpos , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína 1 de Unión al Supresor Tumoral P53 , Animales , Humanos , Ratones , Anticuerpos/genética , Cambio de Clase de Inmunoglobulina/genética , Linfocitos , Mamíferos
19.
Clin Immunol ; 254: 109697, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37481011

RESUMEN

Impaired class switch memory (CSM) B cell formation is the hallmark of common variable immunodeficiency (CVID). Various T cell abnormalities have been observed in CVID patients indicating inadequate T-cell help to B cells. A major setback in understanding its pathogenesis is due to diverse clinical presentation. Therefore, we performed extensive immunological investigation in a cohort of CVID patients with similar clinical findings in order to unravel the T cell dysfunction and its influence on the defective humoral immune response. All recruited CVID patients exhibited B cells in the normal range, but reduced CSM B cells. However, patients showed reduced T cell proliferation, reduced level of serum Interleukin-9 (IL-9) and frequency of IL-9 expressing CD4 (Th-9) cells. IL-9 supplementation along with CD40 engagement was effective in inducing in vitro CSM B cells formation in CVID patients. Thus, IL-9 supplementation has the potential to restore impaired CSM B cell formation in CVID.


Asunto(s)
Inmunodeficiencia Variable Común , Interleucina-9 , Humanos , Células B de Memoria , Cambio de Clase de Inmunoglobulina , Linfocitos T
20.
J Immunol ; 210(12): 1853-1860, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37276051

RESUMEN

IL-4 has long been established as a key regulator of Th cells and for promoting effective B cell survival and isotype class switching. Yet, despite having been extensively studied, the specific role of IL-4 in generating humoral memory in vivo is unclear. In this review, we explore the recent studies that unravel the cellular sources and spatiotemporal production of IL-4, the relationship between IL-4 and IL-21 during germinal center responses and the formation of Ab-secreting cells, and the current understanding of whether IL-4 promotes or suppresses memory B cell generation in vitro and in vivo.


Asunto(s)
Interleucina-4 , Células B de Memoria , Linfocitos B , Diferenciación Celular , Centro Germinal , Cambio de Clase de Inmunoglobulina , Isotipos de Inmunoglobulinas , Humanos , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...