Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Intervalo de año de publicación
1.
Food Res Int ; 193: 114857, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39160053

RESUMEN

Theacrine, a purine alkaloid derived from Camellia assamica var. kucha, has a distinct bitter taste. Our previous study found the lower recognition threshold of theacrine at 25 °C than 45 °C. This study aims to investigate the bitterness characterizations of theacrine at aforementioned temperatures and its taste perception mechanism. Sensory analysis exhibited higher bitterness intensity for theacrine at 25 °C than 45 °C. Subsequently, flow cytometry was performed to verify the above characterization at the cellular level. It revealed that theacrine could activated the bitter receptor hTAS2R14 and the calcium signal at 25 °C was higher than 45 °C. Ultimately, the interaction mechanism was studied by molecular dynamics simulations, indicating that the conformation of theacrine-hTAS2R14 had a higher binding capacity and better stability at 25 °C. Overall, temperature affected the binding of theacrine to the bitter receptor hTAS2R14, resulting in the stronger bitterness intensity of theacrine at 25 °C than 45 °C.


Asunto(s)
Receptores Acoplados a Proteínas G , Gusto , Temperatura , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Simulación de Dinámica Molecular , Percepción del Gusto , Camellia/química , Células HEK293 , Masculino , Ácido Úrico/análogos & derivados
2.
Int J Biol Macromol ; 275(Pt 1): 133560, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38955294

RESUMEN

Hydrogels based on poly(vinyl alcohol), silk sericin, and gelatin containing Camellia oleifera oil (CO)-loaded chitosan nanoparticles (CSNPs) were fabricated. The loading of CO into CSNPs was achieved by a two-step procedure, which included an oil-in-water emulsion and an ionic gelation method. SEM images of CO-loaded CSNPs illustrated the spherical shape with aggregation of the nanoparticles. The particle size and polydispersity index were 541-1089 nm and 0.39-0.65, respectively. The encapsulation efficiency and loading capacity were 3-16 % and 4-6 %, respectively. The gelatin/poly(vinyl alcohol)/sericin hydrogels were fabricated and incorporated with CO or CO-loaded CSNPs with different concentrations of CO-loaded CSNPs. All hydrogels demonstrated a porous structure. Besides, the hydrogels containing CO-loaded CSNPs showed a more controlled and sustained release profile than the hydrogels containing CO. Moreover, the hydrogels showed tyrosinase inhibition (9-13 %) and antioxidant activity (37-60 %). Finally, the hydrogels containing CO-loaded CSNPs were non-toxic to the Normal Human Dermal Fibroblasts and NCTC clone 929 cells, even at a high dosage of 50 mg/mL. As a result, these hydrogels exhibited excellent potential for use in cosmeceutical industries.


Asunto(s)
Camellia , Quitosano , Cosmecéuticos , Liberación de Fármacos , Hidrogeles , Nanopartículas , Aceites de Plantas , Quitosano/química , Nanopartículas/química , Hidrogeles/química , Camellia/química , Humanos , Aceites de Plantas/química , Aceites de Plantas/farmacología , Cosmecéuticos/química , Cosmecéuticos/farmacología , Preparaciones de Acción Retardada/farmacología , Antioxidantes/farmacología , Antioxidantes/química , Portadores de Fármacos/química , Tamaño de la Partícula , Fibroblastos/efectos de los fármacos , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/metabolismo , Sericinas/química , Sericinas/farmacología
3.
Fitoterapia ; 177: 106116, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977254

RESUMEN

Androgenetic alopecia (AGA) is the leading cause of hair loss in adults. Its pathogenesis remains unclear, but studies have shown that the androgen-mediated 5α-reductase-AR receptor pathway and the Wnt/ß-catenin signaling pathway play significant roles. Camellia oleifera is an oil plant, and its fruits have been documented in folklore as having a hair cleansing effect and preventing hair loss. In this study, we used UPLC-Q-TOF-MS/MS to identify the structure of the substances contained in the polyphenols of Camellia oleifera seed shell. These polyphenols are mainly used for shampooing and anti-hair loss purposes. Next, we used molecular docking technology to dock 41 polyphenols and steroidal 5 alpha reductase 2 (SRD5A2). We found that the docking scores and docking sites of 1,3,6-tri-O-galloylglucose (TGG) and finasteride were similar. We constructed a mouse model of DHT-induced AGA to evaluate the effects of Camellia oleifera seed shell polyphenols (CSSP) and TGG in vivo. Treatment with CSSP and TGG alleviated alopecia symptoms and reduced DHT levels. Additionally, CSSP and TGG were able to reduce androgen levels by inhibiting the SRD5A2-AR receptor signaling pathway. Furthermore, by regulating the secretion of growth factors and activating the Wnt/ß-catenin signaling pathway, CSSP and TGG were able to extend the duration of hair growth. In conclusion, our study showed that CSSP and TGG can improve AGA in C57BL/6 J mice and reduce the effect of androgen on hair follicle through the two signaling pathways mentioned above. This provides new insights into the material basis and mechanism of the treatment of AGA by CSSP.


Asunto(s)
Alopecia , Camellia , Simulación del Acoplamiento Molecular , Polifenoles , Semillas , Vía de Señalización Wnt , Alopecia/tratamiento farmacológico , Camellia/química , Animales , Ratones , Polifenoles/farmacología , Polifenoles/aislamiento & purificación , Semillas/química , Vía de Señalización Wnt/efectos de los fármacos , Masculino , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Estructura Molecular , Taninos Hidrolizables/farmacología , Taninos Hidrolizables/aislamiento & purificación
4.
J Agric Food Chem ; 72(32): 18257-18270, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39084609

RESUMEN

Camellia oleifera, a major woody oil crop in China, produces tea oil rich in unsaturated fatty acids, earning it names like liquid gold and eastern olive oil. This study provides an integrated investigation of the transcriptome and lipidome within seeds at the maturing process across three C. oleifera varieties, revealing a significant relationship between fatty acid production and genes involved in lipid synthesis. Through transcriptomic analysis, 26,344 genes with varied expression were found. Functional enrichment analysis highlighted that pathways related to starch and sucrose metabolism, plant hormone signal transduction, and lipid accumulation were highly enriched among the differentially expressed genes. Coordinated high expression of key genes (ACCase, KAS I, KAS II, KAS III, KAR, HAD, EAR, SAD, LPAAT, LACS, DGAT, PDAT) during the late maturation stage contributes largely to high oil content. Additionally, expression variations of SAD and FADs among different varieties were explored. The analysis suggests that high expression of genes such as FAD3, FAD7, and FAD8 notably increased linolenic acid content. This research provides new insights into the molecular mechanisms of oil biosynthesis in C. oleifera, offering valuable references for improving yield and quality.


Asunto(s)
Camellia , Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Lipidómica , Proteínas de Plantas , Semillas , Transcriptoma , Camellia/metabolismo , Camellia/genética , Camellia/crecimiento & desarrollo , Camellia/química , Semillas/metabolismo , Semillas/crecimiento & desarrollo , Semillas/genética , Semillas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácidos Grasos/metabolismo , Aceites de Plantas/metabolismo , Aceites de Plantas/química , China
5.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999144

RESUMEN

This study assessed the nutritional profile of camellia oil through its fatty acid composition, highlighting its high oleic acid content (81.4%), followed by linoleic (7.99%) and palmitic acids (7.74%), demonstrating its excellence as an edible oil source. The impact of beeswax (BW) and glycerol monolaurate (GML) on camellia oil oleogels was investigated, revealing that increasing BW or GML concentrations enhanced hardness and springiness, with 10% BW oleogel exhibiting the highest hardness and springiness. FTIR results suggested that the structure of the oleogels was formed by interactions between molecules without altering the chemical composition. In biscuits, 10% BW oleogel provided superior crispness, expansion ratio, texture, and taste, whereas GML imparted a distinct odor. In sausages, no significant differences were observed in color, water retention, and pH between the control and replacement groups; however, the BW group scored higher than the GML group in the sensory evaluation. The findings suggest that the BW oleogel is an effective fat substitute in biscuits and sausages, promoting the application of camellia oil in food products.


Asunto(s)
Camellia , Lauratos , Monoglicéridos , Compuestos Orgánicos , Aceites de Plantas , Ceras , Camellia/química , Ceras/química , Aceites de Plantas/química , Lauratos/química , Compuestos Orgánicos/química , Compuestos Orgánicos/análisis , Monoglicéridos/química , Productos de la Carne/análisis , Gusto , Ácidos Grasos/química , Ácidos Grasos/análisis
6.
PeerJ ; 12: e17607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39056057

RESUMEN

Background: Colletotrichum fructicola is a predominant anthracnose species in Camellia oleifera, causing various adverse effects. Traditional intercropping Vernicia fordii with C. oleifera may enhance anthracnose resistance, but the mechanism remains elusive. Methods: We utilized UPLC-MS/MS and acid-base detection to identify the major antimicrobial alkaloid components in the V. fordii leaf extract. Subsequently, by adding different concentrations of V. fordii leaf extract for cultivating C. fructicola, with untreated C. fructicola as a control, we investigated the impact of the V. fordii leaf extract, cell wall integrity, cell membrane permeability, MDA, and ROS content changes. Additionally, analysis of key pathogenic genes of C. fructicola confirmed that the V. fordii leaf extract inhibits the growth of the fungus through gene regulation. Results: This study discovered the alkaloid composition of V. fordii leaf extract by UPLC-MS/MS and acid-base detection, such as trigonelline, stachydrine, betaine, and O-Phosphocholine. V. fordii leaf extract successfully penetrated C. fructicola mycelia, damaged cellular integrity, and increased ROS and MDA levels by 1.75 and 2.05 times respectively, thereby inhibiting C. fructicola proliferation. By analyzing the key pathogenic genes of C. fructicola, it was demonstrated that the antifungal function of V. fordii leaf extract depends mainly on the regulation of RAB7 and HAC1 gene expression. Therefore, this study elucidates the mechanism of V. fordii -C. oleifera intercropping in strengthening anthracnose resistance in C. oleifera, contributing to efficient C. oleifera cultivation.


Asunto(s)
Colletotrichum , Enfermedades de las Plantas , Extractos Vegetales , Hojas de la Planta , Especies Reactivas de Oxígeno , Extractos Vegetales/farmacología , Extractos Vegetales/química , Colletotrichum/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Hojas de la Planta/química , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Camellia/química , Alcaloides/farmacología , Regulación hacia Abajo/efectos de los fármacos , Espectrometría de Masas en Tándem
7.
J Oleo Sci ; 73(7): 943-952, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945923

RESUMEN

Eleven kinds of Camellia oleifera seed oils (CSOs) were evaluated in terms of chemical constituents, antioxidant activities, acid value (AV) as well as peroxide value (POV). These CSOs contained abundant ß-sitosterol, squalene, α-tocopherol and phenolics, in which the squalene was the distinct constituent with the content between 45.8±0.8 and 184.1±5.5 mg/kg. The ß-sitosterol ranging from 143.7±4.8 to 1704.6±72.0 mg/kg contributed a considerable content to total accompaniments. Palmitic acid, stearic acid, oleic acid, linoleic acid and linolenic acid were present in these CSOs, in which the dominant fatty acid was oleic acid with the content between 59.66±0.72 and 82.89±2.16 g/100 g. The AV ranged from 0.1±0.0 to 1.3±0.0 mg KOH/g, and the POV was between 0.1±0.0 and 1.0±0.0 g/100 g. These CSOs showed antioxidant activity based on DPPH and ABTS radical scavenging assay. Both α-tocopherol and ß-sitosterol contents showed a positive correlation with DPPH and ABTS values, respectively, while the α-tocopherol content showed a negative correlation with AV. These results suggested that CSO can be categorized into high oleic acid vegetable oil with abundant active constituents, of which the quality presented variation among different origins. These accompaniments may contribute to the delay of its quality deterioration.


Asunto(s)
Antioxidantes , Camellia , Ácido Oléico , Aceites de Plantas , Semillas , Sitoesteroles , Escualeno , alfa-Tocoferol , Camellia/química , Antioxidantes/análisis , Aceites de Plantas/química , Aceites de Plantas/análisis , Sitoesteroles/análisis , Semillas/química , Escualeno/análisis , China , alfa-Tocoferol/análisis , Ácido Oléico/análisis , Fenómenos Químicos , Ácidos Grasos/análisis , Ácido Palmítico/análisis , Fenoles/análisis , Ácido Linoleico/análisis , Peróxidos/análisis
8.
Food Funct ; 15(13): 7063-7080, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38867661

RESUMEN

Diet adjustment will affect the health of gut microbiota, which in turn influences the development and function of the organism's brain through the gut-brain axis. Walnut oil (WO), peony seed oil (PSO) and camellia seed oil (CSO), as typical representatives of woody plant oils, have been shown to have the potential to improve cognitive impairment in mice, but the function mechanisms are not clear. In this study, we comparatively investigated the neuroprotective effects of these three oils on D-galactose (D-gal)-induced cognitive impairment in mice, and found that the ameliorative effect of WO was more prominent. During the behavioral experiments, supplementation with all three oils would improve spatial learning and memory functions in D-gal mice, with a significant reduction in the error times (p < 0.001) and a significant increase in step-down latency (p < 0.001); walnut oil supplementation also significantly increased the number of hidden platform traversals, the target quadrant spent times and percentage of distance (p < 0.05). The results of biomarker analysis showed that WO, in addition to significantly inhibiting D-gal-induced oxidative stress and neuroinflammation as did PSO, significantly increased the ACh content in the mouse brain (p < 0.05) and modulated neurotransmitter levels. The results of further microbiota diversity sequencing experiments also confirmed that dietary supplementation with all three oils affected the diversity and composition of the gut microbiota in mice. Among them, WO significantly restored the balance of the mouse gut microbiota by increasing the abundance of beneficial bacteria (Bacteroidetes, Actinobacteria, Firmicutes) and decreasing the abundance of harmful bacteria (Clostridium, Shigella, Serratia), which was consistent with the results of behavioral experiments and biomarker analyses. Based on the analysis of the fatty acid composition of the three oils and changes in the gut microbiota, it is hypothesized that there is a correlation between the fatty acid composition of the dietary supplement oils and neuroprotective effects. The superiority of WO over PSO and CSO in improving cognitive impairment is mainly attributed to its balanced composition of omega-6 and omega-3 fatty acids.


Asunto(s)
Camellia , Disfunción Cognitiva , Galactosa , Microbioma Gastrointestinal , Juglans , Aceites de Plantas , Semillas , Animales , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Camellia/química , Juglans/química , Aceites de Plantas/farmacología , Galactosa/efectos adversos , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/inducido químicamente , Masculino , Semillas/química , Bacterias/clasificación , Bacterias/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estrés Oxidativo/efectos de los fármacos
9.
Food Chem ; 455: 139959, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38850980

RESUMEN

The Glycerol monolaurate (GML) oleogel was induced using Camellia oil by slowly raising the temp to the melting point (MP) of GML. Whey protein isolate (WPI) solution with different ratios was composited with GML oleogel by emulsion template methods, forming dense spines and honeycomb-like networks and impressed with an adjustable composite structure. Textural results showed that compared with single GML-based oleogels, the GML/WPI composite oleogels had the advantages of high hardness and molding, and structural stability. The composite oleogels had moderate thermal stability and maximal oil binding (96.36%). In particular, as up to 6 wt% GML/WPI, its modulus apparent viscosity was significantly increased in rheology and similar to commercial fats. Moreover, it achieved the highest release of FFA (64.07%) and the synergy provided a lipase substrate and reduced the body's burden. The resulting composite oleogel also showed intermolecular hydrogen bonding and van der Waals force interactions. These findings further enlarge the application in the plant and animal-based combined of fat substitutes, delivery of bioactive molecules, etc., with the desired physical and functional properties according to different proportions.


Asunto(s)
Digestión , Lauratos , Monoglicéridos , Compuestos Orgánicos , Proteína de Suero de Leche , Proteína de Suero de Leche/química , Lauratos/química , Monoglicéridos/química , Compuestos Orgánicos/química , Viscosidad , Reología , Modelos Biológicos , Camellia/química , Animales , Lipasa/química , Lipasa/metabolismo , Sustitutos de Grasa/química
10.
Molecules ; 29(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38930818

RESUMEN

This study prepared sulfonated Camellia oleifera shell biochar using Camellia oleifera shell agricultural waste as a carbon source, and evaluated its performance as a catalyst for preparing biodiesel. The biochar obtained from carbonizing Camellia oleifera shells at 500 °C for 2 h serves as the carbon skeleton, and then the biochar is sulfonated with chlorosulfonic acid. The sulfonic acid groups are mainly grafted onto the surface of Camellia oleifera shell biochar through covalent bonding to obtain sulfonic acid type biochar catalysts. The catalysts were characterized by Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Nitrogen adsorption-desorption Brunel-Emmett-Taylor Theory (BET), and Fourier-transform infrared spectroscopy (FT-IR). The acid density of the sulfonated Camellia oleifera fruit shell biochar catalyst is 2.86 mmol/g, and the specific surface area is 2.67 m2/g, indicating high catalytic activity. The optimal reaction conditions are 4 wt% catalyst with a 6:1 alcohol to oil ratio. After esterification at 70 °C for 2 h, the yield of biodiesel was 91.4%. Under the optimal reaction conditions, after four repeated uses of the catalyst, the yield of biodiesel still reached 90%. Therefore, sulfonated Camellia oleifera shell biochar is a low-cost, green, non-homogeneous catalyst with great potential for biodiesel production by esterification reaction in future development.


Asunto(s)
Biocombustibles , Camellia , Carbón Orgánico , Camellia/química , Carbón Orgánico/química , Catálisis , Ácidos Sulfónicos/química , Espectroscopía Infrarroja por Transformada de Fourier , Esterificación , Difracción de Rayos X
11.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1233-1241, 2024 May.
Artículo en Chino | MEDLINE | ID: mdl-38886421

RESUMEN

The alteration of stand age instigates modifications in soil properties and microbial communities. Understanding the impacts of stand age on soil enzyme stoichiometry and microbial nutrient limitations in Camellia oleifera plantation is crucial for nutrient management. Taking C. oleifera plantation across four age groups (<10 a, 15-25 a, 30-50 a, >60 a) in a subtropical red soil region as test objects, we examined the response of soil enzyme stoichiometry and microbial nutrient limitations to change in stand age and analyzed the pathways for such responses. The results showed that, compared to that of stand age <10 a, enzyme C:N in the 15-25 a was increased and enzyme N:P was significantly reduced. Microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), and microbial biomass phosphorus (MBP) exhibited a trend of initially decreasing and then increasing with stand age. MBN and MBN:MBP were significantly higher in the <10 a compared to that in the 30-50 a. MBC:MBN was significantly higher in the 30-50 a and >60 a compared to the <10 a and 15-25 a. Results of redundancy analysis revealed that soil nutrients, microbial biomass and their stoichiometry explained 92.4% of the variations in enzyme stoichiometry. Partial least squares path modeling (PLS-PM) results demonstrated that soil organic carbon (SOC) had a positive effect on microbial C limitation; MBN, MBN:MBP, MBC:MBP, SOC, and total nitrogen had a nega-tive overall effect on microbial P limitation, whereas soil C:N had a positive overall effect on microbial P limitation. There was a significant positive correlation between microbial C and P limitations. With increasing stand age, microbial nutrient limitation shifted from N and P limitation (<10 a) to C and P limitation (15-25 a, 30-50 a, >60 a).


Asunto(s)
Camellia , Carbono , Nitrógeno , Fósforo , Microbiología del Suelo , Suelo , Camellia/metabolismo , Camellia/crecimiento & desarrollo , Camellia/química , Suelo/química , Nitrógeno/metabolismo , Nitrógeno/análisis , Carbono/metabolismo , Fósforo/metabolismo , Nutrientes/metabolismo , Nutrientes/análisis , Factores de Tiempo , China , Biomasa
12.
Food Chem ; 453: 139700, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38795434

RESUMEN

To enhance the colorimetric performance of anthocyanin (Ant), a konjac glucomannan (KGM)-based multifunctional pH-responsive indicator film was fabricated by introducing enzymatically prepared bacterial nanocellulose (EBNC) stabilized camellia oil/camellia essential oil Pickering emulsion (BCCE). Specifically, optimized enzymatic hydrolysis time (36 h) was determined based on the particle size and microstructure. Then BCCE (containing 0.4% EBNC) was incorporated into Ant-containing KGM, and the novel active indicator film (KGM-Ant-BCCE) was constructed. Films with varying BCCE concentrations (3%-11%) exhibited enhanced UV shielding, thermal stability, mechanical strength, water vapor and oxygen permeability, hydrophobicity, and antioxidant performance. The pronounced color change of KGM-Ant-BCCE indicated its potential for visually detecting shrimp freshness. Moreover, the biodegradability (25 days) confirmed the environmentally benign property of the film. In summary, incorporating green-produced EBNC nanoparticle-stabilized BCCE offers an innovative pathway to improve the color indication capability of polysaccharide-based smart packaging.


Asunto(s)
Antocianinas , Celulosa , Colorimetría , Emulsiones , Embalaje de Alimentos , Nanopartículas , Antocianinas/química , Nanopartículas/química , Celulosa/química , Emulsiones/química , Embalaje de Alimentos/instrumentación , Camellia/química , Tecnología Química Verde , Bacterias/química , Aceites Volátiles/química , Animales
13.
Int J Biol Macromol ; 270(Pt 1): 131831, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38702246

RESUMEN

Lately, emulsions with low-fat and natural stabilizers are predominant. This study extracted the nano cellulose crystals (NCs) from Camellia Oleifera shells, and their gallic acid (GA) conjugates were synthesized by free-radical grafting. Pickering emulsions were prepared using NCs 1 %, 1.5 %, 2.5 %, and gallic acid conjugates NC-GA1, NC-GA2, and NC-GA3 as stabilizers. The obtained nano cellulose crystals exhibited 18-25 nm, -40.01 ±â€¯2.45 size, and zeta potential, respectively. The contact angle of 83.4° was exhibited by NC-GA3 conjugates. The rheological, interfacial, and microstructural properties and stability of the Pickering emulsion were explored. NC-GA3 displayed the highest absorption content of 79.12 %. Interfacial tension was drastically reduced with increasing GA concentration in NC-GA conjugates. Rheological properties suggested that the low-fat NC-GA emulsions showed a viscoelastic behavior, increased viscosity, gel-like structure, and increased antioxidant properties. Moreover, NC-GA3 displayed reduced droplet size and improved emulsion temperature and storage stability (28 days) against phase separation. POV and TBARS values were reduced with the NC-GA3 (P < 0.05). This work confirmed that grafting phenolic compounds on NCs could enhance bioactive properties, which can be used in developing low-fat functional foods. NC-GA conjugates can potentially fulfill the increasing demand for sustainable, healthy, and low-fat foods.


Asunto(s)
Antioxidantes , Camellia , Celulosa , Emulsiones , Ácido Gálico , Reología , Camellia/química , Ácido Gálico/química , Celulosa/química , Antioxidantes/química , Viscosidad , Nanopartículas/química , Cristalización
14.
Sci Rep ; 14(1): 8709, 2024 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622262

RESUMEN

Sect. tuberculata plant belongs to the Camellia genus and is named for the "tuberculiform protuberance on the surface of the ovary and fruit". It is a species of great ornamental value and potential medicinal value. However, little has been reported on the metabolites of C. tuberculata seeds. Therefore, this study was conducted to investigate the metabolites of C. tuberculata seeds based on UPLC/ESI-Q TRAP-MS/MS with extensively targeted metabolomics. A total of 1611 metabolites were identified, including 107 alkaloids, 276 amino acids and derivatives, 283 flavonoids, 86 lignans and coumarins, 181 lipids, 68 nucleotides and derivatives, 101 organic acids, 190 phenolic acids, 10 quinones, 4 steroids, 17 tannins, 111 terpenoids, and 177 other metabolites. We compared the different metabolites in seeds between HKH, ZM, ZY, and LY. The 1311 identified different metabolites were classified into three categories. Sixty-three overlapping significant different metabolites were found, of which lignans and coumarins accounted for the largest proportion. The differentially accumulated metabolites were enriched in different metabolic pathways between HKH vs. LY, HKH vs. ZM, HKH vs. ZY, LY vs. ZY, ZM vs. LY and ZM vs. ZY, with the most abundant metabolic pathways being 4, 2, 4, 7, 7 and 5, respectively (p < 0.05). Moreover, among the top 20 metabolites in each subgroup comparison in terms of difference multiplicity 7, 8 and 13. ZM and ZY had the highest phenolic acid content. Ninety-six disease-resistant metabolites and 48 major traditional Chinese medicine agents were identified based on seven diseases. The results of this study will not only lead to a more comprehensive and in-depth understanding of the metabolic properties of C. tuberculata seeds, but also provide a scientific basis for the excavation and further development of its medicinal value.


Asunto(s)
Camellia , Hidroxibenzoatos , Lignanos , Camellia/química , Antioxidantes/química , Espectrometría de Masas en Tándem , Flavonoides/análisis , Semillas/química , Metabolómica/métodos , Extractos Vegetales/química , Lignanos/análisis , Cumarinas/análisis
15.
Molecules ; 29(8)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38675684

RESUMEN

Camellia oleifera oil (CO oil) extracted from C. oleifera seeds has a 2300-year consumption history in China. However, there is relatively little research regarding its non-edible uses. This study determined the physicochemical properties of CO oil extracted via direct pressing, identified its main components using GC-MS, and evaluated its antioxidant, moisturizing, and anti-inflammatory activities. The results revealed that CO oil's acid, peroxide, iodine, and saponification values were 1.06 ± 0.031 mg/g, 0.24 ± 0.01 g/100 g, 65.14 ± 8.22 g/100 g, and 180.41 ± 5.60 mg/g, respectively. CO oil's tocopherol, polyphenol, and squalene contents were 82.21 ± 9.07 mg/kg, 181.37 ± 3.76 mg/kg, and 53.39 ± 6.58 mg/kg, respectively; its unsaturated fatty acid (UFA) content was 87.44%, and its saturated fatty acid (SFA) content was 12.56%. CO oil also demonstrated excellent moisture retention properties, anti-inflammatory effects, and certain free radical scavenging. A highly stable CO oil emulsion with competent microbiological detection was developed using formulation optimization. Using CO oil in the emulsion significantly improved the formulation's antioxidant and moisturizing properties compared with those of the emulsion formulation that did not include CO oil. The prepared emulsion was not cytotoxic to cells and could reduce cells' NO content; therefore, it may have potential nutritional value in medicine and cosmetics.


Asunto(s)
Antiinflamatorios , Antioxidantes , Camellia , Aceites de Plantas , Camellia/química , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Aceites de Plantas/farmacología , Aceites de Plantas/química , Humanos , Animales , Ratones , Cromatografía de Gases y Espectrometría de Masas
16.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124266, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38599024

RESUMEN

To efficiently detect the maturity stages of Camellia oleifera fruits, this study proposed a non-invasive method based on hyperspectral imaging technology. First, a portable hyperspectral imager was used for the in-field image acquisition of Camellia oleifera fruits at three maturity stages, and ten quality indexes were measured as reference standards. Then, factor analysis was performed to obtain the comprehensive maturity index (CMI) by analyzing the change trends and correlations of different indexes. To reduce the high dimensionality of spectral data, the successive projection algorithm (SPA) was employed to select effective feature wavelengths. The prediction models for CMI, including partial least squares regression (PLSR), support vector regression (SVR), extreme learning machine (ELM), and convolutional neural network regression (CNNR), were constructed based on full spectra and feature wavelengths; for CNNR, only the raw spectra were used as input. The SPA-CNNR model exhibited more promising performance (RP = 0.839, RMSEP = 0.261, and RPD = 1.849). Furthermore, PLS-DA models for maturity discrimination of Camellia oleifera fruits were developed using full wavelength, characteristic wavelengths and their fusion CMI, respectively. The PLS-DA model using the fused dataset achieved the highest maturity classification accuracy, with the best simplified model achieving 88.6 % accuracy in prediction set. This study indicated that a portable hyperspectral imager can be used for in-field determination of the internal quality and maturity stages of Camellia oleifera fruits. It provides strong support for non-destructive quality inspection and timely harvesting of Camellia oleifera fruits in the field.


Asunto(s)
Camellia , Frutas , Camellia/química , Camellia/crecimiento & desarrollo , Frutas/química , Frutas/crecimiento & desarrollo , Análisis de los Mínimos Cuadrados , Imágenes Hiperespectrales/métodos , Algoritmos , Redes Neurales de la Computación , Máquina de Vectores de Soporte
17.
Chem Biodivers ; 21(7): e202400053, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38646830

RESUMEN

Three new oleanane-type triterpene saponins, named camphanosides A-C (1-3), along with five known compounds, chikusetsusaponin IVa (4), spinasaponin A 28-O-glucoside (5), (-)-epicatechin (6), (-)-epicatechin 3-O-gallate (7), and (-)-epigallocatechin 3-O-gallate (8) were isolated from the leaves Camellia phanii Hakoda & Ninh. Their structures were established by 1D and 2D-NMR and mass spectral analysis and chemical methods. Moreover, compounds 1-5 were also evaluated for α-glucosidase inhibitory activity. Compounds 1-3 exhibited moderate α-glucosidase inhibitory activity with IC50 values of 230.7±18.0, 251.4±22.7, and 421.4±25.6 µM, respectively.


Asunto(s)
Camellia , Inhibidores de Glicósido Hidrolasas , Glicósidos , Ácido Oleanólico , alfa-Glucosidasas , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/aislamiento & purificación , Camellia/química , alfa-Glucosidasas/metabolismo , Ácido Oleanólico/química , Ácido Oleanólico/farmacología , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/aislamiento & purificación , Glicósidos/química , Glicósidos/farmacología , Glicósidos/aislamiento & purificación , Hojas de la Planta/química , Relación Estructura-Actividad , Conformación Molecular , Triterpenos/química , Triterpenos/farmacología , Triterpenos/aislamiento & purificación , Estructura Molecular
18.
Food Chem ; 450: 139333, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38636384

RESUMEN

Camellia saponins are important by-products of Camellia Oleifer Abel. processing. In this study, an eco-friendly method based on natural deep eutectic solvents (NaDESs, proline and glycerol at a molar ratio of 2:5) was established to extract saponins from C.oleifera cakes. The content of saponin (702.22 ± 1.28 mg/g) obtained using NaDES was higher than those extracted using water or methanol. UPLC-Q-TOF MS analysis of chemical structure showed that the difference in the extraction technique alter individual saponins. A widely targeted metabolomic approach and KEGG metabolic pathway analysis showed that the upregulated metabolites in the NaDES-based extract mainly included flavonoids, alkaloids, and phenolic acids; and they were involved in arginine and proline metabolism, metabolic pathways, phenylpropanoid biosynthesis, biosynthesis of secondary metabolites, and flavonoid biosynthesis. The present study proposes a selective substitute for use in the extraction of camellia saponins with composition analysis.


Asunto(s)
Camellia , Metabolómica , Extractos Vegetales , Saponinas , Camellia/química , Camellia/metabolismo , Saponinas/química , Saponinas/metabolismo , Saponinas/aislamiento & purificación , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Solventes/química , Cromatografía Líquida de Alta Presión , Espectrometría de Masas
19.
Food Chem ; 446: 138779, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430762

RESUMEN

Fragrant Camellia oleifera Abel. seed oil (FCSO), produced by a roasting process, is popular for its characteristic aroma. This study investigated the effects of various roasting temperatures (90℃, 120℃, 150℃, 180℃) and durations (20 min, 40 min, 60 min) on the flavor of FCSO by physicochemical properties, hazardous substances, sensory evaluation, and flavor analyses. The results showed that FCSO roasted at 120℃/20 min had a reasonable fatty acid composition with a lower acid value (0.16 mg/g), peroxide value (0.13 g/100 g), p-anisidine value (2.27), dibutyl phthalate content (0.04 mg/kg), and higher 1,1-diphenyl-2-picrylhydrazyl free radical scavenging activity (224.51 µmol TE/kg) than other samples. A multivariate analysis of FCSO flavor revealed that the 120℃/20 min group had a higher grassy flavor score (5.3 score) from nonanoic acid and a lower off-flavor score (2.2 score) from 2-methylbutyric acid. The principal component analysis showed that 120℃/20 min could guarantee the best flavor and quality of FCSO. Therefore, this information can guide the preparation of FCSO.


Asunto(s)
Camellia , Odorantes , Aceites de Plantas/química , Semillas/química , Temperatura , Camellia/química
20.
Food Chem ; 447: 139046, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-38518620

RESUMEN

The objective of this study was to systematically elucidate the effects of conventional (Cold Pressing, CP; Hot Pressing, HP; Soxhlet Extraction; SE) and novel methods (Microwave-Assisted Extraction, MAE) on the physicochemical properties, bio-active substances, flavor and lipidomics of Camellia oleifera oil (COO). The cold-pressed COO contained the highest contents of squalene (176.38 mg/kg), α-tocopherol (330.52 mg/kg), polyphenols (68.33 mg/kg) and phytosterols (2782.55 mg/kg). Oleic acid was observed as the predominant fatty acid with the content of approximately 80%. HS-GC-IMS identified 47 volatile compounds, including 11 aldehydes, 11 ketones, 11 alcohols, 2 acids, 8 esters, 2 pyrazines, 1 furan, and 1 thiophene. A total of 5 lipid classes and 30 lipid subclasses of 339 lipids were identifed, among which TGs and DGs were observed as the major lipids. In summary, both cold-pressed and microwave-assisted technologies provided high-quality COO with high content of bio-active substances and diglycerides/triglycerides.


Asunto(s)
Camellia , Lipidómica , Aceites de Plantas/química , Ácidos Grasos , Ácido Oléico , Camellia/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA