Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Membr Biol ; 257(1-2): 37-50, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460011

RESUMEN

In skeletal muscle, the Ca2+ release flux elicited by a voltage clamp pulse rises to an early peak that inactivates rapidly to a much lower steady level. Using a double pulse protocol the fast inactivation follows an arithmetic rule: if the conditioning depolarization is less than or equal to the test depolarization, then decay (peak minus steady level) in the conditioning release is approximately equal to suppression (unconditioned minus conditioned peak) of the test release. This is due to quantal activation by voltage, analogous to the quantal activation of IP3 receptor channels. Two mechanisms are possible. One is the existence of subsets of channels with different sensitivities to voltage. The other is that the clusters of Ca2+-gated Ryanodine Receptor (RyR) ß in the parajunctional terminal cisternae might constitute the quantal units. These Ca2+-gated channels are activated by the release of Ca2+ through the voltage-gated RyR α channels. If the RyR ß were at the basis of quantal release, it should be modified by strong inhibition of the primary voltage-gated release. This was attained in two ways, by sarcoplasmic reticulum (SR) Ca2+ depletion and by voltage-dependent inactivation. Both procedures reduced global Ca2+ release flux, but SR Ca2+ depletion reduced the single RyR current as well. The effect of both interventions on the quantal properties of Ca2+ release in frog skeletal muscle fibers were studied under voltage clamp. The quantal properties of release were preserved regardless of the inhibitory maneuver applied. These findings put a limit on the role of the Ca2+-activated component of release in generating quantal activation.


Asunto(s)
Músculo Esquelético , Retículo Sarcoplasmático , Retículo Sarcoplasmático/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Señalización del Calcio , Calcio/metabolismo
2.
J Med Chem ; 66(23): 15761-15775, 2023 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991191

RESUMEN

To discover new multifunctional agents for the treatment of cardiovascular diseases, we designed and synthesized a series of compounds with a cyclopropyl alcohol moiety and evaluated them in biochemical assays. Biological screening identified derivatives with dual activity: preventing Ca2+ leak through ryanodine receptor 2 (RyR2) and enhancing cardiac sarco-endoplasmic reticulum (SR) Ca2+ load by activation of Ca2+-dependent ATPase 2a (SERCA2a). The compounds that stabilize RyR2 at micro- and nanomolar concentrations are either structurally related to RyR-stabilizing drugs or Rycals or have structures similar to them. The novel compounds also demonstrate a good ability to increase ATP hydrolysis mediated by SERCA2a activity in cardiac microsomes, e.g., the half-maximal effective concentration (EC50) was as low as 383 nM for compound 12a, which is 1,4-benzothiazepine with two cyclopropanol groups. Our findings indicate that these derivatives can be considered as new lead compounds to improve cardiac function in heart failure.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Tiazepinas/química , Tiazepinas/farmacología
3.
Diab Vasc Dis Res ; 20(4): 14791641231197106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37589258

RESUMEN

Background: Long-term ß-adrenergic receptor (ß-AR) activation can impair myocardial structure and function. Dapagliflozin (DAPA) has been reported to improve clinical prognosis in heart failure patients, whereas the exact mechanism remains unclear. Here, we investigated the effects of DAPA against ß-AR overactivation toxicity and explored the underlying mechanism.Methods and Results: Rats were randomized to receive saline + placebo, isoproterenol (ISO, 5 mg/kg/day, intraperitoneally) + placebo, or ISO + DAPA (1 mg/kg/day, intragastrically) for 2-week. DAPA treatment improved cardiac function, alleviated myocardial fibrosis, prevented cardiomyocytes (CMs) apoptosis, and decreased the expression of ER stress-mediated apoptosis markers in ISO-treated hearts. In isolated CMs, 2-week ISO stimulation resulted in deteriorated kinetics of cellular contraction and relaxation, increased diastolic intracellular Ca2+ level and decay time constant of Ca2+ transient (CaT) but decreased CaT amplitude and sarcoplasmic reticulum (SR) Ca2+ level. However, DAPA treatment prevented abnormal Ca2+ handling and contractile dysfunction in CMs from ISO-treated hearts. Consistently, DAPA treatment upregulated the expression of SR Ca2+-ATPase protein and ryanodine receptor 2 (RyR2) but reduced the expression of phosphorylated-RyR2, Ca2+/calmodulin-dependent protein kinase II (CaMKII), and phosphorylated-CaMKII in ventricles from ISO-treated rats.Conclusion: DAPA prevented myocardial remodeling and cardiac dysfunction in rats with ß-AR overactivation via restoring calcium handling and suppressing ER stress-related CMs apoptosis.


Asunto(s)
Calcio , Receptores Adrenérgicos beta , Animales , Ratas , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Apoptosis , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Miocitos Cardíacos , Receptores Adrenérgicos beta/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Remodelación Ventricular
4.
J Trace Elem Med Biol ; 79: 127221, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37244046

RESUMEN

BACKGROUND: Cadmium (Cd) is a major environmental pollutant and chronic toxicity could induce nephropathy by increasing renal oxidative stress and inflammation. Although vitamin D (VD) and calcium (Ca) prophylactic treatments attenuated Cd-induced cell injury, none of the prior studies measure their renoprotective effects against pre-established Cd-nephropathy. AIMS: To measure the alleviating effects of VD and/or Ca single and dual therapies against pre-established nephrotoxicity induced by chronic Cd toxicity prior to treatment initiation. METHODS: Forty male adult rats were allocated into: negative controls (NC), positive controls (PC), Ca, VD and VC groups. The study lasted for eight weeks and all animals, except the NC, received CdCl2 in drinking water (44 mg/L) throughout the study. Ca (100 mg/kg) and/or VD (350 IU/kg) were given (five times/week) during the last four weeks to the designated groups. Subsequently, the expression of transforming growth factor-ß (TGF-ß1), inducible nitric oxide synthase (iNOS), neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), VD synthesising (Cyp27b1) and catabolizing (Cyp24a1) enzymes with VD receptor (VDR) and binding protein (VDBP) was measured in renal tissues. Similarly, renal expression of Ca voltage-dependent channels (CaV1.1/CaV3.1), store-operated channels (RyR1/ITPR1), and binding proteins (CAM/CAMKIIA/S100A1/S100B) were measured. Serum markers of renal function alongside several markers of oxidative stress (MDA/H2O2/GSH/GPx/CAT) and inflammation (IL-6/TNF-α/IL-10) together with renal cell apoptosis and expression of caspase-3 were also measured. RESULTS: The PC group exhibited hypovitaminosis D, hypocalcaemia, hypercalciuria, proteinuria, reduced creatinine clearance, and increased renal apoptosis/necrosis with higher caspase-3 expression. Markers of renal tissue damage (TGF-ß1/iNOS/NGAL/KIM-1), oxidative stress (MDA/H2O2), and inflammation (TNF-α/IL-1ß/IL-6) increased, whilst the antioxidants (GSH/GPx/CAT) and IL-10 decreased, in the PC group. The PC renal tissues also showed abnormal expression of Cyp27b1, Cyp24a1, VDR, and VDBP, alongside Ca-membranous (CaV1.1/CaV3.1) and store-operated channels (RyR1/ITPR1) and cytosolic Ca-binding proteins (CAM/CAMKIIA/S100A1/S100B). Although VD was superior to Ca monotherapy, their combination revealed the best mitigation effects by attenuating serum and renal tissue Cd concentrations, inflammation and oxidative stress, alongside modulating the expression of VD/Ca-molecules. CONCLUSIONS: This study is the first to show improved alleviations against Cd-nephropathy by co-supplementing VD and Ca, possibly by better regulation of Ca-dependent anti-oxidative and anti-inflammatory actions.


Asunto(s)
Enfermedades Renales , Vitamina D , Ratas , Masculino , Animales , Vitamina D/farmacología , Vitamina D/metabolismo , Cadmio/metabolismo , Calcio/metabolismo , Interleucina-10/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Caspasa 3/metabolismo , Lipocalina 2/metabolismo , Lipocalina 2/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilasa/farmacología , Vitamina D3 24-Hidroxilasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Interleucina-6/metabolismo , Riñón , Enfermedades Renales/metabolismo , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
5.
Philos Trans R Soc Lond B Biol Sci ; 378(1879): 20220175, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37122207

RESUMEN

We illustrate use of induced pluripotent stem cells (iPSCs) as platforms for investigating cardiomyocyte phenotypes in a human family pedigree exemplified by novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants occurring alone and in combination. The proband, a four-month-old boy, presented with polymorphic ventricular tachycardia. Genetic tests revealed double novel heterozygous RYR2-A1855D and SCN10A-Q1362H variants inherited from his father (F) and mother (M), respectively. His father showed ventricular premature beats; his mother was asymptomatic. Molecular biological characterizations demonstrated greater TNNT2 messenger RNA (mRNA) expression in the iPSCs-induced cardiomyocytes (iPS-CMs) than in the iPSCs. Cardiac troponin Ts became progressively organized but cytoplasmic RYR2 and SCN10A aggregations occurred in the iPS-CMs. Proband-specific iPS-CMs showed decreased RYR2 and SCN10A mRNA expression. The RYR2-A1855D variant resulted in premature spontaneous sarcoplasmic reticular Ca2+ transients, Ca2+ oscillations and increased action potential durations. SCN10A-Q1362H did not confer any specific phenotype. However, the combined heterozygous RYR2-A1855D and SCN10A-Q1362H variants in the proband iPS-CMs resulted in accentuated Ca2+ homeostasis disorders, action potential prolongation and susceptibility to early afterdepolarizations at high stimulus frequencies. These findings attribute the clinical phenotype in the proband to effects of the heterozygous RYR2 variant exacerbated by heterozygous SCN10A modification. This article is part of the theme issue 'The heartbeat: its molecular basis and physiological mechanisms'.


Asunto(s)
Células Madre Pluripotentes Inducidas , Taquicardia Ventricular , Humanos , Lactante , Masculino , Arritmias Cardíacas/genética , Arritmias Cardíacas/metabolismo , Calcio/metabolismo , Homeostasis , Mutación , Canal de Sodio Activado por Voltaje NAV1.8/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Taquicardia Ventricular/genética , Taquicardia Ventricular/metabolismo
6.
Arch Physiol Biochem ; 129(5): 1058-1070, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33689540

RESUMEN

We investigated how oxidative stress (OS) alters Ca2+ handling in ventricular myocytes in early metabolic syndrome (MetS) in sucrose-fed rats. The effects of N-acetyl cysteine (NAC) or dl-Dithiothreitol (DTT) on systolic Ca2+ transients (SCaTs), diastolic Ca2+ sparks (CaS) and Ca2+ waves (CaW), recorded by confocal techniques, and L-type Ca2+ current (ICa), assessed by whole-cell patch clamp, were evaluated in MetS and Control cells. MetS myocytes exhibited decreased SCaTs and CaS frequency but unaffected CaW propagation. In Control cells, NAC/DTT reduced RyR2/SERCA2a activity blunting SCaTs, CaS frequency and CaW propagation, suggesting that basal ROS optimised Ca2+ signalling by maintaining RyR2/SERCA2a function and that these proteins facilitate CaW propagation. Conversely, NAC/DTT in MetS recovered RyR2/SERCA2a function, improving SCaTs and CaS frequency, but unexpectedly decreasing CaW propagation. We hypothesised that OS decreases RyR2/SERCA2a activity at early MetS, and while decreased SERCA2a favours CaW propagation, diminished RyR2 restrains it.


Asunto(s)
Síndrome Metabólico , Canal Liberador de Calcio Receptor de Rianodina , Ratas , Animales , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Síndrome Metabólico/metabolismo , Miocitos Cardíacos , Estrés Oxidativo
7.
J Biochem Mol Toxicol ; 36(9): e23136, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35678294

RESUMEN

Methylmercury (MeHg) is a cumulative environmental pollutant that can easily cross the blood-brain barrier and cause damage to the brain, mainly targeting the central nervous system. The purpose of this study is to investigate the role of calcium ion (Ca2+ ) homeostasis between the endoplasmic reticulum (ER) and mitochondria in MeHg-induced neurotoxicity. Rat primary cortical neurons exposed to MeHg (0.25-1 µm) underwent dose-dependent cell damage, accompanied by increased Ca2+ release from the ER and elevated levels of free Ca2+ in cytoplasm and mitochondria. MeHg also increased the protein and messenger RNA expressions of the inositol 1,4,5-triphosphate receptor, ryanodine receptor 2, and mitochondrial calcium uniporter. Ca2+ channel inhibitors 2-aminoethyl diphenylborinate and procaine reduced the release of Ca2+ from ER, while RR and 4,4'-diisothiocyanatostilbene-2,2'-disulfonate inhibited Ca2+ uptake from mitochondria. In addition, pretreatment with Ca2+ chelator BAPTA-AM effectively restored mitochondrial membrane potential levels, inhibited over opening of mitochondrial permeability transition pore, and maintained mitochondrial function stability. Meanwhile, the expression of mitochondrial apoptosis-related proteins recovered to some extent, along with the reduction of the early apoptosis ratio. These results suggest that Ca2+ homeostasis plays an essential role in mitochondrial damage and apoptosis induced by MeHg, which may be one of the important mechanisms of MeHg-induced neurotoxicity.


Asunto(s)
Contaminantes Ambientales , Compuestos de Metilmercurio , Animales , Apoptosis , Calcio/metabolismo , Quelantes , Retículo Endoplásmico , Contaminantes Ambientales/farmacología , Homeostasis , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/farmacología , Compuestos de Metilmercurio/metabolismo , Compuestos de Metilmercurio/toxicidad , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Neuronas/metabolismo , Procaína/metabolismo , Procaína/farmacología , ARN Mensajero/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología
8.
Anatol J Cardiol ; 26(6): 476-484, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35703484

RESUMEN

BACKGROUND: To assess whether hypoxia, as can be found in obstructive sleep apnea syndrome, is causally associated with the development of heart failure through a direct effect on calcium leakage from the sarcoplasmic reticulum. METHODS: The impact of hypoxia on sarcoplasmic reticulum calcium leakage and expres- sion of RyR2 (ryanodine receptor2) and SERC2a (sarcoplasmic reticulum Ca2+ATPase 2a) was investigated together with the outcomes of JTV-519 and S107 treatment. HL-1 car- diomyocytes were cultured for 7 days on gas-permeable cultureware under control (12% O2) or hypoxic (1% O2) conditions with or without JTV-519 or S107. SRCL was assessed using a Fluo-5N probe. Gene and protein expression was analyzed using qPCR and western blotting. RESULTS: Hypoxic exposure increased sarcoplasmic reticulum calcium leakage by 39% and reduced RyR2 gene expression by 52%. No effect on RyR2 protein expression was observed. Treatment with 1µM JTV-519 reduced sarcoplasmic reticulum calcium leakage by 52% and 35% under control and hypoxic conditions, respectively. Administration of 1 µM JTV-519 increased RyR2 gene expression by 89% in control conditions. No effect on SRCL, RyR2, or SERC2a gene, or protein expression was observed with S107 treatment. CONCLUSION: Hypoxia increased sarcoplasmic reticulum calcium leakage which was ame- liorated by JTV-519 treatment independently of gene or protein expression. JTV-519 rep- resents a possible treatment for obstructive sleep apnea-associated HF.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina , Retículo Sarcoplasmático , Calcio/metabolismo , Humanos , Hipoxia , Miocitos Cardíacos , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo , Tiazepinas
9.
Cancer Lett ; 544: 215797, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-35750275

RESUMEN

Long intergenic nonprotein coding RNA 1194 (LINC01194) has been reported as an oncogene in several cancer types, but its expression and potential role in triple-negative breast cancer (TNBC) are still unclear. We found that LINC01194 was significantly highly expressed in TNBC based on The Cancer Genome Atlas (TCGA) database. Data from in vitro experiments and in vivo assays demonstrated that LINC01194 promoted TNBC progression. Through bioinformatics prediction, mass spectrometry, and mechanical experiments, we found that LINC01194 could recruit nuclear mitotic apparatus protein 1 (NUMA1) to bind to the untranslated region (3'UTR) of ubiquitin-conjugating enzyme E2 C (UBE2C) 3' and stabilize UBE2C mRNA. Moreover, we found that UBE2C acted as an ubiquitin ligase to promote the ubiquitination and degradation of ryanodine receptor type 2 (RYR2) that inhibited the progression of TNBC by inhibiting the Wnt/ß-catenin signaling pathway. In summary, LINC01194 activate the Wnt/ß-catenin signaling pathway and accelerates the malignant progression of TNBC by recruiting NUMA1 to stabilize UBE2C mRNA and thus promotes RYR2 ubiquitination and degradation. These findings might provide a more effective therapeutic strategy for TNBC patients.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , ARN Mensajero/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Neoplasias de la Mama Triple Negativas/patología , Ubiquitinación , Vía de Señalización Wnt
10.
Sheng Li Xue Bao ; 74(2): 188-200, 2022 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-35503066

RESUMEN

Atrial Ca2+ handling abnormalities, mainly involving the dysfunction of ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+-ATPase (SERCA), play a role in the pathogenesis of atrial fibrillation (AF). Previously, we found that the expression and function of transient receptor potential vanilloid subtype 4 (TRPV4) are upregulated in a sterile pericarditis (SP) rat model of AF, and oral administration of TRPV4 inhibitor GSK2193874 alleviates AF in this animal model. The aim of this study was to investigate whether oral administration of GSK2193874 could alleviate atrial Ca2+ handling abnormalities in SP rats. A SP rat model of AF was established by daubing sterile talcum powder on both atria of Sprague-Dawley (SD) rats after a pericardiotomy, to simulate the pathogenesis of postoperative atrial fibrillation (POAF). On the 3rd postoperative day, Ca2+ signals of atria were collected in isolated perfused hearts by optical mapping. Ca2+ transient duration (CaD), alternan, and the recovery properties of Ca2+ transient (CaT) were quantified and analyzed. GSK2193874 treatment reversed the abnormal prolongation of time to peak (determined mainly by RyR activity) and CaD (determined mainly by SERCA activity), as well as the regional heterogeneity of CaD in SP rats. Furthermore, GSK2193874 treatment relieved alternan in SP rats, and reduced its incidence of discordant alternan (DIS-ALT). More importantly, GSK2193874 treatment prevented the reduction of the S2/S1 CaT ratio (determined mainly by RyR refractoriness) in SP rats, and decreased its regional heterogeneity. Taken together, oral administration of TRPV4 inhibitor alleviates Ca2+ handling abnormalities in SP rats primarily by blocking the TRPV4-Ca2+-RyR pathway, and thus exerts therapeutic effect on POAF.


Asunto(s)
Fibrilación Atrial , Pericarditis , Administración Oral , Animales , Fibrilación Atrial/tratamiento farmacológico , Fibrilación Atrial/etiología , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Pericarditis/complicaciones , Pericarditis/metabolismo , Pericarditis/patología , Ratas , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/patología , Canales Catiónicos TRPV
11.
BMC Complement Med Ther ; 22(1): 115, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35468773

RESUMEN

BACKGROUND: Trans-cinnamaldehyde (TCA) is one of the main pharmaceutical ingredients of Cinnamomum cassia Presl, which has been shown to have therapeutic effects on a variety of cardiovascular diseases. This study was carried out to characterize and reveal the underlying mechanisms of the protective effects of TCA against cardiac hypertrophy. METHODS: We used phenylephrine (PE) to induce cardiac hypertrophy and treated with TCA in vivo and in vitro. In neonatal rat cardiomyocytes (NRCMs), RNA sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out to identify potential pathways of TCA. Then, the phosphorylation and nuclear localization of calcium/calmodulin-dependent protein kinase II (CaMKII) and extracellular signal-related kinase (ERK) were detected. In adult mouse cardiomyocytes (AMCMs), calcium transients, calcium sparks, sarcomere shortening and the phosphorylation of several key proteins for calcium handling were evaluated. For mouse in vivo experiments, cardiac hypertrophy was evaluated by assessing morphological changes, echocardiographic parameters, and the expression of hypertrophic genes and proteins. RESULTS: TCA suppressed PE-induced cardiac hypertrophy and the phosphorylation and nuclear localization of CaMKII and ERK in NRCMs. Our data also demonstrate that TCA blocked the hyperphosphorylation of ryanodine receptor type 2 (RyR2) and phospholamban (PLN) and restored Ca2+ handling and sarcomere shortening in AMCMs. Moreover, our data revealed that TCA alleviated PE-induced cardiac hypertrophy in adult mice and downregulated the phosphorylation of CaMKII and ERK. CONCLUSION: TCA has a protective effect against PE-induced cardiac hypertrophy that may be associated with the inhibition of the CaMKII/ERK pathway.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Miocitos Cardíacos , Acroleína/análogos & derivados , Animales , Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Cardiomegalia/inducido químicamente , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/metabolismo , Sistema de Señalización de MAP Quinasas , Ratones , Fenilefrina/efectos adversos , Fenilefrina/metabolismo , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología
12.
Alcohol Clin Exp Res ; 46(5): 707-723, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35315077

RESUMEN

BACKGROUND: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is a key enzyme in alcohol metabolism. The ALDH2*2 mutations are found in approximately 45% of East Asians, with 40% being heterozygous (HE) ALDH2*1/*2 and 5% homozygous (HO) ALDH2*2/*2. Studies have shown that HO mice lack cardioprotective effects induced by moderate alcohol consumption. However, the impact of moderate alcohol consumption on cardiac function in HE mice is unknown. METHODS: In this study, HO, HE, and wild-type (WT) mice were subjected to a 6-week moderate alcohol drinking protocol, following which myocardial tissue and cardiomyocytes of the mice were extracted. RESULTS: We found that moderate alcohol exposure did not increase mortality, myocardial fibrosis, apoptosis, or inflammation in HE mice, which differs from the effects observed in HO mice. After exposure to the 6-week alcohol drinking protocol, there was impaired cardiac function, cardiomyocyte contractility, and intracellular Ca2+ homeostasis and mitochondrial function in both HE and HO mice as compared to WT mice. Moreover, these animals showed overt oxidative stress production and increased levels of the activated forms of calmodulin-dependent protein kinase II (CaMKII) and ryanodine receptor type 2 (RYR2) phosphorylation protein. CONCLUSION: We found that moderate alcohol exposure impaired cardiac function in HE mice, possibly by increasing reactive oxygen species (ROS)/CaMKII/RYR2-mediated Ca2+ handling abnormalities. Hence, we advocate that people with ALDH2*1/*2 genotypes rigorously avoid alcohol consumption to prevent potential cardiovascular harm induced by moderate alcohol consumption.


Asunto(s)
Consumo de Bebidas Alcohólicas , Aldehído Deshidrogenasa Mitocondrial , Consumo de Bebidas Alcohólicas/genética , Consumo de Bebidas Alcohólicas/metabolismo , Aldehído Deshidrogenasa/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética , Aldehído Deshidrogenasa Mitocondrial/metabolismo , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/farmacología , Etanol/farmacología , Ratones , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología
13.
Annu Rev Physiol ; 84: 285-306, 2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-34752709

RESUMEN

Each heartbeat is initiated by the action potential, an electrical signal that depolarizes the plasma membrane and activates a cycle of calcium influx via voltage-gated calcium channels, calcium release via ryanodine receptors, and calcium reuptake and efflux via calcium-ATPase pumps and sodium-calcium exchangers. Agonists of the sympathetic nervous system bind to adrenergic receptors in cardiomyocytes, which, via cascading signal transduction pathways and protein kinase A (PKA), increase the heart rate (chronotropy), the strength of myocardial contraction (inotropy), and the rate of myocardial relaxation (lusitropy). These effects correlate with increased intracellular concentration of calcium, which is required for the augmentation of cardiomyocyte contraction. Despite extensive investigations, the molecular mechanisms underlying sympathetic nervous system regulation of calcium influx in cardiomyocytes have remained elusive over the last 40 years. Recent studies have uncovered the mechanisms underlying this fundamental biologic process, namely that PKA phosphorylates a calcium channel inhibitor, Rad, thereby releasing inhibition and increasing calcium influx. Here, we describe an updated model for how signals from adrenergic agonists are transduced to stimulate calcium influx and contractility in the heart.


Asunto(s)
Adrenérgicos , Canales de Calcio Tipo L , Adrenérgicos/metabolismo , Adrenérgicos/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo L/farmacología , Humanos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología
14.
Acta Physiologica Sinica ; (6): 188-200, 2022.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-927594

RESUMEN

Atrial Ca2+ handling abnormalities, mainly involving the dysfunction of ryanodine receptor (RyR) and sarcoplasmic reticulum Ca2+-ATPase (SERCA), play a role in the pathogenesis of atrial fibrillation (AF). Previously, we found that the expression and function of transient receptor potential vanilloid subtype 4 (TRPV4) are upregulated in a sterile pericarditis (SP) rat model of AF, and oral administration of TRPV4 inhibitor GSK2193874 alleviates AF in this animal model. The aim of this study was to investigate whether oral administration of GSK2193874 could alleviate atrial Ca2+ handling abnormalities in SP rats. A SP rat model of AF was established by daubing sterile talcum powder on both atria of Sprague-Dawley (SD) rats after a pericardiotomy, to simulate the pathogenesis of postoperative atrial fibrillation (POAF). On the 3rd postoperative day, Ca2+ signals of atria were collected in isolated perfused hearts by optical mapping. Ca2+ transient duration (CaD), alternan, and the recovery properties of Ca2+ transient (CaT) were quantified and analyzed. GSK2193874 treatment reversed the abnormal prolongation of time to peak (determined mainly by RyR activity) and CaD (determined mainly by SERCA activity), as well as the regional heterogeneity of CaD in SP rats. Furthermore, GSK2193874 treatment relieved alternan in SP rats, and reduced its incidence of discordant alternan (DIS-ALT). More importantly, GSK2193874 treatment prevented the reduction of the S2/S1 CaT ratio (determined mainly by RyR refractoriness) in SP rats, and decreased its regional heterogeneity. Taken together, oral administration of TRPV4 inhibitor alleviates Ca2+ handling abnormalities in SP rats primarily by blocking the TRPV4-Ca2+-RyR pathway, and thus exerts therapeutic effect on POAF.


Asunto(s)
Animales , Ratas , Administración Oral , Fibrilación Atrial/etiología , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Pericarditis/patología , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/patología , Canales Catiónicos TRPV
15.
PLoS Comput Biol ; 16(2): e1007678, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32097431

RESUMEN

Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia and is a major cause of stroke and morbidity. Recent genome-wide association studies have shown that paired-like homeodomain transcription factor 2 (Pitx2) to be strongly associated with AF. However, the mechanisms underlying Pitx2 modulated arrhythmogenesis and variable effectiveness of antiarrhythmic drugs (AADs) in patients in the presence or absence of impaired Pitx2 expression remain unclear. We have developed multi-scale computer models, ranging from a single cell to tissue level, to mimic control and Pitx2-knockout atria by incorporating recent experimental data on Pitx2-induced electrical and structural remodeling in humans, as well as the effects of AADs. The key findings of this study are twofold. We have demonstrated that shortened action potential duration, slow conduction and triggered activity occur due to electrical and structural remodelling under Pitx2 deficiency conditions. Notably, the elevated function of calcium transport ATPase increases sarcoplasmic reticulum Ca2+ concentration, thereby enhancing susceptibility to triggered activity. Furthermore, heterogeneity is further elevated due to Pitx2 deficiency: 1) Electrical heterogeneity between left and right atria increases; and 2) Increased fibrosis and decreased cell-cell coupling due to structural remodelling slow electrical propagation and provide obstacles to attract re-entry, facilitating the initiation of re-entrant circuits. Secondly, our study suggests that flecainide has antiarrhythmic effects on AF due to impaired Pitx2 by preventing spontaneous calcium release and increasing wavelength. Furthermore, our study suggests that Na+ channel effects alone are insufficient to explain the efficacy of flecainide. Our study may provide the mechanisms underlying Pitx2-induced AF and possible explanation behind the AAD effects of flecainide in patients with Pitx2 deficiency.


Asunto(s)
Fibrilación Atrial/metabolismo , Simulación por Computador , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Potenciales de Acción , Animales , Antiarrítmicos/farmacología , Fibrilación Atrial/genética , Remodelación Atrial , Calcio/metabolismo , Electrofisiología , Retículo Endoplásmico/metabolismo , Fibrosis , Flecainida/farmacología , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Atrios Cardíacos/fisiopatología , Proteínas de Homeodominio/genética , Humanos , Cinética , Ratones , Ratones Noqueados , Fenotipo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo , Sodio/metabolismo , Factores de Transcripción/genética , Proteína del Homeodomínio PITX2
16.
Matrix Biol ; 29(4): 317-29, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20193761

RESUMEN

Glycosaminoglycans (GAG) are sulfated polysaccharides that play an important role in regulating cell functions. GAG mimetics called RGTAs (for ReGeneraTing Agents) have been shown to stimulate tissue repair. In particular they accelerate myogenesis, in part via their heparin-mimetic property towards growth factors. RGTAs also increase activity of calcium-dependent intracellular protease suggesting an effect on calcium cellular homeostasis. This effect was presently investigated on myoblasts in vitro using one member of the RGTA family molecule named OTR4120. We have shown that OTR4120 or heparin induced transient increases of intracellular calcium concentration ([Ca(2+)]i) in pre-fusing myoblasts from both mouse SolD7 cell line and rat skeletal muscle satellite cells grown in primary culture by mobilising sarcoplasmic reticulum store. This [Ca(2+)]i was not mediated by ryanodine receptors but instead resulted from stimulation of the Inositol-3 phosphate-phospholipase C activation pathway. OTR4120-induced calcium transient was not mediated through an ATP, nor a tyrosine kinase, nor an acetylcholine receptor but principally through serotonin 5-HT2A receptor. This original finding shows that the GAG mimetic can induce calcium signal through serotonin receptors and the IP3 pathway may be relevant to its ability to favour myoblast differentiation. It supports a novel and unexpected function of GAGs in the regulation of calcium homeostasis.


Asunto(s)
Calcio/metabolismo , Glicosaminoglicanos/farmacología , Mioblastos/metabolismo , Animales , Calcio/farmacología , Calcio de la Dieta/metabolismo , Calcio de la Dieta/farmacología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Células Clonales , Citoplasma/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Heparina/farmacología , Fosfatos de Inositol , Ratones , Desarrollo de Músculos/efectos de los fármacos , Ratas , Ratas Wistar , Receptor de Serotonina 5-HT2A/metabolismo , Regeneración/efectos de los fármacos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Células Satélite del Músculo Esquelético/citología , Células Satélite del Músculo Esquelético/metabolismo , Transducción de Señal/efectos de los fármacos
17.
Acta Pharmacol Sin ; 30(10): 1421-7, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19749788

RESUMEN

AIM: To evaluate the impact of extracellular and intracellular Ca2+ on contractions induced by ethanol in smooth muscle. METHODS: Longitudinal smooth muscle strips were prepared from the gastric fundi of mice. The contractions of smooth muscle strips were recorded with an isometric force displacement transducer. RESULTS: Ethanol (164 mmol/L) produced reproducible contractions in isolated gastric fundal strips of mice. Although lidocaine (50 and 100 micromol/L), a local anesthetic agent, and hexamethonium (100 and 500 micromol/L), a ganglionic blocking agent, failed to affect these contractions, verapamil (1-50 micromol/L) and nifedipine (1-50 micromol/L), selective blockers of L-type Ca2+ channels, significantly inhibited the contractile responses of ethanol. Using a Ca(2+)-free medium nearly eliminated these contractions in the same tissue. Ryanodine (1-50 micromol/L) and ruthenium red (10-100 micromol/L), selective blockers of intracellular Ca2+ channels/ryanodine receptors; cyclopiazonic acid (CPA; 1-10 mumol/L), a selective inhibitor of sarcoplasmic reticulum (SR) Ca(2+)-ATPase; and caffeine (0.5-5 mmol/L), a depleting agent of intracellular Ca2+ stores, significantly inhibited the contractile responses induced by ethanol. In addition, the combination of caffeine (5 mmol/L) plus CPA (10 micromol/L), and ryanodine (10 micromol/L) plus CPA (10 micromol/L), caused further inhibition of contractions in response to ethanol. This inhibition was significantly different from those associated with caffeine, ryanodine or CPA. Furthermore the combination of caffeine (5 mmol/L), ryanodine (10 micromol/L) and CPA(10 micromol/L) eliminated the contractions induced by ethanol in isolated gastric fundal strips of mice. CONCLUSION: Both extracellular and intracellular Ca2+ may have important roles in regulating contractions induced by ethanol in the mouse gastric fundus.


Asunto(s)
Calcio/metabolismo , Etanol/farmacología , Contracción Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Animales , Cafeína/farmacología , Bloqueadores de los Canales de Calcio/farmacología , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Femenino , Fundus Gástrico/metabolismo , Indoles/farmacología , Contracción Isométrica , Masculino , Ratones , Contracción Muscular/fisiología , Músculo Liso/fisiología , Nifedipino/farmacología , Rojo de Rutenio/farmacología , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/metabolismo , Verapamilo/farmacología
18.
Biomed Mater ; 4(4): 045011, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19636109

RESUMEN

Glutamate released by osteoblasts sharing similarities with its role in neuronal transmission is a very new scientific concept which actually changed the understanding of bone physiology. Since glutamate release is a calcium (Ca(2+))-dependent process and considering that we have previously demonstrated that the dissolution of bioactive glass with 60% of silicon (BG60S) can alter osteoblast Ca(2+)-signaling machinery, we investigated whether BG60S induces glutamate secretion in osteoblasts and whether it requires an increase in intracellular Ca(2+). Here we showed that the extracellular Ca(2+) increase due to BG60S dissolution leads to an intracellular Ca(2+) increase in the osteoblast, through the activation of an inositol 1,4,5-triphosphate receptor (InsP(3)R) and a ryanodine receptor (RyR). Additionally, we also demonstrated that glutamate released by osteoblasts can be profoundly altered by BG60S. The modulation of osteoblast glutamate released by the extracellular Ca(2+) concentration opens a new window in the field of tissue engineering, since many biomaterials used for bone repair are able to increase the extracellular Ca(2+) concentration due to their dissolution products.


Asunto(s)
Calcio/metabolismo , Ácido Glutámico/farmacología , Osteoblastos/citología , Osteoblastos/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Animales Recién Nacidos , Materiales Biocompatibles/farmacología , Huesos/metabolismo , Calcio/farmacología , Calcio de la Dieta/farmacología , Espacio Extracelular/metabolismo , Vidrio , Inositol 1,4,5-Trifosfato/farmacología , Osteoblastos/efectos de los fármacos , Ratas , Ratas Wistar , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Silicio/farmacología , Ingeniería de Tejidos
19.
Biochem Biophys Res Commun ; 380(3): 493-7, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19284993

RESUMEN

Recent studies on cardiac hypertrophy animal model suggest that inter-domain interactions within the ryanodine receptor (RyR2) become defective concomitant with the development of hypertrophy (e.g. de-stabilization of the interaction between N-terminal and central domains of RyR2; T. Oda, M. Yano, T. Yamamoto, T. Tokuhisa, S. Okuda, M. Doi, T. Ohkusa, Y. Ikeda, S. Kobayashi, N. Ikemoto, M. Matsuzaki, Defective regulation of inter-domain interactions within the ryanodine receptor plays a key role in the pathogenesis of heart failure, Circulation 111 (2005) 3400-3410). To determine if de-stabilization of the inter-domain interaction in fact causes hypertrophy, we introduced DPc10 (a peptide corresponding to the G(2460)-P(2495) region of RyR2, which is known to de-stabilize the N-terminal/central domain interaction) into rat neonatal cardiomyocytes by mediation of peptide carrier BioPORTER. After incubation for 24h the peptide induced hypertrophy, as evidenced by significant increase in cell size and [(3)H]leucine uptake. K201 or dantrolene, the reagents known to correct the de-stabilized inter-domain interaction to a normal mode, prevented the DPc10-induced hypertrophy. These results suggest that disruption of the normal N-terminal/central inter-domain interaction within the RyR2 is a causative mechanism of cardiomyocyte hypertrophy.


Asunto(s)
Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Cardiomegalia/inducido químicamente , Cardiomegalia/genética , Cardiomegalia/patología , Células Cultivadas , Endotelina-1/farmacología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Fragmentos de Péptidos/farmacología , Ratas , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/farmacología
20.
J Gen Physiol ; 132(4): 429-46, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18824590

RESUMEN

In cardiac muscle, intracellular Ca(2+) and Mg(2+) are potent regulators of calcium release from the sarcoplasmic reticulum (SR). It is well known that the free [Ca(2+)] in the SR ([Ca(2+)](L)) stimulates the Ca(2+) release channels (ryanodine receptor [RYR]2). However, little is known about the action of luminal Mg(2+), which has not been regarded as an important regulator of Ca(2+) release. The effects of luminal Ca(2+) and Mg(2+) on sheep RYR2 were measured in lipid bilayers. Cytoplasmic and luminal Ca(2+) produced a synergistic increase in the opening rate of RYRs. A novel, high affinity inhibition of RYR2 by luminal Mg(2+) was observed, pointing to an important physiological role for luminal Mg(2+) in cardiac muscle. At diastolic [Ca(2+)](C), luminal Mg(2+) inhibition was voltage independent, with K(i) = 45 microM at luminal [Ca(2+)] ([Ca(2+)](L)) = 100 microM. Luminal and cytoplasmic Mg(2+) inhibition was alleviated by increasing [Ca(2+)](L) or [Ca(2+)](C). Ca(2+) and Mg(2+) on opposite sides of the bilayer exhibited competitive effects on RYRs, indicating that they can compete via the pore for common sites. The data were accurately fitted by a model based on a tetrameric RYR structure with four Ca(2+)-sensing mechanisms on each subunit: activating luminal L-site (40-microM affinity for Mg(2+) and Ca(2+)), cytoplasmic A-site (1.2 microM for Ca(2+) and 60 microM for Mg(2+)), inactivating cytoplasmic I(1)-site (approximately 10 mM for Ca(2+) and Mg(2+)), and I(2)-site (1.2 microM for Ca(2+)). Activation of three or more subunits will cause channel opening. Mg(2+) inhibition occurs primarily by Mg(2+) displacing Ca(2+) from the L- and A-sites, and Mg(2+) fails to open the channel. The model predicts that under physiological conditions, SR load-dependent Ca(2+) release (1) is mainly determined by Ca(2+) displacement of Mg(2+) from the L-site as SR loading increases, and (2) depends on the properties of both luminal and cytoplasmic activation mechanisms.


Asunto(s)
Citoplasma/metabolismo , Magnesio/farmacología , Modelos Biológicos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Retículo Sarcoplasmático/metabolismo , Animales , Calcio/metabolismo , Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Propuestas de Licitación , Citoplasma/química , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Cinética , Membrana Dobles de Lípidos/metabolismo , Magnesio/metabolismo , Potenciales de la Membrana/fisiología , Contracción Muscular/fisiología , Miocardio/metabolismo , Dominios y Motivos de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/farmacología , Retículo Sarcoplasmático/química , Ovinos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...