Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Sci Total Environ ; 876: 162820, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-36921852

RESUMEN

BACKGROUND: The association between particulate matter and fasting blood glucose (FBG) has shown conflicting results. Genome-wide association studies have shown that KCNQ1 rs2237892 polymorphism is associated with the risk of diabetes. Whether KCNQ1 rs2237892 polymorphism might modify the association between particulate matter and FBG is still uncertain. METHODS: Data collected from a family-based cohort study in Northern China, were used to perform the analysis. A generalized additive Gaussian model was used to examine the short-term effects of air pollutants on FBG. We further conducted interaction analyses by including a cross-product term of air pollutants by rs2237892 within KCNQ1 gene. RESULTS: A total of 4418 participants were included in the study. In the single pollutant model, the FBG level increased 0.0031 mmol/L with per 10 µg/m3 elevation in fine particular matter (PM2.5) for lag 0 day. After additional adjustments for nitrogen dioxide (NO2) and sulfur dioxide (SO2), similar results were observed for lag 0-2 days. As for particulate matter with particle size below 10 µm (PM10), the significant association between the daily average concentration of the pollutant and FBG level was observed for lag 0-3 days. Additionally, rs2237892 in KCNQ1 gene modified the association between PM and FBG level. The higher risk of FBG levels associated with elevations in PM10 and PM2.5 were more evident as the number of risk allele C increased. Individuals with a CC genotype had the highest risk of elevation in FBG levels. CONCLUSION: Short-term exposures to PM2.5 and PM10 were associated with higher FBG levels. Additionally, rs2237892 in KCNQ1 gene might modify the association between the air pollutants and FBG levels.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Glucemia , Contaminantes Ambientales , Material Particulado , Humanos , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/metabolismo , Contaminación del Aire/efectos adversos , Glucemia/genética , Glucemia/metabolismo , China , Estudios de Cohortes , Exposición a Riesgos Ambientales , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Ayuno/sangre , Ayuno/metabolismo , Estudio de Asociación del Genoma Completo , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/análisis , Dióxido de Nitrógeno/análisis , Material Particulado/análisis , Material Particulado/metabolismo
3.
Islets ; 6(4): e962386, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25437377

RESUMEN

Glucose-stimulated insulin secretion (GSIS) is a highly regulated process involving complex interaction of multiple factors. Potassium voltage-gated channel subfamily KQT member 1 (KCNQ1) is a susceptibility gene for type 2 diabetes (T2D) and the risk alleles of the KCNQ1 gene appear to be associated with impaired insulin secretion. The role of KCNQ1 channel in insulin secretion has been explored by previous work in clonal pancreatic ß-cells but has yet to be investigated in the context of primary islets as well as intact animals. Genetic studies suggest that altered incretin glucagon-like peptide-1 (GLP-1) secretion might be a potential link between KCNQ1 variants and impaired insulin secretion, but this hypothesis has not been verified so far. In the current study, we examined KCNQ1 expression in pancreas and intestine from normal mice and then investigated the effects of chromanol 293B, a KCNQ1 channel inhibitor, on insulin secretion in vitro and in vivo. By double-immunofluorescence staining, KCNQ1 was detected in insulin-positive ß-cells and GLP-1-positive L-cells. Administration of chromanol 293B enhanced GSIS in cultured islets and intact animals. Along with the potentiated insulin secretion during oral glucose tolerance tests (OGTT), plasma GLP-1 level after gastric glucose load was increased in 293B treated mice. These data not only provided new evidence for the participation of KCNQ1 in GSIS at the level of pancreatic islet and intact animal but also indicated the potential linking role of GLP-1 between KCNQ1 and insulin secretion.


Asunto(s)
Cromanos/farmacología , Péptido 1 Similar al Glucagón/sangre , Glucosa/farmacología , Insulina/metabolismo , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/efectos de los fármacos , Sulfonamidas/farmacología , Animales , Técnica del Anticuerpo Fluorescente , Prueba de Tolerancia a la Glucosa , Técnicas In Vitro , Resistencia a la Insulina/fisiología , Secreción de Insulina , Intestinos/química , Islotes Pancreáticos/metabolismo , Canal de Potasio KCNQ1/análisis , Ratones , Páncreas/química
4.
G3 (Bethesda) ; 2(12): 1521-8, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23275875

RESUMEN

The organization of the genome within the mammalian nucleus is nonrandom, with physiologic processes often concentrated in specific three-dimensional domains. This organization may be functionally related to gene regulation and, as such, may play a role in normal development and human disease processes. However, the mechanisms that participate in nuclear organization are poorly understood. Here, we present data characterizing localization of the imprinted Kcnq1 alleles. We show that nucleolar association of the paternal allele (1) is stimulated during the differentiation of trophoblast stem cells, (ii) is dependent upon the Kcnq1ot1 noncoding RNA, (3) does not require polycomb repressive complex 2, and (4) is not sufficient to preclude transcription of imprinted genes. Although nucleolar positioning has been proposed as a mechanism to related to gene silencing, we find that silencing and perinucleolar localization through the Kcnq1ot1 noncoding RNA are separable events.


Asunto(s)
Nucléolo Celular/metabolismo , Canal de Potasio KCNQ1/genética , Alelos , Animales , Diferenciación Celular , Células Cultivadas , Expresión Génica/genética , Silenciador del Gen , Sitios Genéticos , Canal de Potasio KCNQ1/análisis , Ratones , Complejo Represivo Polycomb 2/genética , Complejo Represivo Polycomb 2/metabolismo , ARN no Traducido/metabolismo , Células Madre/citología , Células Madre/metabolismo , Trofoblastos/citología , Trofoblastos/metabolismo
5.
Heart Vessels ; 26(3): 353-6, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-20978892

RESUMEN

Delayed rectifier potassium currents such as I (Kr) and I (Ks) play an important role in the repolarization phase of the action potential in cardiac myocytes. Electrophysiological studies have shown that the pig is a useful animal not only for clinical use as a good candidate for humans, but also for basic research in heart function or arrhythmia. However, no studies concerning the potassium channels on a molecular level have been done. To elucidate the expression level and distribution of delayed rectifier potassium channels in pigs, we quantitatively investigated the I (Kr) and I (Ks) channel subunits using the real-time polymerase chain reaction (PCR) method. The hearts from Clawn miniature pigs were separated into the apical and basal regions, and subsequently excised into transmural trisections within each of the left ventricular walls, epicardium, midcardium, and endocardium. After RNA extraction from these sites, real-time PCR was executed with reverse transcriptional products for quantitative analysis. The expression level of KCNE1 was significantly higher than those of KCNQ1, KCNH2, and KCNE2, which were comparable in all sites. Transmural heterogeneity of these potassium channel subunits was not detected on the mRNA level. These results indicate that KCNE1 is a dominant subunit on the post-transcriptional level in the miniature pig.


Asunto(s)
Ventrículos Cardíacos/química , Canales de Potasio con Entrada de Voltaje/análisis , Análisis de Varianza , Animales , Canales de Potasio Éter-A-Go-Go/análisis , Regulación de la Expresión Génica , Canal de Potasio KCNQ1/análisis , Masculino , Canales de Potasio con Entrada de Voltaje/genética , ARN Mensajero/análisis , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Porcinos , Porcinos Enanos , Transcripción Genética
6.
FEBS J ; 275(6): 1336-49, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18279388

RESUMEN

Voltage-gated potassium (K(V)) channels can form heteromultimeric complexes with a variety of accessory subunits, including KCNE proteins. Heterologous expression studies have demonstrated diverse functional effects of KCNE subunits on several K(V) channels, including KCNQ1 (K(V)7.1) that, together with KCNE1, generates the slow-delayed rectifier current (I(Ks)) important for cardiac repolarization. In particular, KCNE4 exerts a strong inhibitory effect on KCNQ1 and other K(V) channels, raising the possibility that this accessory subunit is an important potassium current modulator. A polyclonal KCNE4 antibody was developed to determine the human tissue expression pattern and to investigate the biochemical associations of this protein with KCNQ1. We found that KCNE4 is widely and variably expressed in several human tissues, with greatest abundance in brain, liver and testis. In heterologous expression experiments, immunoprecipitation followed by immunoblotting was used to establish that KCNE4 directly associates with KCNQ1, and can co-associate together with KCNE1 in the same KCNQ1 complex to form a 'triple subunit' complex (KCNE1-KCNQ1-KCNE4). We also used cell surface biotinylation to demonstrate that KCNE4 does not impair plasma membrane expression of either KCNQ1 or the triple subunit complex, indicating that biophysical mechanisms probably underlie the inhibitory effects of KCNE4. The observation that multiple KCNE proteins can co-associate with and modulate KCNQ1 channels to produce biochemically diverse channel complexes has important implications for understanding K(V) channel regulation in human physiology.


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Animales , Anticuerpos/inmunología , Membrana Celular/metabolismo , Humanos , Inmunoprecipitación , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/genética , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Conejos , Distribución Tisular
7.
Proc Natl Acad Sci U S A ; 105(5): 1478-82, 2008 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-18223154

RESUMEN

Ion channels are multisubunit proteins responsible for the generation and propagation of action potentials in nerve, skeletal muscle, and heart as well as maintaining salt and water homeostasis in epithelium. The subunit composition and stoichiometry of these membrane protein complexes underlies their physiological function, as different cells pair ion-conducting alpha-subunits with specific regulatory beta-subunits to produce complexes with diverse ion-conducting and gating properties. However, determining the number of alpha- and beta-subunits in functioning ion channel complexes is challenging and often fraught with contradictory results. Here we describe the synthesis of a chemically releasable, irreversible K(+) channel inhibitor and its iterative application to tally the number of beta-subunits in a KCNQ1/KCNE1 K(+) channel complex. Using this inhibitor in electrical recordings, we definitively show that there are two KCNE subunits in a functioning tetrameric K(+) channel, breaking the apparent fourfold arrangement of the ion-conducting subunits. This digital determination rules out any measurable contribution from supra, sub, and multiple stoichiometries, providing a uniform structural picture to interpret KCNE beta-subunit modulation of voltage-gated K(+) channels and the inherited mutations that cause dysfunction. Moreover, the architectural asymmetry of the K(+) channel complex affords a unique opportunity to therapeutically target ion channels that coassemble with KCNE beta-subunits.


Asunto(s)
Membrana Celular/química , Caribdotoxina/análogos & derivados , Disulfuros/farmacología , Canal de Potasio KCNQ1/análisis , Canales de Potasio con Entrada de Voltaje/análisis , Subunidades de Proteína/análisis , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Caribdotoxina/síntesis química , Caribdotoxina/química , Caribdotoxina/farmacología , Disulfuros/síntesis química , Disulfuros/química , Humanos , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/metabolismo , Oocitos/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/metabolismo , Xenopus
8.
Ann Acad Med Singap ; 36(6): 394-8, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17597962

RESUMEN

INTRODUCTION: Long QT syndrome (LQTS), an inherited cardiac arrhythmia, is a disorder of ventricular repolarisation characterised by electrocardiographic abnormalities and the onset of torsades de pointes leading to syncope and sudden death. Genetic polymorphisms in 5 well-characterised cardiac ion channel genes have been identified to be responsible for the disorder. The aim of this study is to identify disease-causing mutations in these candidate genes in a LQTS family. MATERIALS AND METHODS: The present study systematically screens the coding region of the LQTS-associated genes (KCNQ1, HERG, KCNE1, KCNE2 and SCN5A) for mutations using DNA sequencing analysis. RESULTS: The mutational analysis revealed 7 synonymous and 2 non-synonymous polymorphisms in the 5 ion channel genes screened. CONCLUSION: We did not identify any clear identifiable genetic marker causative of LQTS, suggesting the existence of LQTS-associated genes awaiting discovery.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Proteínas Musculares/genética , Polimorfismo Genético/genética , Canales de Potasio con Entrada de Voltaje/genética , Canales de Sodio/genética , Adolescente , Adulto , Niño , Análisis Mutacional de ADN , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/análisis , Femenino , Mutación del Sistema de Lectura , Humanos , Canal de Potasio KCNQ1/análisis , Masculino , Persona de Mediana Edad , Proteínas Musculares/análisis , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Sodio/análisis , Transactivadores
9.
J Physiol ; 576(Pt 3): 755-67, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-16887873

RESUMEN

KCNQ1 (Kv7.1 or KvLQT1) encodes the alpha-subunit of a voltage-gated potassium channel found in tissues including heart, brain, epithelia and smooth muscle. Tissue-specific characteristics of KCNQ1 current are diverse, due to modification by ancillary subunits. In heart, KCNQ1 associates with KCNE1 (MinK), producing a slowly activating voltage-dependent channel. In epithelia, KCNQ1 co-assembles with KCNE3 (Mirp2) producing a constitutively open channel. Chromanol 293B is a selective KCNQ1 blocker. We studied drug binding and frequency dependence of 293B on KCNQ1 and ancillary subunits expressed in Xenopus oocytes. Ancillary subunits altered 293B potency up to 100-fold (IC(50) for KCNQ1 = 65.4 +/- 1.7 microm; KCNQ1/KCNE1 = 15.1 +/- 3.3 microm; KCNQ1/KCNE3 = 0.54 +/- 0.18 microm). Block of KCNQ1 and KCNQ1/KCNE3 was time independent, but 293B altered KCNQ1/KCNE1 activation. We therefore studied frequency-dependent block of KCNQ1/KCNE1. Repetitive rapid stimulation increased KCNQ1/KCNE1 current biphasically, and 293B abolished the slow component. KCNQ1/KCNE3[V72T] activates slowly with a KCNQ1/KCNE1-like phenotype, but retains the high affinity binding of KCNQ1/KCNE3, demonstrating that subunit-mediated changes in gating can be dissociated from subunit-mediated changes in affinity. This study demonstrates the KCNQ1 pharmacology is significantly altered by ancillary subunits. The response of KCNQ1 to specific blockers will therefore be critically dependent on the electrical stimulation pattern of the target organ. Furthermore, the dissociation between gating and overall affinity suggests that mutations in ancillary subunits can potentially strongly alter drug sensitivity without obvious functional changes in gating behaviour, giving rise to unexpected side-effects such as a predisposition to acquired long QT syndrome.


Asunto(s)
Cromanos/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ1/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Sulfonamidas/farmacología , Secuencia de Aminoácidos , Animales , Relación Dosis-Respuesta a Droga , Femenino , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/química , Potenciales de la Membrana/fisiología , Modelos Teóricos , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/fisiología , Técnicas de Placa-Clamp , Factores de Tiempo , Xenopus laevis
10.
Cardiovasc Res ; 71(1): 88-96, 2006 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-16626671

RESUMEN

OBJECTIVE: Cardiac memory (CM) is characterized by an altered T-wave morphology, which reflects altered repolarization gradients. We hypothesized that the delayed rectifier currents, I(Kr) and I(Ks), might contribute to these repolarization changes. METHODS: We studied conscious, chronically instrumented dogs paced from the postero-lateral left ventricular (LV) wall at rates 5-10% faster than sinus rate for 3 weeks. ECGs during sinus rhythm were recorded on days 0, 7, 14 and 21 of pacing. Within 3 weeks, CM achieved steady state, hearts were excised, and epicardial and endocardial tissues and myocytes were studied. RESULTS: In unpaced controls, action potential duration to 50% and 90% repolarization (APD) in epicardium was shorter than in endocardium (P < 0.05); in CM epicardial APD increased at CL > or = 500 ms, while endocardial APD was either unchanged or decreased such that the transmural gradient seen in controls diminished (P < 0.05). A transmural I(Kr) gradient occurred in controls (epicardium>endocardium, P < 0.05) and was reversed in CM. No I(Ks) transmural gradient was found in controls, while in CM endocardial I(Ks) was greater than epicardial at greater than +50 mV. Canine ERG (cERG) mRNA and protein in epicardium > endocardium in controls (P < 0.05), and this difference was lost in CM. Expression levels of KCNQ1 and KCNE1 protein were similar in all groups. CONCLUSIONS: A transcriptionally induced change in epicardial I(Kr) contributes to the altered ventricular repolarization that characterizes CM.


Asunto(s)
Potenciales de Acción/fisiología , Miocitos Cardíacos/metabolismo , Pericardio/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Western Blotting/métodos , Estimulación Cardíaca Artificial , Perros , Electrocardiografía , Endocardio/metabolismo , Endocardio/fisiología , Canales de Potasio Éter-A-Go-Go/análisis , Canales de Potasio Éter-A-Go-Go/genética , Ventrículos Cardíacos , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/genética , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp , Pericardio/metabolismo , Canales de Potasio con Entrada de Voltaje/análisis , Canales de Potasio con Entrada de Voltaje/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Remodelación Ventricular
11.
Cardiovasc Res ; 67(3): 476-86, 2005 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-15935335

RESUMEN

OBJECTIVE: In the hereditary long QT syndromes the commonest defect is in the K+ channel pore forming subunit, KCNQ1. In this study we investigated the role that abnormal KCNQ1 trafficking has in the pathogenesis of the hereditary long QT syndrome (LQT1). METHODS: We introduced nine missense and nonsense mutations occurring in LQT1 into the cDNA encoding KCNQ1 fused in frame to the green fluorescent protein. These mutations occur in syndromes that are inherited in both autosomal dominant and recessive fashions. We used biochemistry, electrophysiology and cell imaging to examine the behaviour of wildtype and mutant channel subunits expressed together with the auxiliary subunit KCNE1 expressed in CHO-K1 and C2C12 cells. RESULTS: We found that a number of mutations in KCNQ1 are retained in the endoplasmic reticulum and unable to translocate to the plasma membrane. Furthermore, some mutations act in a dominant negative fashion and have the ability to suppress the trafficking of wildtype channel. We use fluorescence resonance energy transfer microscopy to show that this occurs because of direct interaction between the mutant subunit and wildtype channel in the endoplasmic reticulum. Finally, a number of specific and nonspecific pharmacological tools are unable to promote the delivery of these mutants to the plasma membrane. CONCLUSIONS: Our data revealed that channel trafficking may contribute to the pathogenesis of LQT1.


Asunto(s)
Retículo Endoplásmico/metabolismo , Canal de Potasio KCNQ1/metabolismo , Transporte de Proteínas , Síndrome de Romano-Ward/genética , Síndrome de Romano-Ward/metabolismo , Animales , Western Blotting/métodos , Células CHO , Cricetinae , Humanos , Canal de Potasio KCNQ1/análisis , Canal de Potasio KCNQ1/genética , Microscopía Confocal , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...