Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Epilepsia ; 62(7): 1744-1758, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34085706

RESUMEN

OBJECTIVE: About one third of all patients with epilepsy have pharmacoresistant seizures. Thus there is a need for better pharmacological treatments. The human voltage-gated potassium (hKV ) channel hKV 7.2/7.3 is a validated antiseizure target for compounds that activate this channel. In a previous study we have shown that resin acid derivatives can activate the hKV 7.2/7.3 channel. In this study we investigated if these channel activators have the potential to be developed into a new type of antiseizure drug. Thus we examined their structure-activity relationships and the site of action on the hKV 7.2/7.3 channel, if they have unwanted cardiac and cardiovascular effects, and their potential antiseizure effect. METHODS: Ion channels were expressed in Xenopus oocytes or mammalian cell lines and explored with two-electrode voltage-clamp or automated patch-clamp techniques. Unwanted vascular side effects were investigated with isometric tension recordings. Antiseizure activity was studied in an electrophysiological zebrafish-larvae model. RESULTS: Fourteen resin acid derivatives were tested on hKV 7.2/7.3. The most efficient channel activators were halogenated and had a permanently negatively charged sulfonyl group. The compounds did not bind to the sites of other hKV 7.2/7.3 channel activators, retigabine, or ICA-069673. Instead, they interacted with the most extracellular gating charge of the S4 voltage-sensing helix, and the effects are consistent with an electrostatic mechanism. The compounds altered the voltage dependence of hKV 7.4, but in contrast to retigabine, there were no effects on the maximum conductance. Consistent with these data, the compounds had less smooth muscle-relaxing effect than retigabine. The compounds had almost no effect on the voltage dependence of hKV 11.1, hNaV 1.5, or hCaV 1.2, or on the amplitude of hKV 11.1. Finally, several resin acid derivatives had clear antiseizure effects in a zebrafish-larvae model. SIGNIFICANCE: The described resin acid derivatives hold promise for new antiseizure medications, with reduced risk for adverse effects compared with retigabine.


Asunto(s)
Anticonvulsivantes/farmacología , Epilepsia/prevención & control , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Resinas Sintéticas/farmacología , Convulsiones/prevención & control , Animales , Carbamatos/farmacología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Larva , Oocitos , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Especificidad por Sustrato , Xenopus laevis , Pez Cebra
2.
J Neurophysiol ; 125(4): 1440-1449, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33729829

RESUMEN

Retigabine is a first-in-class potassium channel opener approved for patients with epilepsy. Unfortunately, several side effects have limited its use in clinical practice, overshadowing its beneficial effects. Multiple studies have shown that retigabine acts by enhancing the activity of members of the voltage-gated KCNQ (Kv7) potassium channel family, particularly the neuronal KCNQ channels KCNQ2-KCNQ5. However, it is currently unknown whether retigabine's action in neurons is mediated by all KCNQ neuronal channels or by only a subset. This knowledge is necessary to elucidate retigabine's mechanism of action in the central nervous system and its adverse effects and to design more effective and selective retigabine analogs. In this study, we show that the action of retigabine in excitatory neurons strongly depends on the presence of KCNQ3 channels. Deletion of Kcnq3 severely limited the ability of retigabine to reduce neuronal excitability in mouse CA1 and subiculum excitatory neurons. In addition, we report that in the absence of KCNQ3 channels, retigabine can enhance CA1 pyramidal neuron activity, leading to a greater number of action potentials and reduced spike frequency adaptation; this finding further supports a key role of KCNQ3 channels in mediating the action of retigabine. Our work provides new insight into the action of retigabine in forebrain neurons, clarifying retigabine's action in the nervous system.NEW & NOTEWORTHY Retigabine has risen to prominence as a first-in-class potassium channel opener approved by the Food and Drug Administration, with potential for treating multiple neurological disorders. Here, we demonstrate that KCNQ3 channels are the primary target of retigabine in excitatory neurons, as deleting these channels greatly diminishes the effect of retigabine in pyramidal neurons. Our data provide the first indication that retigabine controls neuronal firing properties primarily through KCNQ3 channels.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/farmacología , Región CA1 Hipocampal/efectos de los fármacos , Carbamatos/farmacología , Canal de Potasio KCNQ3/efectos de los fármacos , Fenilendiaminas/farmacología , Células Piramidales/efectos de los fármacos , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Técnicas de Placa-Clamp
3.
Epilepsia ; 61(8): 1678-1690, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32652600

RESUMEN

OBJECTIVE: Voltage-gated potassium channels of the KCNQ (Kv7) family are targeted by a variety of activator compounds with therapeutic potential for treatment of epilepsy. Exploration of this drug class has revealed a variety of effective compounds with diverse mechanisms. In this study, we aimed to clarify functional criteria for categorization of Kv7 activator compounds, and to compare the effects of prototypical drugs in a zebrafish larvae model. METHODS: In vitro electrophysiological approaches with recombinant ion channels were used to highlight functional properties important for classification of drug mechanisms. We also benchmarked the effects of representative antiepileptic Kv7 activator drugs using behavioral seizure assays of zebrafish larvae and in vivo Ca2+ imaging with the ratiometric Ca2+ sensor CaMPARI. RESULTS: Drug effects on channel gating kinetics, and drug sensitivity profiles to diagnostic channel mutations, were used to highlight properties for categorization of Kv7 activator drugs into voltage sensor-targeted or pore-targeted subtypes. Quantifying seizures and ratiometric Ca2+ imaging in freely swimming zebrafish larvae demonstrated that while all Kv7 activators tested lead to suppression of neuronal excitability, pore-targeted activators (like ML213 and retigabine) strongly suppress seizure behavior, whereas ICA-069673 triggers a seizure-like hypermotile behavior. SIGNIFICANCE: This study suggests criteria to categorize antiepileptic Kv7 activator drugs based on their underlying mechanism. We also establish the use of in vivo CaMPARI as a tool for screening effects of anticonvulsant drugs on neuronal excitability in zebrafish. In summary, despite a shared ability to suppress neuronal excitability, our findings illustrate how mechanistic differences between Kv7 activator subtypes influence their effects on heteromeric channels and lead to vastly different in vivo outcomes.


Asunto(s)
Anilidas/farmacología , Anticonvulsivantes/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Calcio/metabolismo , Carbamatos/farmacología , Epilepsia/tratamiento farmacológico , Canales de Potasio KCNQ/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenilendiaminas/farmacología , Convulsiones/tratamiento farmacológico , Animales , Animales Modificados Genéticamente , Anticonvulsivantes/clasificación , Modelos Animales de Enfermedad , Resistencia a Medicamentos/genética , Epilepsia/metabolismo , Técnicas In Vitro , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Proteínas Luminiscentes/genética , Potenciales de la Membrana , Mutación , Neuronas/metabolismo , Imagen Óptica , Técnicas de Placa-Clamp , Convulsiones/metabolismo , Pez Cebra
4.
Pharmacology ; 103(5-6): 257-262, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30759446

RESUMEN

Osteoarthritic pain has a strong impact on patients' quality of life. Understanding the pathogenic mechanisms underlying osteoarthritic pain will likely lead to the development of more effective treatments. In the present study of osteoarthritic model rats, we observed a reduction of M-current density and a remarkable decrease in the levels of KCNQ2 and KCNQ3 proteins and mRNAs in dorsal root ganglia (DRG) neurons, which were associated with hyperalgesic behaviors. The activation of KCNQ/M channels with flupirtine significantly increased the mechanical threshold and prolonged the withdrawal latency of osteoarthritic model rats at 3-14 days after model induction, and all effects of flupirtine were blocked by KCNQ/M-channel antagonist, XE-991. Together, these results indicate that suppression of KCNQ/M channels in primary DRG neurons plays a crucial role in the development of osteoarthritic pain.


Asunto(s)
Aminopiridinas/farmacología , Artritis Experimental/tratamiento farmacológico , Osteoartritis/tratamiento farmacológico , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Animales , Antracenos/farmacología , Artritis Experimental/fisiopatología , Conducta Animal/efectos de los fármacos , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/fisiopatología , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/metabolismo , Masculino , Osteoartritis/fisiopatología , Dolor/fisiopatología , Ratas , Ratas Sprague-Dawley
5.
J Gen Physiol ; 150(10): 1421-1431, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30166314

RESUMEN

Retigabine is an antiepileptic drug and the first voltage-gated potassium (Kv) channel opener to be approved for human therapeutic use. Retigabine is thought to interact with a conserved Trp side chain in the pore of KCNQ2-5 (Kv7.2-7.5) channels, causing a pronounced hyperpolarizing shift in the voltage dependence of activation. In this study, we investigate the functional stoichiometry of retigabine actions by manipulating the number of retigabine-sensitive subunits in concatenated KCNQ3 channel tetramers. We demonstrate that intermediate retigabine concentrations cause channels to exhibit biphasic conductance-voltage relationships rather than progressive concentration-dependent shifts. This suggests that retigabine can exert its effects in a nearly "all-or-none" manner, such that channels exhibit either fully shifted or unshifted behavior. Supporting this notion, concatenated channels containing only a single retigabine-sensitive subunit exhibit a nearly maximal retigabine effect. Also, rapid solution exchange experiments reveal delayed kinetics during channel closure, as retigabine dissociates from channels with multiple drug-sensitive subunits. Collectively, these data suggest that a single retigabine-sensitive subunit can generate a large shift of the KCNQ3 conductance-voltage relationship. In a companion study (Wang et al. 2018. J. Gen. Physiol. https://doi.org/10.1085/jgp.201812014), we contrast these findings with the stoichiometry of a voltage sensor-targeted KCNQ channel opener (ICA-069673), which requires four drug-sensitive subunits for maximal effect.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ3/efectos de los fármacos , Fenilendiaminas/farmacología , Animales , Canal de Potasio KCNQ3/genética , Mutación , Xenopus laevis
6.
Behav Pharmacol ; 28(5): 405-407, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28125509

RESUMEN

The efficacy of KCNQ2/3 channel agonists against drug reward has not been defined despite their ability to reduce locomotor-stimulant and dopamine-activating effects of psychostimulants. We tested the hypothesis that flupirtine (FLU) (2.5, 10, 20 mg/kg), a KCNQ2/3 agonist, reduces cocaine (15 mg/kg) conditioned place preference. FLU (20 mg/kg), injected concurrently with cocaine during conditioning, reduced the development of cocaine conditioned place preference. FLU (20 mg/kg) also reduced cocaine locomotor activation without affecting baseline activity. The disruption of cocaine place preference by FLU suggests that KCNQ2/3 channels influence cocaine's rewarding effects.


Asunto(s)
Aminopiridinas/farmacología , Canal de Potasio KCNQ3/efectos de los fármacos , Aminopiridinas/metabolismo , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Condicionamiento Operante/efectos de los fármacos , Dopaminérgicos/farmacología , Relación Dosis-Respuesta a Droga , Canal de Potasio KCNQ3/agonistas , Locomoción/efectos de los fármacos , Masculino , Actividad Motora/efectos de los fármacos , Ratas , Receptores Dopaminérgicos/efectos de los fármacos , Recompensa
7.
Addict Biol ; 21(6): 1097-1112, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26104325

RESUMEN

Alcohol use disorders (AUDs) are a major public health issue and produce enormous societal and economic burdens. Current Food and Drug Administration (FDA)-approved pharmacotherapies for treating AUDs suffer from deleterious side effects and are only effective in a subset of individuals. It is therefore essential to find improved medications for the management of AUDs. Emerging evidence suggests that anticonvulsants are a promising class of drugs for treating individuals with AUDs. In these studies, we used integrative functional genomics to demonstrate that genes that encode Kv7 channels (i.e. Kcnq2/3) are related to alcohol (ethanol) consumption, preference and acceptance in rodents. We then tested the ability of the FDA-approved anticonvulsant retigabine, a Kv7 channel opener, to reduce voluntary ethanol consumption of Wistar rats in a two-bottle choice intermittent alcohol access paradigm. Systemic administration and microinjections of retigabine into the nucleus accumbens significantly reduced alcohol drinking, and retigabine was more effective at reducing intake in high- versus low-drinking populations of Wistar rats. Prolonged voluntary drinking increased the sensitivity to the proconvulsant effects of pharmacological blockade of Kv7 channels and altered surface trafficking and SUMOylation patterns of Kv7.2 channels in the nucleus accumbens. These data implicate Kcnq2/3 in the regulation of ethanol drinking and demonstrate that long-term drinking produces neuroadaptations in Kv7 channels. In addition, these results have identified retigabine as a potential pharmacotherapy for treating AUDs and Kv7 channels as a novel therapeutic target for reducing heavy drinking.


Asunto(s)
Consumo de Bebidas Alcohólicas/fisiopatología , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Disuasivos de Alcohol/farmacología , Convulsiones por Abstinencia de Alcohol/inducido químicamente , Animales , Antracenos/farmacología , Anticonvulsivantes/farmacología , Conducta Animal/efectos de los fármacos , Carbamatos/farmacología , Condicionamiento Operante/efectos de los fármacos , Genómica , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Masculino , Moduladores del Transporte de Membrana/farmacología , Microinyecciones , Actividad Motora/efectos de los fármacos , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Ratas Wistar , Sumoilación/efectos de los fármacos , Percepción del Gusto/efectos de los fármacos
8.
Nat Commun ; 6: 8116, 2015 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-26333338

RESUMEN

Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.


Asunto(s)
Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canales de Potasio KCNQ/efectos de los fármacos , Neuronas/efectos de los fármacos , Fenilendiaminas/farmacología , Animales , Anticonvulsivantes/metabolismo , Carbamatos/metabolismo , Flúor/metabolismo , Humanos , Enlace de Hidrógeno , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Neuronas/metabolismo , Oocitos/efectos de los fármacos , Oocitos/metabolismo , Técnicas de Placa-Clamp , Fenilendiaminas/metabolismo , Triptófano/metabolismo , Xenopus laevis
9.
Pharmacology ; 96(3-4): 124-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26202459

RESUMEN

BACKGROUND: Chloroprocaine is a local ester anesthetic, producing excellent sensory block in clinical use. The Kv7/M potassium channel plays an important role in the control of neuronal excitability. In this study, we investigated the effects of the local anesthetic chloroprocaine on Kv7/M channels as well as the effect of retigabine on chloroprocaine-induced seizures. METHODS: A perforated whole-cell patch technique was used to record Kv7 currents from HEK293 cells and M-type currents from rat dorsal root ganglion (DRG) neurons. RESULTS: Chloroprocaine produced a number of effects on Kv7.2/Kv7.3 currents, including a lowering of current amplitudes, a rightward shift in the voltage-dependent activation curves, and a slowing of channel activation. Chloroprocaine had a more selective inhibitory effect on the homomeric Kv7.3 and heteromeric Kv7.2/Kv7.3 channels than on the homomeric Kv7.2 channel. Chloroprocaine also inhibited native M channel currents and induced a depolarization of the DRG neuron membrane potential. CONCLUSION: Taken together, the findings indicate that chloroprocaine concentration dependently inhibited Kv7/M channel currents.


Asunto(s)
Anestésicos Locales/farmacología , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Procaína/análogos & derivados , Animales , Carbamatos/farmacología , Relación Dosis-Respuesta a Droga , Ganglios Espinales/efectos de los fármacos , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Fenilendiaminas/farmacología , Procaína/farmacología , Ratas , Ratas Sprague-Dawley , Convulsiones/inducido químicamente
10.
Bipolar Disord ; 17(2): 150-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25041603

RESUMEN

OBJECTIVES: Accumulating evidence implicates the potassium voltage-gated channel, KQT-like subfamily, member 2 and 3 (KCNQ2 and KCNQ3) genes in the etiology of bipolar disorder (BPD). Reduced KCNQ2 or KCNQ3 gene expression might lead to a loss of inhibitory M-current and an increase in neuronal hyperexcitability in disease. The goal of the present study was to evaluate epigenetic and gene expression associations of the KCNQ2 and KCNQ3 genes with BPD. METHODS: DNA methylation and gene expression levels of alternative transcripts of KCNQ2 and KCNQ3 capable of binding the ankyrin G (ANK3) gene were evaluated using bisulfite pyrosequencing and the quantitative real-time polymerase chain reaction in the postmortem prefrontal cortex of subjects with BPD and matched controls from the McLean Hospital. Replication analyses of DNA methylation findings were performed using prefrontal cortical DNA obtained from the Stanley Medical Research Institute. RESULTS: Significantly lower expression was observed in KCNQ3, but not KCNQ2. DNA methylation analysis of CpGs within an alternative exonic region of KCNQ3 exon 11 demonstrated significantly lower methylation in BPD, and correlated significantly with KCNQ3 mRNA levels. Lower KCNQ3 exon 11 DNA methylation was observed in the Stanley Medical Research Institute replication cohort, although only after correcting for mood stabilizer status. Mood stabilizer treatment in rats resulted in a slight DNA methylation increase at the syntenic KCNQ3 exon 11 region, which subsequent analyses suggested could be the result of alterations in neuronal proportion. CONCLUSION: The results of the present study suggest that epigenetic alterations in the KCNQ3 gene may be important in the etiopathogenesis of BPD and highlight the importance of controlling for medication and cellular composition-induced heterogeneity in psychiatric studies of the brain.


Asunto(s)
Trastorno Bipolar/genética , Metilación de ADN/genética , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/genética , Corteza Prefrontal/metabolismo , ARN Mensajero/metabolismo , Adulto , Anciano , Animales , Antimaníacos/farmacología , Secuencia de Bases , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estudios de Casos y Controles , Línea Celular Tumoral , Epigénesis Genética , Femenino , Perfilación de la Expresión Génica , Humanos , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Compuestos de Litio/farmacología , Masculino , Persona de Mediana Edad , Datos de Secuencia Molecular , Corteza Prefrontal/efectos de los fármacos , ARN Mensajero/efectos de los fármacos , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Valproico/farmacología
11.
Basic Clin Pharmacol Toxicol ; 109(5): 339-42, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21599837

RESUMEN

Retigabine is an anti-epileptic drug that inhibits neuronal firing by stabilizing the membrane potential through positive modulation of voltage-dependent KCNQ potassium channels in cortical neurons and in mesencephalic dopamine (DA) neurons. The purpose of this study was to compare the effect of retigabine with other positive KCNQ modulators on the KCl-induced release of DA in rat striatal slices. Retigabine was found to inhibit KCl-dependent release of DA, and the IC(50) was estimated to be 0.7 µM. The KCNQ channel blocker XE-991 enhanced striatal DA release and completely abolished the effect of retigabine. Other compounds of the same class but with some preferences for different KCNQ subtypes such as ICA-27243, BMS-204352 and S-(1) were also tested. All three compounds produced a significant effect albeit weaker than retigabine. The potency of ICA-27243 was in the range of retigabine, and with a lower potency of BMS-204352 and S-(1). This study demonstrates that KCNQ channel openers inhibit KCl-induced DA release at relevant concentrations. The equal potency of ICA-27243 and retigabine suggests that the KCNQ2/3 isoform is likely the dominant subtype mediating this effect.


Asunto(s)
Carbamatos/farmacología , Dopamina/metabolismo , Neostriado/efectos de los fármacos , Fenilendiaminas/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Animales , Antracenos/metabolismo , Anticonvulsivantes/farmacología , Benzamidas/farmacología , Antagonistas de Dopamina/farmacología , Técnicas In Vitro , Indoles/farmacología , Concentración 50 Inhibidora , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Masculino , Mesencéfalo/efectos de los fármacos , Neostriado/metabolismo , Neuronas/efectos de los fármacos , Dinámicas no Lineales , Cloruro de Potasio/antagonistas & inhibidores , Cloruro de Potasio/metabolismo , Piridinas/farmacología , Ratas , Ratas Wistar , Análisis de Regresión
12.
Hippocampus ; 21(1): 22-32, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19921704

RESUMEN

Aging, mental retardation, number of psychiatric and neurological disorders are all associated with learning and memory impairments. As the underlying causes of such conditions are very heterogeneous, manipulations that can enhance learning and memory in mice under different circumstances might be able to overcome the cognitive deficits in patients. The M-current regulates neuronal excitability and action potential firing, suggesting that its inhibition may increase cognitive capacities. We demonstrate that XE991, a specific M-current blocker, enhances learning and memory in healthy mice. This effect may be achieved by altering basal hippocampal synaptic activity and by diminishing the stimulation threshold for long-term changes in synaptic efficacy and learning-related gene expression. We also show that training sessions regulate the M-current by transiently decreasing the levels of KCNQ/Kv7.3 protein, a pivotal subunit for the M-current. Furthermore, we found that XE991 can revert the cognitive impairment associated with acetylcholine depletion and the neurodegeneration induced by kainic acid. Together, these results show that inhibition of the M-current as a general strategy may be useful to enhance cognitive capacities in healthy and aging individuals, as well as in those with neurodegenerative diseases.


Asunto(s)
Antracenos/farmacología , Encéfalo/fisiología , Trastornos del Conocimiento/fisiopatología , Canal de Potasio KCNQ3/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Animales , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Electrofisiología , Perfilación de la Expresión Génica , Inmunohistoquímica , Canal de Potasio KCNQ3/biosíntesis , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , Plasticidad Neuronal/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
13.
Mol Pharmacol ; 76(6): 1279-89, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19726551

RESUMEN

Expression of KCNQ2/3 (Kv7.2 and -7.3) heteromers underlies the neuronal M current, a current that is suppressed by activation of a variety of receptors that couple to the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Expression of Kv7.2/7.3 channels in human embryonic kidney (HEK) 293 cells produced a noninactivating potassium current characteristic of M current. Muscarinic receptors endogenous to HEK293 cells were identified as being M3 by pharmacology and Western blotting, producing a rise of intracellular calcium ([Ca2+](i)) upon activation. Activation of these endogenous muscarinic receptors however, failed to suppress expressed Kv7.2/7.3 current. Current suppression was reconstituted by coexpression of HA-tagged muscarinic m1 or m3 receptors. Examination of membrane fractions showed that both expressed receptors and Kv7.2 and -7.3 channel subunits resided within lipid rafts. Disruption of lipid rafts by pretreatment of cells expressing either m1 or m3 muscarinic receptors with methyl-beta-cyclodextrin produced a loss of localization of proteins within lipid raft membrane fractions. This pretreatment also abolished both the increase of [Ca2+](i) and suppression of expressed Kv7.2/7.3 current evoked by activation of expressed m1 or m3 muscarinic receptors. A similar loss of muscarinic receptor-mediated suppression of M current native to rat dorsal root ganglion neurons was observed after incubating dissociated cells with methyl-beta-cyclodextrin. These data suggested that lipid rafts colocalized both muscarinic receptors and channel subunits to enable receptor-mediated suppression of channel activity, a spatial colocalization that enables specificity of coupling between receptor and ion channel.


Asunto(s)
Microdominios de Membrana/efectos de los fármacos , Canales de Potasio/efectos de los fármacos , Animales , Western Blotting , Calcio/metabolismo , Carbacol/farmacología , Línea Celular , Colinérgicos/farmacología , Ganglios Espinales/citología , Humanos , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/metabolismo , Microdominios de Membrana/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Ratones , Muscarina/farmacología , Oxotremorina/farmacología , Fosfatidilinositol 4,5-Difosfato/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Receptor Muscarínico M1/efectos de los fármacos , Receptor Muscarínico M3/efectos de los fármacos , Receptores Muscarínicos/efectos de los fármacos
14.
Mol Pharmacol ; 75(2): 272-80, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19015229

RESUMEN

The discovery of retigabine has provided access to alternative anticonvulsant compounds with a novel mode of action. Acting as potassium channel opener, retigabine exclusively activates neuronal KCNQ-type K(+) channels, mainly by shifting the voltage-dependence of channel activation to hyperpolarizing potentials. So far, only parts of the retigabine-binding site have been described, including Trp-265 and Gly-340 (according to KCNQ3 numbering) within transmembrane segments S5 and S6, respectively. Using a refined chimeric strategy, we additionally identified a Leu-314 within the pore region of KCNQ3 as crucial for the retigabine effect. Both Trp-265 and Leu-314 are likely to interact with the retigabine molecule, representing the upper and lower margins of the putative binding site. Guided by a structural model of KCNQ3, which was constructed based on the Kv1.2 crystal structure, further residues affecting retigabine-binding could be proposed and were experimentally verified as mediators for the action of the compound. These results strongly suggest that, besides Trp-265 and Leu-314, it is highly likely that another S5 residue, Leu-272, which is conserved in all KCNQ subunits, contributes to the binding site in KCNQ3. More importantly, Leu-338, extending from S6 of the neighboring subunit is also apparently involved in lining the hydrophobic binding pocket for the drug. This pocket, which is formed at the interface of two adjacent subunits, may be present only in the open state of the channel, consistent with the idea that retigabine stabilizes an open-channel conformation.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/farmacología , Carbamatos/farmacología , Canal de Potasio KCNQ3/metabolismo , Fenilendiaminas/farmacología , Animales , Sitios de Unión , Canal de Potasio KCNQ3/química , Canal de Potasio KCNQ3/efectos de los fármacos , Leucina/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Triptófano/metabolismo , Xenopus laevis
15.
Expert Opin Ther Targets ; 12(5): 565-81, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18410240

RESUMEN

BACKGROUND: Neuronal KCNQ channels (K(V)7.2-5) represent attractive targets for the development of therapeutics for chronic and neuropathic pain, migraine, epilepsy and other neuronal hyperexcitability disorders, although there has been only modest progress in translating this potential into useful therapeutics. OBJECTIVE: Compelling evidence of the importance of K(V)7 channels as neuronal regulatory elements, readily amenable to pharmacological modulation, has sustained widespread interest in these channels as drug targets. This review will update readers on key aspects of the characterization of these important ion channel targets, and will discuss possible current barriers to their exploitation for CNS therapeutics. METHODS: This article is based on a review of recent literature, with a focus on data pertaining to the roles of these channels in neurophysiology. In addition, I review some of the regulatory elements that influence the channels and how these may relate to channel pharmacology, and present a review of recent advances in neuronal K(V)7 channel pharmacology. CONCLUSIONS: These channels continue to be valid and approachable targets for CNS therapeutics. However, we may need to understand more about the roles of neuronal K(V)7 channels during the development of disease states, as well as to pay more attention to a detailed analysis of the molecular pharmacology of the different channel subfamily members and the modes of interaction of individual modulators, in order to successfully target these channels for therapeutic development.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Canales de Potasio KCNQ/efectos de los fármacos , Animales , Ensayos Clínicos Controlados como Asunto , Humanos , Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/metabolismo , Neuronas/metabolismo , Bloqueadores de los Canales de Potasio/farmacología
16.
Mol Pharmacol ; 73(3): 977-86, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18089837

RESUMEN

KCNQ2 (Kv7.2) and KCNQ3 (Kv7.3) are voltage-gated K(+) channel subunits that underlie the neuronal M current. In humans, mutations in these genes lead to a rare form of neonatal epilepsy (Biervert et al., 1998; Singh et al., 1998), suggesting that KCNQ2/Q3 channels may be attractive targets for novel antiepileptic drugs. In the present study, we have identified the compound N-(6-chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243) as a selective activator of the neuronal M current and KCNQ2/Q3 channels. In SH-SY5Y human neuroblastoma cells, ICA-27243 produced membrane potential hyperpolarization that could be prevented by coadministration with the M-current inhibitors 10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone dihydrochloride (XE-991) and linopirdine. ICA-27243 enhanced both (86)Rb(+) efflux (EC(50) = 0.2 microM) and whole-cell currents in Chinese hamster ovary cells stably expressing heteromultimeric KCNQ2/Q3 channels (EC(50) = 0.4 microM). Activation of KCNQ2/Q3 channels was associated with a hyperpolarizing shift of the voltage dependence of channel activation (V((1/2)) shift of -19 mV at 10 microM). In contrast, ICA-27243 was less effective at activating KCNQ4 and KCNQ3/Q5 and was selective over a wide range of neurotransmitter receptors and ion channels such as voltage-dependent sodium channels and GABA-gated chloride channels. ICA-27243 (1-10 microM) was found to reversibly suppress seizure-like activity in an ex vivo hippocampal slice model of epilepsy and demonstrated in vivo anticonvulsant activity (ED(50) = 8.4 mg/kg) in the mouse maximal electroshock epilepsy model. In conclusion, ICA-27243 represents the first member of a novel chemical class of selective KCNQ2/Q3 activators with anticonvulsant-like activity in experimental models of epilepsy.


Asunto(s)
Benzamidas/farmacología , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Piridinas/farmacología , Animales , Células CHO , Técnicas de Cultivo de Célula , Línea Celular , Línea Celular Tumoral , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Electrofisiología , Hipocampo/metabolismo , Humanos , Concentración 50 Inhibidora , Riñón/citología , Masculino , Potenciales de la Membrana/efectos de los fármacos , Microelectrodos , Neuroblastoma/patología , Técnicas de Placa-Clamp , Plásmidos , ARN Mensajero/análisis , Ratas , Ratas Sprague-Dawley , Sensibilidad y Especificidad
17.
Curr Opin Pharmacol ; 8(1): 65-74, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18061539

RESUMEN

The Kv7 potassium channel family encompasses five members (from Kv7.1 to Kv7.5) having distinct expression pattern and functional role. Although Kv7.1 is prevalently expressed in the cardiac muscle, Kv7.2, Kv7.3, Kv7.4, and Kv7.5 are expressed in neural tissue. Mutations in Kv7.2 and/or Kv7.3 genes are responsible for an autosomal-dominant epilepsy of the newborn defined as benign familial neonatal seizures (BFNS), whereas defects in the Kv7.4 gene have been found in families affected by a rare form of nonsyndromic autosomal-dominant hearing loss (DFNA2). Compounds acting as direct activators of neuronal channels formed by Kv7 subunits have been approved for clinical use as analgesics or are in advanced stages of clinical evaluation as anticonvulsants; in addition to these indications, solid preclinical studies reveal their potential usefulness in other diseases characterized by neuronal hyperexcitability. In the present work, we will summarize the available evidence providing proof-of-principles that neuronal Kv7 channels are highly attractive pharmacological targets, review the molecular basis of their peculiar pharmacological sensitivity, introduce some newly synthesized I(KM) openers showing improved pharmacokinetic or pharmacodynamic properties compared to older congeners, and discuss the potential novel therapeutic application of neuronal Kv7 channels in diseases additional to epilepsy.


Asunto(s)
Canales de Potasio KCNQ/efectos de los fármacos , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/efectos de los fármacos , Aminopiridinas/farmacología , Aminopiridinas/uso terapéutico , Animales , Sitios de Unión , Carbamatos/farmacología , Carbamatos/uso terapéutico , Epilepsia Benigna Neonatal/tratamiento farmacológico , Pérdida Auditiva/tratamiento farmacológico , Pérdida Auditiva/genética , Humanos , Canales de Potasio KCNQ/genética , Canales de Potasio KCNQ/fisiología , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/fisiología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/fisiología , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/fisiología , Fenilendiaminas/farmacología , Fenilendiaminas/uso terapéutico
18.
J Gen Physiol ; 130(3): 241-56, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17724161

RESUMEN

Activity of KCNQ (Kv7) channels requires binding of phosphatidylinositol 4,5-bisphosphate (PIP(2)) from the plasma membrane. We give evidence that Mg(2+) and polyamines weaken the KCNQ channel-phospholipid interaction. Lowering internal Mg(2+) augmented inward and outward KCNQ currents symmetrically, and raising Mg(2+) reduced currents symmetrically. Polyvalent organic cations added to the pipette solution had similar effects. Their potency sequence followed the number of positive charges: putrescine (+2) < spermidine (+3) < spermine (+4) < neomycin (+6) < polylysine (>>+6). The inhibitory effects of Mg(2+) were reversible with sequential whole-cell patching. Internal tetraethylammonium ion (TEA) gave classical voltage-dependent block of the pore with changes of the time course of K(+) currents. The effect of polyvalent cations was simpler, symmetric, and without changes of current time course. Overexpression of phosphatidylinositol 4-phosphate 5-kinase Igamma to accelerate synthesis of PIP(2) attenuated the sensitivity to polyvalent cations. We suggest that Mg(2+) and other polycations reduce the currents by electrostatic binding to the negative charges of PIP(2), competitively reducing the amount of free PIP(2) available for interaction with channels. The dose-response curves could be modeled by a competition model that reduces the pool of free PIP(2). This mechanism is likely to modulate many other PIP(2)-dependent ion channels and cellular processes.


Asunto(s)
Membrana Celular/metabolismo , Activación del Canal Iónico , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Magnesio/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Poliaminas/metabolismo , Potasio/metabolismo , Animales , Unión Competitiva , Línea Celular , Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ3/efectos de los fármacos , Canal de Potasio KCNQ3/genética , Potenciales de la Membrana , Ratones , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Neomicina/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Poliaminas/farmacología , Polilisina/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Putrescina/metabolismo , Ratas , Espermidina/metabolismo , Espermina/metabolismo , Electricidad Estática , Tetraetilamonio/farmacología , Factores de Tiempo , Transfección
19.
J Physiol ; 575(Pt 1): 175-89, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16777937

RESUMEN

The M-current is a slowly activating, non-inactivating potassium current that has been shown to be present in numerous cell types. In this study, KCNQ2, Q3 and Q5, the molecular correlates of M-current in neurons, were identified in the visceral sensory neurons of the nodose ganglia from rats through immunocytochemical studies. All neurons showed expression of each of the three proteins. In voltage clamp studies, the cognition-enhancing drug linopirdine (1-50 microM) and its analogue, XE991 (10 microM), quickly and irreversibly blocked a small, slowly activating current that had kinetic properties similar to KCNQ/M-currents. This current activated between -60 and -55 mV, had a voltage-dependent activation time constant of 208 +/- 12 ms at -20 mV, a deactivation time constant of 165 +/- 24 ms at -50 mV and V1/2 of -24 +/- 2 mV, values which are consistent with previous reports for endogenous M-currents. In current clamp studies, these drugs also led to a depolarization of the resting membrane potential at values as negative as -60 mV. Flupirtine (10-20 microM), an M-current activator, caused a 3-14 mV leftward shift in the current-voltage relationship and also led to a hyperpolarization of resting membrane potential. These data indicate that the M-current is present in nodose neurons, is activated at resting membrane potential and that it is physiologically important in regulating excitability by maintaining cells at negative voltages.


Asunto(s)
Canales de Potasio KCNQ/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Neuronas Aferentes/metabolismo , Ganglio Nudoso/fisiología , Aferentes Viscerales/metabolismo , Aminopiridinas/farmacología , Animales , Antracenos/farmacología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Indoles/farmacología , Canales de Potasio KCNQ/análisis , Canales de Potasio KCNQ/efectos de los fármacos , Canal de Potasio KCNQ2/análisis , Canal de Potasio KCNQ2/efectos de los fármacos , Canal de Potasio KCNQ3/análisis , Canal de Potasio KCNQ3/efectos de los fármacos , Potenciales de la Membrana , Neuronas Aferentes/química , Neuronas Aferentes/efectos de los fármacos , Ganglio Nudoso/química , Ganglio Nudoso/efectos de los fármacos , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Aferentes Viscerales/química , Aferentes Viscerales/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...