Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Sci Rep ; 14(1): 21606, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39285222

RESUMEN

Neonatal intensive care unit (NICU), particularly in treating developmental and epileptic encephalopathy (DEE) and metabolic epilepsy (ME), requires a deep understanding of their complex etiologies and treatment responses. After excluding treatable cases such as infectious or autoimmune encephalitis, our focus shifted to a more challenging subgroup of 59 patients for in-depth genetic analysis using exome sequencing (ES). The ES analysis identified 40 genetic abnormalities, significantly including de novo variants. Notably, we found structural variation as duplications in regions 2q24.3, including SCN1A and SCN2A were observed in 7 cases. These genetic variants, impacting ion channels, glucose transport, transcription regulation, and kinases, play a crucial role in determining medication efficacy. More than one-third (34.2%) of patients with DEE had an unfavorable response to anti-seizure medications (ASMs) in the chronic phase. However, since the ketogenic supplementary diet showed a positive effect, more than three-quarters (80%) of these drug-resistant patients improved during a 3-month follow-up. In contrast, the ME had a lower adverse reaction rate of 9.1% (2/22) to specialized medications, yet there were 5 fatalities and 10 cases with unidentified genetic etiologies. This study suggests the potential of categorizing drug-resistant variants and that a ketogenic diet could be beneficial in managing DEE and ME. It also opens new perspectives on the mechanisms of the ketogenic diet on the discovered genetic variants.


Asunto(s)
Genotipo , Humanos , Femenino , Masculino , Epilepsia/tratamiento farmacológico , Epilepsia/genética , Secuenciación del Exoma , Recién Nacido , Dieta Cetogénica , Resultado del Tratamiento , Lactante , Anticonvulsivantes/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resistencia a Medicamentos/genética , Epilepsia Refractaria/tratamiento farmacológico , Epilepsia Refractaria/genética
2.
Int J Mol Sci ; 25(15)2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39125637

RESUMEN

The signaling complex around voltage-gated sodium (Nav) channels includes accessory proteins and kinases crucial for regulating neuronal firing. Previous studies showed that one such kinase, WEE1-critical to the cell cycle-selectively modulates Nav1.2 channel activity through the accessory protein fibroblast growth factor 14 (FGF14). Here, we tested whether WEE1 exhibits crosstalk with the AKT/GSK3 kinase pathway for coordinated regulation of FGF14/Nav1.2 channel complex assembly and function. Using the in-cell split luciferase complementation assay (LCA), we found that the WEE1 inhibitor II and GSK3 inhibitor XIII reduce the FGF14/Nav1.2 complex formation, while the AKT inhibitor triciribine increases it. However, combining WEE1 inhibitor II with either one of the other two inhibitors abolished its effect on the FGF14/Nav1.2 complex formation. Whole-cell voltage-clamp recordings of sodium currents (INa) in HEK293 cells co-expressing Nav1.2 channels and FGF14-GFP showed that WEE1 inhibitor II significantly suppresses peak INa density, both alone and in the presence of triciribine or GSK3 inhibitor XIII, despite the latter inhibitor's opposite effects on INa. Additionally, WEE1 inhibitor II slowed the tau of fast inactivation and caused depolarizing shifts in the voltage dependence of activation and inactivation. These phenotypes either prevailed or were additive when combined with triciribine but were outcompeted when both WEE1 inhibitor II and GSK3 inhibitor XIII were present. Concerted regulation by WEE1 inhibitor II, triciribine, and GSK3 inhibitor XIII was also observed in long-term inactivation and use dependency of Nav1.2 currents. Overall, these findings suggest a complex role for WEE1 kinase-in concert with the AKT/GSK3 pathway-in regulating the Nav1.2 channelosome.


Asunto(s)
Proteínas de Ciclo Celular , Glucógeno Sintasa Quinasa 3 , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas c-akt , Humanos , Células HEK293 , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de Ciclo Celular/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Proteínas Tirosina Quinasas/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Factores de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal/efectos de los fármacos
3.
Br J Pharmacol ; 181(21): 4311-4327, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38982721

RESUMEN

BACKGROUND AND PURPOSE: Sodium channel blockers (SCBs) have traditionally been utilized as anti-seizure medications by primarily targeting the inactivation process. In a drug discovery project aiming at finding potential anticonvulsants, we have identified arbidol, originally an antiviral drug, as a potent SCB. In order to evaluate its anticonvulsant potential, we have thoroughly examined its biophysical properties as well as its effects on animal seizure models. EXPERIMENTAL APPROACH: Patch clamp recording was used to investigate the electrophysiological properties of arbidol, as well as the binding and unbinding kinetics of arbidol, carbamazepine and lacosamide. Furthermore, we evaluated the anticonvulsant effects of arbidol using three different seizure models in male mice. KEY RESULTS: Arbidol effectively suppressed neuronal epileptiform activity by blocking sodium channels. Arbidol demonstrated a distinct mode of action by interacting with both the fast and slow inactivation of Nav1.2 channels compared with carbamazepine and lacosamide. A kinetic study suggested that the binding and unbinding rates might be associated with the specific characteristics of these three drugs. Arbidol targeted the classical binding site of local anaesthetics, effectively inhibited the gain-of-function effects of Nav1.2 epileptic mutations and exhibited varying degrees of anticonvulsant effects in the maximal electroshock model and subcutaneous pentylenetetrazol model but had no effect in the pilocarpine-induced status epilepticus model. CONCLUSIONS AND IMPLICATIONS: Arbidol shows promising potential as an anticonvulsant agent, providing a unique mode of action that sets it apart from existing SCBs.


Asunto(s)
Anticonvulsivantes , Antivirales , Indoles , Convulsiones , Bloqueadores de los Canales de Sodio , Animales , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Masculino , Antivirales/farmacología , Convulsiones/tratamiento farmacológico , Ratones , Indoles/farmacología , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Lacosamida/farmacología , Humanos , Acetamidas/farmacología , Acetamidas/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/genética , Células HEK293 , Carbamazepina/farmacología , Sulfuros
4.
J Med Chem ; 67(15): 12912-12931, 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39037114

RESUMEN

Dysfunction of voltage-gated sodium channel Nav1.2 causes various epileptic disorders, and inhibition of the channel has emerged as an attractive therapeutic strategy. However, currently available Nav1.2 inhibitors exhibit low potency and limited structural diversity. In this study, a novel series of pyrimidine-based derivatives with Nav1.2 inhibitory activity were designed, synthesized, and evaluated. Compounds 14 and 35 exhibited potent activity against Nav1.2, boasting IC50 values of 120 and 65 nM, respectively. Compound 14 displayed favorable pharmacokinetics (F = 43%) following intraperitoneal injection and excellent brain penetration potency (B/P = 3.6). Compounds 14 and 35 exhibited robust antiepileptic activities in the maximal electroshock test, with ED50 values of 3.2 and 11.1 mg/kg, respectively. Compound 35 also demonstrated potent antiepileptic activity in a 6 Hz (32 mA) model, with an ED50 value of 18.5 mg/kg. Overall, compounds 14 and 35 are promising leads for the development of new small-molecule therapeutics for epilepsy.


Asunto(s)
Anticonvulsivantes , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Pirimidinas , Animales , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química , Pirimidinas/farmacocinética , Pirimidinas/uso terapéutico , Anticonvulsivantes/farmacología , Anticonvulsivantes/química , Anticonvulsivantes/síntesis química , Anticonvulsivantes/uso terapéutico , Anticonvulsivantes/farmacocinética , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Relación Estructura-Actividad , Humanos , Modelos Animales de Enfermedad , Masculino , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/síntesis química , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacocinética , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico , Descubrimiento de Drogas , Electrochoque , Simulación del Acoplamiento Molecular
5.
Mol Psychiatry ; 29(8): 2424-2437, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38499656

RESUMEN

Autism spectrum disorder (ASD) is a major neurodevelopmental disorder affecting 1 in 36 children in the United States. While neurons have been the focus of understanding ASD, an altered neuro-immune response in the brain may be closely associated with ASD, and a neuro-immune interaction could play a role in the disease progression. As the resident immune cells of the brain, microglia regulate brain development and homeostasis via core functions including phagocytosis of synapses. While ASD has been traditionally considered a polygenic disorder, recent large-scale human genetic studies have identified SCN2A deficiency as a leading monogenic cause of ASD and intellectual disability. We generated a Scn2a-deficient mouse model, which displays major behavioral and neuronal phenotypes. However, the role of microglia in this disease model is unknown. Here, we reported that Scn2a-deficient mice have impaired learning and memory, accompanied by reduced synaptic transmission and lower spine density in neurons of the hippocampus. Microglia in Scn2a-deficient mice are partially activated, exerting excessive phagocytic pruning of post-synapses related to the complement C3 cascades during selective developmental stages. The ablation of microglia using PLX3397 partially restores synaptic transmission and spine density. To extend our findings from rodents to human cells, we established a microglia-incorporated human cerebral organoid model carrying an SCN2A protein-truncating mutation identified in children with ASD. We found that human microglia display increased elimination of post-synapse in cerebral organoids carrying the SCN2A mutation. Our study establishes a key role of microglia in multi-species autism-associated models of SCN2A deficiency from mouse to human cells.


Asunto(s)
Trastorno del Espectro Autista , Modelos Animales de Enfermedad , Microglía , Canal de Sodio Activado por Voltaje NAV1.2 , Organoides , Sinapsis , Animales , Microglía/metabolismo , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Sinapsis/metabolismo , Organoides/metabolismo , Neuronas/metabolismo , Encéfalo/metabolismo , Masculino , Ratones Noqueados , Hipocampo/metabolismo , Transmisión Sináptica , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Ratones Endogámicos C57BL
6.
Neuron ; 112(9): 1444-1455.e5, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38412857

RESUMEN

Children diagnosed with autism spectrum disorder (ASD) commonly present with sensory hypersensitivity or abnormally strong reactions to sensory stimuli. Such hypersensitivity can be overwhelming, causing high levels of distress that contribute markedly to the negative aspects of the disorder. Here, we identify a mechanism that underlies hypersensitivity in a sensorimotor reflex found to be altered in humans and in mice with loss of function in the ASD risk-factor gene SCN2A. The cerebellum-dependent vestibulo-ocular reflex (VOR), which helps maintain one's gaze during movement, was hypersensitized due to deficits in cerebellar synaptic plasticity. Heterozygous loss of SCN2A-encoded NaV1.2 sodium channels in granule cells impaired high-frequency transmission to Purkinje cells and long-term potentiation, a form of synaptic plasticity important for modulating VOR gain. VOR plasticity could be rescued in mice via a CRISPR-activator approach that increases Scn2a expression, demonstrating that evaluation of a simple reflex can be used to assess and quantify successful therapeutic intervention.


Asunto(s)
Trastorno del Espectro Autista , Cerebelo , Canal de Sodio Activado por Voltaje NAV1.2 , Plasticidad Neuronal , Animales , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Cerebelo/metabolismo , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Humanos , Reflejo Vestibuloocular/fisiología , Masculino , Células de Purkinje/metabolismo , Ratones Endogámicos C57BL
7.
Hum Mol Genet ; 32(13): 2192-2204, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37010102

RESUMEN

Pathogenic heterozygous variants in SCN2A, which encodes the neuronal sodium channel NaV1.2, cause different types of epilepsy or intellectual disability (ID)/autism without seizures. Previous studies using mouse models or heterologous systems suggest that NaV1.2 channel gain-of-function typically causes epilepsy, whereas loss-of-function leads to ID/autism. How altered channel biophysics translate into patient neurons remains unknown. Here, we investigated iPSC-derived early-stage cortical neurons from ID patients harboring diverse pathogenic SCN2A variants [p.(Leu611Valfs*35); p.(Arg937Cys); p.(Trp1716*)] and compared them with neurons from an epileptic encephalopathy (EE) patient [p.(Glu1803Gly)] and controls. ID neurons consistently expressed lower NaV1.2 protein levels. In neurons with the frameshift variant, NaV1.2 mRNA and protein levels were reduced by ~ 50%, suggesting nonsense-mediated decay and haploinsufficiency. In other ID neurons, only protein levels were reduced implying NaV1.2 instability. Electrophysiological analysis revealed decreased sodium current density and impaired action potential (AP) firing in ID neurons, consistent with reduced NaV1.2 levels. In contrast, epilepsy neurons displayed no change in NaV1.2 levels or sodium current density, but impaired sodium channel inactivation. Single-cell transcriptomics identified dysregulation of distinct molecular pathways including inhibition of oxidative phosphorylation in neurons with SCN2A haploinsufficiency and activation of calcium signaling and neurotransmission in epilepsy neurons. Together, our patient iPSC-derived neurons reveal characteristic sodium channel dysfunction consistent with biophysical changes previously observed in heterologous systems. Additionally, our model links the channel dysfunction in ID to reduced NaV1.2 levels and uncovers impaired AP firing in early-stage neurons. The altered molecular pathways may reflect a homeostatic response to NaV1.2 dysfunction and can guide further investigations.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Epilepsia/genética , Discapacidad Intelectual/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/metabolismo , Convulsiones , Sodio/metabolismo , Canales de Sodio/genética , Humanos
8.
Mol Neurobiol ; 60(3): 1281-1296, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36441479

RESUMEN

Proline-rich transmembrane protein 2 (PRRT2) is a neuron-specific protein implicated in the control of neurotransmitter release and neural network stability. Accordingly, PRRT2 loss-of-function mutations associate with pleiotropic paroxysmal neurological disorders, including paroxysmal kinesigenic dyskinesia, episodic ataxia, benign familial infantile seizures, and hemiplegic migraine. PRRT2 is a negative modulator of the membrane exposure and biophysical properties of Na+ channels NaV1.2/NaV1.6 predominantly expressed in brain glutamatergic neurons. NaV channels form complexes with ß-subunits that facilitate the membrane targeting and the activation of the α-subunits. The opposite effects of PRRT2 and ß-subunits on NaV channels raises the question of whether PRRT2 and ß-subunits interact or compete for common binding sites on the α-subunit, generating Na+ channel complexes with distinct functional properties. Using a heterologous expression system, we have observed that ß-subunits and PRRT2 do not interact with each other and act as independent non-competitive modulators of NaV1.2 channel trafficking and biophysical properties. PRRT2 antagonizes the ß4-induced increase in expression and functional activation of the transient and persistent NaV1.2 currents, without affecting resurgent current. The data indicate that ß4-subunit and PRRT2 form a push-pull system that finely tunes the membrane expression and function of NaV channels and the intrinsic neuronal excitability.


Asunto(s)
Proteínas de la Membrana , Canal de Sodio Activado por Voltaje NAV1.2 , Proteínas del Tejido Nervioso , Neuronas , Humanos , Ataxia , Encéfalo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Enfermedades del Sistema Nervioso , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neuronas/química , Neuronas/citología
9.
EBioMedicine ; 83: 104234, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36029553

RESUMEN

OBJECTIVE: Fibroblast Growth Factor 12 (FGF12) may represent an important modulator of neuronal network activity and has been associated with developmental and epileptic encephalopathy (DEE). We sought to identify the underlying pathomechanism of FGF12-related disorders. METHODS: Patients with pathogenic variants in FGF12 were identified through published case reports, GeneMatcher and whole exome sequencing of own case collections. The functional consequences of two missense and two copy number variants (CNVs) were studied by co-expression of wildtype and mutant FGF12 in neuronal-like cells (ND7/23) with the sodium channels NaV1.2 or NaV1.6, including their beta-1 and beta-2 sodium channel subunits (SCN1B and SCN2B). RESULTS: Four variants in FGF12 were identified for functional analysis: one novel FGF12 variant in a patient with autism spectrum disorder and three variants from previously published patients affected by DEE. We demonstrate the differential regulating effects of wildtype and mutant FGF12 on NaV1.2 and NaV1.6 channels. Here, FGF12 variants lead to a complex kinetic influence on NaV1.2 and NaV1.6, including loss- as well as gain-of function changes in fast and slow inactivation. INTERPRETATION: We could demonstrate the detailed regulating effect of FGF12 on NaV1.2 and NaV1.6 and confirmed the complex effect of FGF12 on neuronal network activity. Our findings expand the phenotypic spectrum related to FGF12 variants and elucidate the underlying pathomechanism. Specific variants in FGF12-associated disorders may be amenable to precision treatment with sodium channel blockers. FUNDING: DFG, BMBF, Hartwell Foundation, National Institute for Neurological Disorders and Stroke, IDDRC, ENGIN, NIH, ITMAT, ILAE, RES and GRIN.


Asunto(s)
Trastorno del Espectro Autista , Encefalopatías , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Trastorno del Espectro Autista/genética , Factores de Crecimiento de Fibroblastos/genética , Humanos , Bloqueadores de los Canales de Sodio , Canales de Sodio
10.
J Neurophysiol ; 127(5): 1388-1397, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35417276

RESUMEN

SCN2A encodes a voltage-gated sodium channel (NaV1.2) expressed throughout the central nervous system in predominantly excitatory neurons. Pathogenic variants in SCN2A are associated with epilepsy and neurodevelopmental disorders. Genotype-phenotype correlations have been described, with loss-of-function variants typically being associated with neurodevelopmental delay and later-onset seizures, whereas gain-of-function variants more often result in early infantile-onset epilepsy. However, the true electrophysiological effects of most disease-causing SCN2A variants have yet to be characterized. We report an infant who presented with migrating focal seizures in the neonatal period. She was found to have a mosaic c.2635G>A, p.Gly879Arg variant in SCN2A. Voltage-clamp studies of the variant expressed on adult and neonatal NaV1.2 isoforms demonstrated a mixed gain and loss of function, with predominantly a loss-of-function effect with reduced cell surface expression and current density. Additional small electrophysiological alterations included a decrease in the voltage dependence of activation and an increase in the voltage dependence of inactivation. This finding of a predominantly loss-of-function effect was unexpected, as the infant's early epilepsy onset would have suggested a predominantly gain-of-function effect. This case illustrates that our understanding of genotype-phenotype correlations is still limited and highlights the complexity of the underlying electrophysiological effects of SCN2A variants.NEW & NOTEWORTHY Voltage-gated sodium channels play an important role in the central nervous system, mutations in which have been reported to be responsible for epilepsy. We report here an infant presenting with epilepsy of infancy with migrating focal seizures (EIMFS) in the neonatal period with a mosaic c.2635G>A, resulting in a p.Gly879Arg missense mutation on the SCN2A gene encoding NaV1.2 sodium channels. Biophysical characterization of this variant revealed a mixture of gain- and loss-of-function effects.


Asunto(s)
Epilepsia , Canal de Sodio Activado por Voltaje NAV1.2 , Epilepsia/genética , Femenino , Humanos , Lactante , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Fenotipo , Convulsiones/genética
11.
Hum Mol Genet ; 31(17): 2964-2988, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35417922

RESUMEN

Genetic variants in SCN2A, encoding the NaV1.2 voltage-gated sodium channel, are associated with a range of neurodevelopmental disorders with overlapping phenotypes. Some variants fit into a framework wherein gain-of-function missense variants that increase neuronal excitability lead to developmental and epileptic encephalopathy, while loss-of-function variants that reduce neuronal excitability lead to intellectual disability and/or autism spectrum disorder (ASD) with or without co-morbid seizures. One unique case less easily classified using this framework is the de novo missense variant SCN2A-p.K1422E, associated with infant-onset developmental delay, infantile spasms and features of ASD. Prior structure-function studies demonstrated that K1422E substitution alters ion selectivity of NaV1.2, conferring Ca2+ permeability, lowering overall conductance and conferring resistance to tetrodotoxin (TTX). Based on heterologous expression of K1422E, we developed a compartmental neuron model incorporating variant channels that predicted reductions in peak action potential (AP) speed. We generated Scn2aK1422E mice and characterized effects on neurons and neurological/neurobehavioral phenotypes. Cultured cortical neurons from heterozygous Scn2aK1422E/+ mice exhibited lower current density with a TTX-resistant component and reversal potential consistent with mixed ion permeation. Recordings from Scn2aK1442E/+ cortical slices demonstrated impaired AP initiation and larger Ca2+ transients at the axon initial segment during the rising phase of the AP, suggesting complex effects on channel function. Scn2aK1422E/+ mice exhibited rare spontaneous seizures, interictal electroencephalogram abnormalities, altered induced seizure thresholds, reduced anxiety-like behavior and alterations in olfactory-guided social behavior. Overall, Scn2aK1422E/+ mice present with phenotypes similar yet distinct from other Scn2a models, consistent with complex effects of K1422E on NaV1.2 channel function.


Asunto(s)
Trastorno del Espectro Autista , Animales , Trastorno del Espectro Autista/genética , Calcio/metabolismo , Humanos , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Permeabilidad , Convulsiones/genética , Sodio/metabolismo , Canales de Sodio/genética
12.
Neurobiol Dis ; 168: 105690, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35301122

RESUMEN

Autism spectrum disorder (ASD) affects ~2% of the population in the US, and monogenic forms of ASD often result in the most severe manifestation of the disorder. Recently, SCN2A has emerged as a leading gene associated with ASD, of which abnormal sleep pattern is a common comorbidity. SCN2A encodes the voltage-gated sodium channel NaV1.2. Predominantly expressed in the brain, NaV1.2 mediates the action potential firing of neurons. Clinical studies found that a large portion of children with SCN2A deficiency have sleep disorders, which severely impact the quality of life of affected individuals and their caregivers. The underlying mechanism of sleep disturbances related to NaV1.2 deficiency, however, is not known. Using a gene-trap Scn2a-deficient mouse model (Scn2atrap), we found that Scn2a deficiency results in increased wakefulness and reduced non-rapid-eye-movement (NREM) sleep. Brain region-specific Scn2a deficiency in the suprachiasmatic nucleus (SCN) containing region, which is involved in circadian rhythms, partially recapitulates the sleep disturbance phenotypes. At the cellular level, we found that Scn2a deficiency disrupted the firing pattern of spontaneously firing neurons in the SCN region. At the molecular level, RNA-sequencing analysis revealed differentially expressed genes in the circadian entrainment pathway including core clock genes Per1 and Per2. Performing a transcriptome-based compound discovery, we identified dexanabinol (HU-211), a putative glutamate receptor modulator, that can partially reverse the sleep disturbance in mice. Overall, our study reveals possible molecular and cellular mechanisms underlying Scn2a deficiency-related sleep disturbances, which may inform the development of potential pharmacogenetic interventions for the affected individuals.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Animales , Trastorno del Espectro Autista/genética , Ritmo Circadiano , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Calidad de Vida , Sueño
13.
Cells ; 10(11)2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34831326

RESUMEN

Voltage-gated Na+ (Nav) channels are a primary molecular determinant of the action potential (AP). Despite the canonical role of the pore-forming α subunit in conferring this function, protein-protein interactions (PPI) between the Nav channel α subunit and its auxiliary proteins are necessary to reconstitute the full physiological activity of the channel and to fine-tune neuronal excitability. In the brain, the Nav channel isoforms 1.2 (Nav1.2) and 1.6 (Nav1.6) are enriched, and their activities are differentially regulated by the Nav channel auxiliary protein fibroblast growth factor 14 (FGF14). Despite the known regulation of neuronal Nav channel activity by FGF14, less is known about cellular signaling molecules that might modulate these regulatory effects of FGF14. To that end, and building upon our previous investigations suggesting that neuronal Nav channel activity is regulated by a kinase network involving GSK3, AKT, and Wee1, we interrogate in our current investigation how pharmacological inhibition of Wee1 kinase, a serine/threonine and tyrosine kinase that is a crucial component of the G2-M cell cycle checkpoint, affects the Nav1.2 and Nav1.6 channel macromolecular complexes. Our results show that the highly selective inhibitor of Wee1 kinase, called Wee1 inhibitor II, modulates FGF14:Nav1.2 complex assembly, but does not significantly affect FGF14:Nav1.6 complex assembly. These results are functionally recapitulated, as Wee1 inhibitor II entirely alters FGF14-mediated regulation of the Nav1.2 channel, but displays no effects on the Nav1.6 channel. At the molecular level, these effects of Wee1 inhibitor II on FGF14:Nav1.2 complex assembly and FGF14-mediated regulation of Nav1.2-mediated Na+ currents are shown to be dependent upon the presence of Y158 of FGF14, a residue known to be a prominent site for phosphorylation-mediated regulation of the protein. Overall, our data suggest that pharmacological inhibition of Wee1 confers selective modulatory effects on Nav1.2 channel activity, which has important implications for unraveling cellular signaling pathways that fine-tune neuronal excitability.


Asunto(s)
Proteínas de Ciclo Celular/antagonistas & inhibidores , Sustancias Macromoleculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas de Ciclo Celular/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/metabolismo
14.
Cell Rep ; 36(5): 109495, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348148

RESUMEN

Scn2a encodes the voltage-gated sodium channel NaV1.2, a main mediator of neuronal action potential firing. The current paradigm suggests that NaV1.2 gain-of-function variants enhance neuronal excitability, resulting in epilepsy, whereas NaV1.2 deficiency impairs neuronal excitability, contributing to autism. However, this paradigm does not explain why ∼20%-30% of individuals with NaV1.2 deficiency still develop seizures. Here, we report the counterintuitive finding that severe NaV1.2 deficiency results in increased neuronal excitability. Using a NaV1.2-deficient mouse model, we show enhanced intrinsic excitability of principal neurons in the prefrontal cortex and striatum, brain regions known to be involved in Scn2a-related seizures. This increased excitability is autonomous and reversible by genetic restoration of Scn2a expression in adult mice. RNA sequencing reveals downregulation of multiple potassium channels, including KV1.1. Correspondingly, KV channel openers alleviate the hyperexcitability of NaV1.2-deficient neurons. This unexpected neuronal hyperexcitability may serve as a cellular basis underlying NaV1.2 deficiency-related seizures.


Asunto(s)
Envejecimiento/fisiología , Canal de Sodio Activado por Voltaje NAV1.2/deficiencia , Neuronas/fisiología , Potenciales de Acción , Animales , Regulación hacia Abajo , Activación del Canal Iónico , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canales de Potasio/metabolismo
15.
Cell Rep ; 36(5): 109483, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34348157

RESUMEN

Loss-of-function variants in the gene SCN2A, which encodes the sodium channel NaV1.2, are strongly associated with autism spectrum disorder and intellectual disability. An estimated 20%-30% of children with these variants also suffer from epilepsy, with altered neuronal activity originating in neocortex, a region where NaV1.2 channels are expressed predominantly in excitatory pyramidal cells. This is paradoxical, as sodium channel loss in excitatory cells would be expected to dampen neocortical activity rather than promote seizure. Here, we examined pyramidal neurons lacking NaV1.2 channels and found that they were intrinsically hyperexcitable, firing high-frequency bursts of action potentials (APs) despite decrements in AP size and speed. Compartmental modeling and dynamic-clamp recordings revealed that NaV1.2 loss prevented potassium channels from properly repolarizing neurons between APs, increasing overall excitability by allowing neurons to reach threshold for subsequent APs more rapidly. This cell-intrinsic mechanism may, therefore, account for why SCN2A loss-of-function can paradoxically promote seizure.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neocórtex/citología , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Dendritas/metabolismo , Eliminación de Gen , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Nat Commun ; 12(1): 4171, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34234116

RESUMEN

Here we report the pharmacologic blockade of voltage-gated sodium ion channels (NaVs) by a synthetic saxitoxin derivative affixed to a photocleavable protecting group. We demonstrate that a functionalized saxitoxin (STX-eac) enables exquisite spatiotemporal control of NaVs to interrupt action potentials in dissociated neurons and nerve fiber bundles. The photo-uncaged inhibitor (STX-ea) is a nanomolar potent, reversible binder of NaVs. We use STX-eac to reveal differential susceptibility of myelinated and unmyelinated axons in the corpus callosum to NaV-dependent alterations in action potential propagation, with unmyelinated axons preferentially showing reduced action potential fidelity under conditions of partial NaV block. These results validate STX-eac as a high precision tool for robust photocontrol of neuronal excitability and action potential generation.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Saxitoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Axones/efectos de los fármacos , Axones/metabolismo , Células CHO , Células Cultivadas , Cuerpo Calloso/citología , Cuerpo Calloso/efectos de los fármacos , Cuerpo Calloso/metabolismo , Cricetulus , Embrión de Mamíferos , Femenino , Hipocampo/citología , Masculino , Ratones , Canal de Sodio Activado por Voltaje NAV1.2/genética , Técnicas de Placa-Clamp , Cultivo Primario de Células , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saxitoxina/análogos & derivados , Saxitoxina/efectos de la radiación , Análisis de la Célula Individual , Análisis Espacio-Temporal , Rayos Ultravioleta , Bloqueadores del Canal de Sodio Activado por Voltaje/efectos de la radiación
17.
Structure ; 29(12): 1339-1356.e7, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33770503

RESUMEN

Neuronal voltage-gated sodium channel NaV1.2 C-terminal domain (CTD) binds calmodulin (CaM) constitutively at its IQ motif. A solution structure (6BUT) and other NMR evidence showed that the CaM N domain (CaMN) is structurally independent of the C-domain (CaMC) whether CaM is bound to the NaV1.2IQp (1,901-1,927) or NaV1.2CTD (1,777-1,937) with or without calcium. However, in the CaM + NaV1.2CTD complex, the Ca2+ affinity of CaMN was more favorable than in free CaM, while Ca2+ affinity for CaMC was weaker than in the CaM + NaV1.2IQp complex. The CTD EF-like (EFL) domain allosterically widened the energetic gap between CaM domains. Cardiomyopathy-associated CaM mutants (N53I(N54I), D95V(D96V), A102V(A103V), E104A(E105A), D129G(D130G), and F141L(F142L)) all bound the NaV1.2 IQ motif favorably under resting (apo) conditions and bound calcium normally at CaMN sites. However, only N53I and A102V bound calcium at CaMC sites at [Ca2+] < 100 µM. Thus, they are expected to respond like wild-type CaM to Ca2+ spikes in excitable cells.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Calmodulina/genética , Humanos , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/genética , Unión Proteica
18.
J Biol Chem ; 296: 100458, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33639159

RESUMEN

Voltage-gated sodium channels (Navs) are tightly regulated by multiple conserved auxiliary proteins, including the four fibroblast growth factor homologous factors (FGFs), which bind the Nav EF-hand like domain (EFL), and calmodulin (CaM), a multifunctional messenger protein that binds the NaV IQ motif. The EFL domain and IQ motif are contiguous regions of NaV cytosolic C-terminal domains (CTD), placing CaM and FGF in close proximity. However, whether the FGFs and CaM act independently, directly associate, or operate through allosteric interactions to regulate channel function is unknown. Titrations monitored by steady-state fluorescence spectroscopy, structural studies with solution NMR, and computational modeling demonstrated for the first time that both domains of (Ca2+)4-CaM (but not apo CaM) directly bind two sites in the N-terminal domain (NTD) of A-type FGF splice variants (FGF11A, FGF12A, FGF13A, and FGF14A) with high affinity. The weaker of the (Ca2+)4-CaM-binding sites was known via electrophysiology to have a role in long-term inactivation of the channel but not known to bind CaM. FGF12A binding to a complex of CaM associated with a fragment of the NaV1.2 CTD increased the Ca2+-binding affinity of both CaM domains, consistent with (Ca2+)4-CaM interacting preferentially with its higher-affinity site in the FGF12A NTD. Thus, A-type FGFs can compete with NaV IQ motifs for (Ca2+)4-CaM. During spikes in the cytosolic Ca2+ concentration that accompany an action potential, CaM may translocate from the NaV IQ motif to the FGF NTD, or the A-type FGF NTD may recruit a second molecule of CaM to the channel.


Asunto(s)
Calmodulina/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Secuencia de Aminoácidos/genética , Sitios de Unión/genética , Calcio/metabolismo , Calmodulina/fisiología , Motivos EF Hand/genética , Factores de Crecimiento de Fibroblastos/genética , Humanos , Modelos Moleculares , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Canales de Sodio Activados por Voltaje/metabolismo
19.
Neurochem Res ; 46(3): 523-534, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33394222

RESUMEN

Voltage-gated sodium channels (VGSCs) are fundamental to the initiation and propagation of action potentials in excitable cells. Ca2+/calmodulin (CaM) binds to VGSC type II (NaV1.2) isoleucine and glutamine (IQ) motif. An autism-associated mutation in NaV1.2 IQ motif, Arg1902Cys (R1902C), has been reported to affect the combination between CaM and the IQ motif compared to that of the wild type IQ motif. However, the detailed properties for the Ca2+-regulated binding of CaM to NaV1.2 IQ (1901Lys-1927Lys, IQwt) and mutant IQ motif (IQR1902C) remains unclear. Here, the binding ability of CaM and CaM's constituent proteins including N- and C lobe to the IQ motif of NaV1.2 and its mutant was investigated by protein pull-down experiments. We discovered that the combination between CaM and the IQ motif was U-shaped with the highest at [Ca2+] ≈ free and the lowest at 100 nM [Ca2+]. In the IQR1902C mutant, Ca2+-dependence of CaM binding was nearly lost. Consequently, the binding of CaM to IQR1902C at 100 and 500 nM [Ca2+] was increased compared to that of IQwt. Both N- and C lobe of CaM could bind with NaV1.2 IQ motif and IQR1902C mutant, with the major effect of C lobe. Furthermore, CaMKII had no impact on the binding between CaM and NaV1.2 IQ motif. This research offers novel insight to the regulation of NaV1.2 IQwt and IQR1902C motif, an autism-associated mutation, by CaM.


Asunto(s)
Calmodulina/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Trastorno Autístico/genética , Calmodulina/química , Humanos , Simulación del Acoplamiento Molecular , Mutación , Canal de Sodio Activado por Voltaje NAV1.2/química , Canal de Sodio Activado por Voltaje NAV1.2/genética , Unión Proteica
20.
J Biol Chem ; 296: 100298, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460646

RESUMEN

Mutations in genes encoding the human-brain-expressed voltage-gated sodium (NaV) channels NaV1.1, NaV1.2, and NaV1.6 are associated with a variety of human diseases including epilepsy, autism spectrum disorder, familial migraine, and other neurodevelopmental disorders. A major obstacle hindering investigations of the functional consequences of brain NaV channel mutations is an unexplained instability of the corresponding recombinant complementary DNA (cDNA) when propagated in commonly used bacterial strains manifested by high spontaneous rates of mutation. Here, using a combination of in silico analysis, random and site-directed mutagenesis, we investigated the cause for instability of human NaV1.1 cDNA. We identified nucleotide sequences within the NaV1.1 coding region that resemble prokaryotic promoter-like elements, which are presumed to drive transcription of translationally toxic mRNAs in bacteria as the cause of the instability. We further demonstrated that mutations disrupting these elements mitigate the instability. Extending these observations, we generated full-length human NaV1.1, NaV1.2, and NaV1.6 plasmids using one or two introns that interrupt the latent reading frames along with a minimum number of silent nucleotide changes that achieved stable propagation in bacteria. Expression of the stabilized sequences in cultured mammalian cells resulted in functional NaV channels with properties that matched their parental constructs. Our findings explain a widely observed instability of recombinant neuronal human NaV channels, and we describe re-engineered plasmids that attenuate this problem.


Asunto(s)
Escherichia coli/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.6/genética , Regiones Promotoras Genéticas , Ingeniería de Proteínas/métodos , Secuencia de Bases , Clonación Molecular/métodos , ADN Complementario/genética , ADN Complementario/metabolismo , Escherichia coli/metabolismo , Expresión Génica , Células HEK293 , Humanos , Potenciales de la Membrana/fisiología , Mutagénesis Sitio-Dirigida/métodos , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Técnicas de Placa-Clamp , Plásmidos/química , Plásmidos/metabolismo , Estabilidad Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA