Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Braz J Anesthesiol ; 74(3): 844501, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38583586

RESUMEN

INTRODUCTION: Cardiac arrest or arrhythmia caused by bupivacaine may be refractory to treatment. Apelin has been reported to directly increase the frequency of spontaneous activation and the propagation of action potentials, ultimately promoting cardiac contractility. This study aimed to investigate the effects of apelin-13 in reversing cardiac suppression induced by bupivacaine in rats. METHODS: A rat model of cardiac suppression was established by a 3-min continuous intravenous infusion of bupivacaine at the rate of 5 mg.kg-1.min-1, and serial doses of apelin-13 (50, 150 and 450 µg.kg-1) were administered to rescue cardiac suppression to identify its dose-response relationship. We used F13A, an inhibitor of Angiotensin Receptor-Like 1 (APJ), and Protein Kinase C (PKC) inhibitor chelerythrine to reverse the effects of apelin-13. Moreover, the protein expressions of PKC, Nav1.5, and APJ in ventricular tissues were measured using Western blotting and immunofluorescence assay. RESULTS: Compared to the control rats, the rats subjected to continuous intravenous administration of bupivacaine had impaired hemodynamic stability. Administration of apelin-13, in a dose-dependent manner, significantly improved hemodynamic parameters in rats with bupivacaine-induced cardiac suppression (p < 0.05), and apelin-13 treatment also significantly upregulated the protein expressions of p-PKC and Nav1.5 (p < 0.05), these effects were abrogated by F13A or chelerythrine (p < 0.05). CONCLUSION: Exogenous apelin-13, at least in part, activates the PKC signaling pathway through the apelin/APJ system to improve cardiac function in a rat model of bupivacaine-induced cardiac suppression.


Asunto(s)
Bupivacaína , Cardiotoxicidad , Péptidos y Proteínas de Señalización Intercelular , Ratas Sprague-Dawley , Animales , Bupivacaína/toxicidad , Ratas , Masculino , Péptidos y Proteínas de Señalización Intercelular/farmacología , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Cardiotoxicidad/etiología , Cardiotoxicidad/prevención & control , Proteína Quinasa C/metabolismo , Relación Dosis-Respuesta a Droga , Anestésicos Locales/farmacología , Modelos Animales de Enfermedad , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Apelina , Benzofenantridinas
2.
Heart Rhythm ; 20(5): 709-717, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36731785

RESUMEN

BACKGROUND: Pathogenic variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3). We present the case of an infant with severe LQT3 who was refractory to multiple pharmacologic therapies as well as bilateral stellate ganglionectomy. The patient's novel variant, p.F1760C-SCN5A, involves a critical residue of the Nav1.5's local anesthetic binding domain. OBJECTIVE: The purpose of this study was to characterize functionally the p.F1760C-SCN5A variant using TSA-201 and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: Whole-cell patch clamp was used to assess p.F1760C-SCN5A associated sodium currents with/without lidocaine (Lido), flecainide, and phenytoin (PHT) in TSA-201 cells. p.F1760C-SCN5A and CRISPR-Cas9 variant-corrected isogenic control (IC) iPSC-CMs were generated. FluoVolt voltage dye was used to measure the action potential duration (APD) with/without mexiletine or PHT. RESULTS: V1/2 of inactivation was right-shifted significantly in F1760C cells (-72.2 ± 0.7 mV) compared to wild-type (WT) cells (-86.3 ± 0.9 mV; P <.0001) resulting in a marked increase in window current. F1760C increased sodium late current 2-fold from 0.18% ± 0.04% of peak in WT to 0.49% ± 0.07% of peak in F1760C (P = .0005). Baseline APD to 90% repolarization (APD90) was increased markedly in F1760C iPSC-CMs (601 ± 4 ms) compared to IC iPSC-CMs (423 ± 15 ms; P <.0001). However, 4-hour treatment with 10 µM mexiletine failed to shorten APD90, and treatment with 5µM PHT significantly decreased APD90 of F1760C iPSC-CMs (453 ± 6 ms; P <.0001). CONCLUSION: PHT rescued electrophysiological phenotype and APD of a novel p.F1760C-SCN5A variant. The antiepileptic drug PHT may be an effective alternative therapeutic for the treatment of LQT3, especially for variants that disrupt the Lido/mexiletine binding site.


Asunto(s)
Antiarrítmicos , Síndrome de QT Prolongado , Mexiletine , Humanos , Lactante , Antiarrítmicos/farmacología , Antiarrítmicos/uso terapéutico , Lidocaína , Síndrome de QT Prolongado/tratamiento farmacológico , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/terapia , Mexiletine/uso terapéutico , Mexiletine/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo
3.
Mol Pharmacol ; 99(6): 448-459, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33824187

RESUMEN

Nav1.5-derived Na+ current (INa) exerts a pivotal role in the depolarization phase of cardiomyocytes' action potential, and, therefore, changes in INa can contribute to fatal arrhythmias. Nav1.5 displays naturally occurring ethnicity-related polymorphisms, which might alter the functioning and pharmacology of the channel. Some studies have shown how single-nucleotide polymorphism can change the response to antiarrhythmic drugs. Investigations on the role of Nav1.5 in arrhythmogenesis associated with its functional polymorphisms are currently growing as well as the possible variability in the antiarrhythmic pharmacotherapy among ethnic groups. The influence of the ethnicity-related polymorphisms (S524Y, S1103Y, R1193Q, V1951L) on the responsiveness, selectivity, and pharmacological efficacy of the clinically used antiarrhythmic amiodarone (AMIO) is not completely known. Our objectives were to analyze biophysical and pharmacological aspects of four ethnicity-related polymorphisms before and after exposure to AMIO. Polymorphisms caused reduced AMIO potency compared with wild type (WT), which can vary by up to 4× between them. AMIO shifted the voltage dependency for current inactivation without significant effect in voltage-dependent activation to a similar extent in WT and polymorphisms. The recovery from inactivation was altered between the polymorphisms when compared with WT. Finally, the use dependency of AMIO differed between studied groups, especially at a more depolarized cell membrane. Thus, our work may guide future studies focusing on the efficiency of AMIO in treating different arrhythmias and establish more individualized guidelines for its use depending on the Nav1.5 polymorphism after validating our findings using in vivo studies. SIGNIFICANCE STATEMENT: Sodium voltage-gated channel α subunit 5 (SCN5A) gene encodes the α subunit of Nav1.5, the main cardiac voltage-gated Na+ channel. Interestingly, ethnicity-related polymorphisms are found in SCN5A. Amiodarone is used in clinical practice, and some of its effects are attributed to interaction with Nav1.5. Important, amiodarone efficacy is variable among patients. Here we show that ethnicity-related SCN5A polymorphisms lead to altered Nav1.5-amiodarone interaction, which may be the cause for the variable efficacy observed in clinical usage of amiodarone.


Asunto(s)
Amiodarona/farmacología , Antiarrítmicos/farmacología , Etnicidad/genética , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Polimorfismo de Nucleótido Simple , Células HEK293 , Humanos
4.
J Biol Chem ; 296: 100326, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33493520

RESUMEN

Human voltage-gated sodium channel Nav1.7 (hNav1.7) is involved in the generation and conduction of neuropathic and nociceptive pain signals. Compelling genetic and preclinical studies have validated that hNav1.7 is a therapeutic target for the treatment of pain; however, there is a dearth of currently available compounds capable of targeting hNav1.7 with high potency and specificity. Hainantoxin-III (HNTX-III) is a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. Here, we report the engineering of improved potency and Nav selectivity of hNav1.7 inhibition peptides derived from the HNTX-III scaffold. Alanine scanning mutagenesis showed key residues for HNTX-III interacting with hNav1.7. Site-directed mutagenesis analysis indicated key residues on hNav1.7 interacting with HNTX-III. Molecular docking was conducted to clarify the binding interface between HNTX-III and Nav1.7 and guide the molecular engineering process. Ultimately, we obtained H4 [K0G1-P18K-A21L-V] based on molecular docking of HNTX-III and hNav1.7 with a 30-fold improved potency (IC50 0.007 ± 0.001 µM) and >1000-fold selectivity against Nav1.4 and Nav1.5. H4 also showed robust analgesia in the acute and chronic inflammatory pain model and neuropathic pain model. Thus, our results provide further insight into peptide toxins that may prove useful in guiding the development of inhibitors with improved potency and selectivity for Nav subtypes with robust analgesia.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor Nociceptivo/tratamiento farmacológico , Péptidos/genética , Venenos de Araña/química , Animales , Humanos , Simulación del Acoplamiento Molecular , Canal de Sodio Activado por Voltaje NAV1.4/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.4/genética , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.7/química , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Dolor Nociceptivo/genética , Dolor Nociceptivo/patología , Péptidos/química , Péptidos/farmacología , Venenos de Araña/genética
5.
Ann Noninvasive Electrocardiol ; 26(3): e12828, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33463855

RESUMEN

BACKGROUND: SCN5A-related Brugada syndrome (BrS) can be caused by multiple mechanisms including trafficking defects and altered channel gating properties. Most SCN5A mutations at pore region cause trafficking defects, and some of them can be rescued by mexiletine (MEX). OBJECTIVE: We recently encountered symptomatic siblings with BrS and sought to identify a responsible mutation and reveal its biophysical defects. METHODS: Target panel sequencing was performed. Wild-type (WT) or identified mutant SCN5A was transfected into tsA201 cells. After incubation of transfected cells with or without 0.1 mM MEX for 24-36 hr, whole-cell sodium currents (INa ) were recorded using patch-clamp techniques. RESULTS: The proband was 29-year-old male who experienced cardiopulmonary arrest. Later, his 36-year-old sister, who had been suffering from recurrent episodes of syncope since 12 years, was diagnosed with BrS. An SCN5A W374G mutation, located at pore region of domain 1 (D1 pore), was identified in both. The peak density of W374G-INa was markedly reduced (WT: 521 ± 38 pA/pF, W374G: 60 ± 10 pA/pF, p < .01), and steady-state activation (SSA) was shifted to depolarizing potentials compared with WT-INa (V1/2 -WT: -39.1 ± 0.8 mV, W374G: -30.9 ± 1.1 mV, p < .01). Incubation of W374G-transfected cells with MEX (W374G-MEX) increased INa density, but it was still reduced compared with WT-INa (W374G-MEX: 174 ± 19 pA/pF, p < .01 versus W374G, p < .01 versus WT). The SSA of W374G-MEX-INa was comparable to W374G-INa (V1/2 -W374G-MEX: -31.6 ± 0.7 mV, P = NS). CONCLUSIONS: Reduced current density, possibly due to a trafficking defect, and depolarizing shift in activation of SCN5A W374G are underlying biophysical defects in this severe form of BrS. Trafficking defects of SCN5A mutations at D1 pore may be commonly rescued by MEX.


Asunto(s)
Antiarrítmicos/uso terapéutico , Síndrome de Brugada/tratamiento farmacológico , Síndrome de Brugada/genética , Mexiletine/uso terapéutico , Mutación/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , Adulto , Síndrome de Brugada/diagnóstico , Electrocardiografía , Femenino , Humanos , Masculino , Mutación/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Técnicas de Placa-Clamp , Gravedad del Paciente
6.
Cancer Med ; 10(1): 337-349, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33280262

RESUMEN

Lidocaine, one of the most commonly used local anesthetics during surgery, has been reported to suppress cancer cell growth via blocking voltage-gated sodium channels (VGSCs). VGSC 1.5 (NaV 1.5) is highly expressed in invasive cancers including ovarian cancer. This study aims to investigate whether lidocaine inhibits the malignancy of ovarian cancer through NaV 1.5 blockage. Human ovarian cancer, its metastatic cancer and normal ovarian tissues were probed with anti-NaV 1.5 antibody in situ. Human ovarian cancer A2780 and SKOV3 cells were cultured and their growth, epithelial-mesenchymal transition (EMT), migration, and invasion in the presence or absence of lidocaine together with underlying molecular mechanisms were assessed. Murine syngeneic ovarian cancer (ID8) model was also used to determine the chemotherapeutic efficiency of cisplatin in combination with lidocaine. The high level of NaV 1.5 expression was found in human ovarian cancer and even higher in its metastatic cancer but not in normal ovarian tissues. Lidocaine decreased the growth, EMT, migration, and invasion of human ovarian cancer A2780 and SKOV3 cells. Lidocaine enhanced the chemotherapeutic efficiency of cisplatin in both ovarian cancer cell cultures and a murine ovarian metastatic model. Furthermore, a downregulation of NaV 1.5 by siRNA transfection, or FAK inhibitor application, inhibited the malignant properties of SKOV3 cells through inactivating FAK/Paxillin signaling pathway. Our data may indicate that lidocaine suppresses the metastasis of ovarian cancer and sensitizes cisplatin through blocking NaV 1.5-mediated EMT and FAK/paxillin signaling pathway. The translational value of lidocaine local application as an ovarian cancer adjuvant treatment warrants further study.


Asunto(s)
Antineoplásicos/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos , Quinasa 1 de Adhesión Focal/metabolismo , Lidocaína/farmacología , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Paxillin/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Cisplatino/farmacología , Femenino , Humanos , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Metástasis de la Neoplasia , Neoplasias Ováricas/enzimología , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Transducción de Señal
7.
Biochem Biophys Res Commun ; 533(4): 958-964, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33004176

RESUMEN

Voltage-gated sodium channels are critical for the generation and propagation of action potentials. Gating modifier toxins from spider venom can modulate the gating mechanism of sodium channels and thus have potential as drug leads. Here, we established expression of the gating modifier toxin PaurTx-3, a sodium channel inhibitor found in the venom of the spider Phrixotrichus auratus. Whole-cell voltage-clamp recordings indicated that recombinant PaurTx-3 (rPaurTx-3) inhibited Nav1.4, Nav1.5, and Nav1.7 currents with IC50 values of 61 nM, 72 nM, and 25 nM, respectively. Furthermore, rPaurTx-3 irreversibly inhibited Nav1.7 currents, but had 60-70% recovery in Nav1.4 and Nav1.5 after washing with a bath solution. rPaurTx-3 also hyperpolarized the voltage-dependent steady-state inactivation curve and significantly slowed recovery from fast inactivation of Nav1.7. Current-clamp recordings showed that rPaurTx-3 suppressed small DRG neuron activity. The biological activity assay findings for rPaurTx-3 support its potent pharmacological effect in Nav1.7 and small DRG neurons.


Asunto(s)
Proteínas de Artrópodos/toxicidad , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Venenos de Araña/toxicidad , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Proteínas de Artrópodos/genética , Ganglios Espinales/citología , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Ratones , Ratones Endogámicos ICR , Proteínas Musculares/antagonistas & inhibidores , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Técnicas de Placa-Clamp , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/toxicidad , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Alineación de Secuencia , Canales de Sodio/genética , Canales de Sodio/metabolismo , Venenos de Araña/genética , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
8.
Eur J Pharmacol ; 885: 173532, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882214

RESUMEN

Quetiapine, an atypical antipsychotic drug, is used for the treatment of schizophrenia and acute mania. Although a previous report showed that quetiapine blocked hERG potassium current, quetiapine has been considered relatively safe in terms of cardiovascular side effects. In the present study, we used the whole-cell patch-clamp technique to investigate the effect that quetiapine and its major metabolite norquetiapine can exert on human cardiac sodium channels (hNav1.5). The half-maximal inhibitory concentrations of quetiapine and norquetiapine at a holding potential of -90 mV near the resting potential of cardiomyocytes were 30 and 6 µM, respectively. Norquetiapine as well as quetiapine was preferentially bound in the inactivated state of the hNav1.5 channel. Norquetiapine slowed the recovery from inactivation of hNav1.5 and consequently induced strong use-dependent inhibition. Our results indicate that norquetiapine blocks hNav1.5 current in concentration-, state- and use-dependent manners, suggesting that the blockade of hNav1.5 current by norquetiapine may shorten the cardiac action potential duration and reduce the risk of QT interval prolongation induced by the inhibition of hERG potassium currents.


Asunto(s)
Dibenzotiazepinas/farmacología , Corazón/efectos de los fármacos , Miocardio/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Bloqueadores de los Canales de Sodio/farmacología , Potenciales de Acción/efectos de los fármacos , Células HEK293 , Humanos , Síndrome de QT Prolongado/prevención & control , Potenciales de la Membrana/efectos de los fármacos , Técnicas de Placa-Clamp , Fumarato de Quetiapina/farmacología
9.
Eur J Pharmacol ; 886: 173542, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32910945

RESUMEN

Cannabidiol (CBD) is a non-psychoactive component of Cannabis which has recently received regulatory consideration for the treatment of intractable forms of epilepsy such as the Dravet and the Lennox-Gastaut syndromes. The mechanisms of the antiepileptic effects of CBD are unclear, but several pre-clinical studies suggest the involvement of ion channels. Therefore, we have evaluated the effects of CBD on seven major cardiac currents shaping the human ventricular action potential and on Purkinje fibers isolated from rabbit hearts to assess the in vitro cardiac safety profile of CBD. We found that CBD inhibits with comparable micromolar potencies the peak and late components of the NaV1.5 sodium current, the CaV1.2 mediated L-type calcium current, as well as all the repolarizing potassium currents examined except Kir2.1. The most sensitive channels were KV7.1 and the least sensitive were KV11.1 (hERG), which underly the slow (IKs) and rapid (IKr) components, respectively, of the cardiac delayed-rectifier current. In the Purkinje fibers, CBD decreased the action potential (AP) duration more potently at half-maximal than at near complete repolarization, and slightly decreased the AP amplitude and its maximal upstroke velocity. CBD had no significant effects on the membrane resting potential except at the highest concentration tested under fast pacing rate. These data show that CBD impacts cardiac electrophysiology and suggest that caution should be exercised when prescribing CBD to carriers of cardiac channelopathies or in conjunction with other drugs known to affect heart rhythm or contractility.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Cannabidiol/farmacología , Ventrículos Cardíacos/efectos de los fármacos , Corazón/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Animales , Cannabidiol/toxicidad , Canalopatías/complicaciones , Humanos , Técnicas In Vitro , Canal de Potasio KCNQ1/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Técnicas de Placa-Clamp , Ramos Subendocárdicos/efectos de los fármacos , Conejos
10.
J Cardiovasc Pharmacol ; 76(2): 164-172, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32453071

RESUMEN

The mechanisms underlying atrial-selective prolongation of effective refractory period (ERP) and suppression of atrial fibrillation (AF) by NS8593 and UCL1684, small conductance calcium-activated potassium (SK) channel blockers, are poorly defined. The purpose of the study was to confirm the effectiveness of these agents to suppress AF and to probe the underlying mechanisms. Transmembrane action potentials and pseudoelectrocardiograms were recorded from canine isolated coronary-perfused canine atrial and ventricular wedge preparations. Patch clamp techniques were used to record sodium channel current (INa) in atrial and ventricular myocytes and human embryonic kidney cells. In both atria and ventricles, NS8593 (3-10 µM) and UCL1684 (0.5 µM) did not significantly alter action potential duration, suggesting little to no SK channel inhibition. Both agents caused atrial-selective: (1) prolongation of ERP secondary to development of postrepolarization refractoriness, (2) reduction of Vmax, and (3) increase of diastolic threshold of excitation (all are sodium-mediated parameters). NS8593 and UCL1684 significantly reduced INa density in human embryonic kidney cells as well as in atrial but not in ventricular myocytes at physiologically relevant holding potentials. NS8593 caused a shift of steady-state inactivation to negative potentials in atrial but not ventricular cells. NS8593 and UCL1684 prevented induction of acetylcholine-mediated AF in 6/6 and 8/8 preparations, respectively. This anti-AF effect was associated with strong rate-dependent depression of excitability. The SK channel blockers, NS8593 and UCL1684, are effective in preventing the development of AF due to potent atrial-selective inhibition of INa, causing atrial-selective prolongation of ERP secondary to induction of postrepolarization refractoriness.


Asunto(s)
1-Naftilamina/análogos & derivados , Alcanos/farmacología , Antiarrítmicos/farmacología , Fibrilación Atrial/prevención & control , Atrios Cardíacos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Compuestos de Quinolinio/farmacología , Bloqueadores de los Canales de Sodio/farmacología , 1-Naftilamina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Perros , Femenino , Células HEK293 , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/fisiopatología , Humanos , Masculino , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Periodo Refractario Electrofisiológico/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
11.
Cardiovasc Res ; 116(9): 1557-1570, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32251506

RESUMEN

The cardiac sodium channel NaV1.5, encoded by the SCN5A gene, is responsible for the fast upstroke of the action potential. Mutations in SCN5A may cause sodium channel dysfunction by decreasing peak sodium current, which slows conduction and facilitates reentry-based arrhythmias, and by enhancing late sodium current, which prolongs the action potential and sets the stage for early afterdepolarization and arrhythmias. Yet, some NaV1.5-related disorders, in particular structural abnormalities, cannot be directly or solely explained on the basis of defective NaV1.5 expression or biophysics. An emerging concept that may explain the large disease spectrum associated with SCN5A mutations centres around the multifunctionality of the NaV1.5 complex. In this alternative view, alterations in NaV1.5 affect processes that are independent of its canonical ion-conducting role. We here propose a novel classification of NaV1.5 (dys)function, categorized into (i) direct ionic effects of sodium influx through NaV1.5 on membrane potential and consequent action potential generation, (ii) indirect ionic effects of sodium influx on intracellular homeostasis and signalling, and (iii) non-ionic effects of NaV1.5, independent of sodium influx, through interactions with macromolecular complexes within the different microdomains of the cardiomyocyte. These indirect ionic and non-ionic processes may, acting alone or in concert, contribute significantly to arrhythmogenesis. Hence, further exploration of these multifunctional effects of NaV1.5 is essential for the development of novel preventive and therapeutic strategies.


Asunto(s)
Potenciales de Acción , Arritmias Cardíacas/metabolismo , Canalopatías/metabolismo , Frecuencia Cardíaca , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Canalopatías/tratamiento farmacológico , Canalopatías/genética , Canalopatías/fisiopatología , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Herencia , Humanos , Mutación , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Fenotipo , Factores de Riesgo , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
12.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32207683

RESUMEN

The cardiac ventricular action potential depends on several voltage-gated ion channels, including NaV, CaV, and KV channels. Mutations in these channels can cause Long QT Syndrome (LQTS) which increases the risk for ventricular fibrillation and sudden cardiac death. Polyunsaturated fatty acids (PUFAs) have emerged as potential therapeutics for LQTS because they are modulators of voltage-gated ion channels. Here we demonstrate that PUFA analogues vary in their selectivity for human voltage-gated ion channels involved in the ventricular action potential. The effects of specific PUFA analogues range from selective for a specific ion channel to broadly modulating cardiac ion channels from all three families (NaV, CaV, and KV). In addition, a PUFA analogue selective for the cardiac IKs channel (Kv7.1/KCNE1) is effective in shortening the cardiac action potential in human-induced pluripotent stem cell-derived cardiomyocytes. Our data suggest that PUFA analogues could potentially be developed as therapeutics for LQTS and cardiac arrhythmia.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Proteínas de Xenopus/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/farmacología , Canales de Calcio Tipo L/fisiología , Células Madre Pluripotentes Inducidas/citología , Canal de Potasio KCNQ1/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis
13.
Mar Drugs ; 17(12)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817438

RESUMEN

Severe arrhythmias-such as ventricular arrhythmias-can be fatal, but treatment options are limited. The effects of a combined formulation of tetrodotoxin (TTX) and lidocaine (LID) on severe arrhythmias were studied. Patch clamp recording data showed that the combination of LID and TTX had a stronger inhibitory effect on voltage-gated sodium channel 1.5 (Nav1.5) than that of either TTX or LID alone. LID + TTX formulations were prepared with optimal stability containing 1 µg of TTX, 5 mg of LID, 6 mg of mannitol, and 4 mg of dextran-40 and then freeze dried. This formulation significantly delayed the onset and shortened the duration of arrhythmia induced by aconitine in rats. Arrhythmia-originated death was avoided by the combined formulation, with a decrease in the mortality rate from 64% to 0%. The data also suggests that the anti-arrhythmic effect of the combination was greater than that of either TTX or LID alone. This paper offers new approaches to develop effective medications against arrhythmias.


Asunto(s)
Antiarrítmicos/administración & dosificación , Arritmias Cardíacas/tratamiento farmacológico , Lidocaína/administración & dosificación , Tetrodotoxina/administración & dosificación , Animales , Antiarrítmicos/farmacología , Arritmias Cardíacas/mortalidad , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Combinación de Medicamentos , Estabilidad de Medicamentos , Excipientes/química , Femenino , Liofilización , Lidocaína/farmacología , Masculino , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Tetrodotoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
14.
Cardiovasc J Afr ; 30(2): 79-86, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30882133

RESUMEN

AIM: We aimed to study the effect of allocryptopine (All) on the late sodium current (INa,Late) of atrial myocytes in spontaneously hypertensive rats (SHR). METHODS: The enzyme digestion method was used to separate single atrial myocytes from SHR and Wistar-Kyoto (WKY) rats. INa,Late was recorded using the patch-clamp technique, and the effect of All was evaluated on the current. RESULTS: Compared with WKY rat cells, an increase in the INa,Late current in SHR myocytes was found. After treatment with 30 µM All, the current densities were markedly decreased; the ratio of INa,Late/INa,peak of SHR was reduced by 30 µM All. All reduced INa,Late by alleviating inactivation of the channel and increasing the window current of the sodium channel. Furthermore, INa,Late densities of three SCN5A mutations declined substantially with 30 µM All in a concentration-dependent manner. CONCLUSIONS: The results clearly show that an increase in INa,Late in SHR atrial myocytes was inhibited by All derived from Chinese herbal medicine.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/prevención & control , Alcaloides de Berberina/farmacología , Atrios Cardíacos/efectos de los fármacos , Hipertensión/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Sodio/metabolismo , Potenciales de Acción , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/metabolismo , Fibrilación Atrial/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Células HEK293 , Atrios Cardíacos/metabolismo , Frecuencia Cardíaca , Humanos , Hipertensión/complicaciones , Hipertensión/metabolismo , Hipertensión/fisiopatología , Masculino , Mutación , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factores de Tiempo
15.
Anticancer Drugs ; 29(9): 880-889, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29912729

RESUMEN

Voltage-gated sodium channel activity enhances the motility and oncogene expression of metastasic cancer cells that express a neonatal alternatively spliced form of the NaV1.5 isoform. We reported previously that FS50, a salivary protein from Xenopsylla cheopis, showed inhibitory activity against the NaV1.5 channel when assayed in HEK 293T cells and antiarrhythmia effects on rats and monkeys after induction of arrhythmia by BaCl2. This study aims to identify the effect of FS50 on voltage-gated sodium channel activity and the motility of MDA-MB-231 human breast cancer cells in vitro. NaV1.5 was abnormally expressed in the highly metastatic breast cancer cell line MDA-MB-231, but not in the MCF-7 cell line. FS50 significantly inhibited sodium current, migration, and invasion in a dose-dependent manner, but had no effect on the proliferation of MDA-MB-231 cells at the working concentrations (1.5-12 µmol/l) after a long-term treatment for 48 h. Meanwhile, FS50 decreased NaV1.5 mRNA expression without altering the total protein level in MDA-MB-231 cells. Correspondingly, the results also showed that MMP-9 activity and the ratio of MMP-9 mRNA to TIMP-1 mRNA were markedly decreased by FS50. Taken together, our findings highlighted for the first time an inhibitory effect of a salivary protein from a blood-feeding arthropod on breast cancer cells through the NaV1.5 channel. Furthermore, this study provided a new candidate leading molecule against antitumor cells expressing NaV1.5.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Proteínas y Péptidos Salivales/farmacología , Xenopsylla/metabolismo , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Células MCF-7 , Metaloproteinasa 9 de la Matriz/genética , Canal de Sodio Activado por Voltaje NAV1.5/genética , ARN Mensajero/metabolismo , Proteínas y Péptidos Salivales/administración & dosificación , Proteínas y Péptidos Salivales/genética , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/genética
16.
Toxicol Appl Pharmacol ; 329: 309-317, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28641963

RESUMEN

Retigabine, currently used as antiepileptic drug, has a wide range of potential medical uses. Administration of the drug in patients can lead to QT interval prolongation in the electrocardiogram and to cardiac arrhythmias in rare cases. This suggests that the drug may perturb the electrical properties of the heart, and the underlying mechanisms were investigated here. Effects of retigabine on currents through human cardiac ion channels, heterologously expressed in tsA-201 cells, were studied in whole-cell patch-clamp experiments. In addition, the drug's impact on the cardiac action potential was tested. This was done using ventricular cardiomyocytes isolated from Langendorff-perfused guinea pig hearts and cardiomyocytes derived from human induced pluripotent stem cells. Further, to unravel potential indirect effects of retigabine on the heart which might involve the autonomic nervous system, membrane potential and noradrenaline release from sympathetic ganglionic neurons were measured in the absence and presence of the drug. Retigabine significantly inhibited currents through hKv11.1 potassium, hNav1.5 sodium, as well as hCav1.2 calcium channels, but only in supra-therapeutic concentrations. In a similar concentration range, the drug shortened the action potential in both guinea pig and human cardiomyocytes. Therapeutic concentrations of retigabine, on the other hand, were sufficient to inhibit the activity of sympathetic ganglionic neurons. We conclude that retigabine- induced QT interval prolongation, and the reported cases of cardiac arrhythmias after application of the drug in a typical daily dose range, cannot be explained by a direct modulatory effect on cardiac ion channels. They are rather mediated by indirect actions at the level of the autonomic nervous system.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Anticonvulsivantes/toxicidad , Arritmias Cardíacas/inducido químicamente , Carbamatos/toxicidad , Ganglios Simpáticos/efectos de los fármacos , Bloqueadores Ganglionares/toxicidad , Sistema de Conducción Cardíaco/efectos de los fármacos , Canales Iónicos/antagonistas & inhibidores , Miocitos Cardíacos/efectos de los fármacos , Fenilendiaminas/toxicidad , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Potasio ERG1/metabolismo , Ganglios Simpáticos/metabolismo , Ganglios Simpáticos/fisiopatología , Cobayas , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Preparación de Corazón Aislado , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Norepinefrina/metabolismo , Bloqueadores de los Canales de Potasio/toxicidad , Ratas Sprague-Dawley , Medición de Riesgo , Factores de Tiempo , Transfección , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad
17.
Toxicol Lett ; 277: 64-68, 2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28552773

RESUMEN

BIMU8 is a 5-HT4a receptor agonist and used as an experimental drug to counteract opioid induced respiratory depression. In preliminary experiments serious disturbances in ECG were observed in anesthetized rabbits which prompted us to explore the underlying cause of BIMU8 induced abnormal changes in ECG recordings. Electrophysiological experiments were performed on HEK-293 cells expressing hERG, CaV1.2 and NaV1.5 ion channels. In whole-cell recordings BIMU8 effectively blocked these three channels, with IC50 values of 0.06±0.05, 1.46±0.26 and 4.66±0.58µM for hERG, NaV1.5 and CaV1.2, respectively. Additionally it also produced a hyperpolarizing shift of 3.27mV in half maximal activation and 12.87mV in fast inactivation of NaV1.5 channel. These experimental findings indicate that BIMU8 is a potent blocker of hERG, NaV1.5 and CaV1.2 cardiac ion channels thus revealing its proarrhythmic potential.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Bencimidazoles/toxicidad , Compuestos Bicíclicos Heterocíclicos con Puentes/toxicidad , Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio Tipo L/efectos de los fármacos , Canal de Potasio ERG1/antagonistas & inhibidores , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Agonistas del Receptor de Serotonina 5-HT4/toxicidad , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Potenciales de Acción , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cardiotoxicidad , Relación Dosis-Respuesta a Droga , Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Células HEK293 , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Medición de Riesgo , Transfección
18.
Cardiovasc Res ; 113(7): 829-838, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28430892

RESUMEN

AIMS: Selective inhibition of cardiac late sodium current (INaL) is an emerging target in the treatment of ventricular arrhythmias. We investigated the electrophysiological effects of GS-458967 (GS967), a potent, selective inhibitor of INaL, in an overlap syndrome model of both gain and loss of sodium channel function, comprising cardiomyocytes derived from both human SCN5A-1795insD+/- induced pluripotent stem cells (hiPSC-CMs) and mice carrying the homologous mutation Scn5a-1798insD+/-. METHODS AND RESULTS: On patch-clamp analysis, GS967 (300 nmol/l) reduced INaL and action potential (AP) duration in isolated ventricular myocytes from wild type and Scn5a-1798insD+/- mice, as well as in SCN5A-1795insD+/- hiPSC-CMs. GS967 did not affect the amplitude of peak INa, but slowed its recovery, and caused a negative shift in voltage-dependence of INa inactivation. GS967 reduced AP upstroke velocity in Scn5a-1798insD+/- myocytes and SCN5A-1795insD+/- hiPSC-CMs. However, the same concentration of GS967 did not affect conduction velocity in Scn5a-1798insD+/- mouse isolated hearts, as assessed by epicardial mapping. GS967 decreased the amplitude of delayed after depolarizations and prevented triggered activity in mouse Scn5a-1798insD+/- cardiomyocytes. CONCLUSION: The INaL inhibitor GS967 decreases repolarization abnormalities and has anti-arrhythmic effects in the absence of deleterious effects on cardiac conduction. Thus, selective inhibition of INaL constitutes a promising pharmacological treatment of cardiac channelopathies associated with enhanced INaL. Our findings furthermore implement hiPSC-CMs as a valuable tool for assessment of novel pharmacological approaches in inherited sodium channelopathies.


Asunto(s)
Antiarrítmicos/farmacología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Piridinas/farmacología , Triazoles/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Potenciales de Acción , Animales , Línea Celular , Mapeo Epicárdico , Femenino , Predisposición Genética a la Enfermedad , Frecuencia Cardíaca/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Preparación de Corazón Aislado , Cinética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Síndrome de QT Prolongado/fisiopatología , Masculino , Ratones Transgénicos , Mutación , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Técnicas de Placa-Clamp , Fenotipo
19.
Artículo en Inglés | MEDLINE | ID: mdl-28408648

RESUMEN

BACKGROUND: The widely used macrolide antibiotic azithromycin increases risk of cardiovascular and sudden cardiac death, although the underlying mechanisms are unclear. Case reports, including the one we document here, demonstrate that azithromycin can cause rapid, polymorphic ventricular tachycardia in the absence of QT prolongation, indicating a novel proarrhythmic syndrome. We investigated the electrophysiological effects of azithromycin in vivo and in vitro using mice, cardiomyocytes, and human ion channels heterologously expressed in human embryonic kidney (HEK 293) and Chinese hamster ovary (CHO) cells. METHODS AND RESULTS: In conscious telemetered mice, acute intraperitoneal and oral administration of azithromycin caused effects consistent with multi-ion channel block, with significant sinus slowing and increased PR, QRS, QT, and QTc intervals, as seen with azithromycin overdose. Similarly, in HL-1 cardiomyocytes, the drug slowed sinus automaticity, reduced phase 0 upstroke slope, and prolonged action potential duration. Acute exposure to azithromycin reduced peak SCN5A currents in HEK cells (IC50=110±3 µmol/L) and Na+ current in mouse ventricular myocytes. However, with chronic (24 hour) exposure, azithromycin caused a ≈2-fold increase in both peak and late SCN5A currents, with findings confirmed for INa in cardiomyocytes. Mild block occurred for K+ currents representing IKr (CHO cells expressing hERG; IC50=219±21 µmol/L) and IKs (CHO cells expressing KCNQ1+KCNE1; IC50=184±12 µmol/L), whereas azithromycin suppressed L-type Ca++ currents (rabbit ventricular myocytes, IC50=66.5±4 µmol/L) and IK1 (HEK cells expressing Kir2.1, IC50=44±3 µmol/L). CONCLUSIONS: Chronic exposure to azithromycin increases cardiac Na+ current to promote intracellular Na+ loading, providing a potential mechanistic basis for the novel form of proarrhythmia seen with this macrolide antibiotic.


Asunto(s)
Antibacterianos/toxicidad , Arritmias Cardíacas/inducido químicamente , Azitromicina/toxicidad , Frecuencia Cardíaca/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Potenciales de Acción , Animales , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Células CHO , Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo L/metabolismo , Cricetulus , Relación Dosis-Respuesta a Droga , Electrocardiografía Ambulatoria , Femenino , Células HEK293 , Humanos , Canal de Potasio KCNQ1/antagonistas & inhibidores , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Bloqueadores de los Canales de Potasio/toxicidad , Canales de Potasio de Rectificación Interna/antagonistas & inhibidores , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/genética , Canales de Potasio con Entrada de Voltaje/metabolismo , Conejos , Bloqueadores de los Canales de Sodio/toxicidad , Telemetría , Factores de Tiempo , Transfección , Adulto Joven
20.
Anesth Analg ; 124(1): 52-60, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27861438

RESUMEN

BACKGROUND: Metoclopramide and domperidone are prokinetic and antiemetic substances often used in clinical practice. Although domperidone has a more favorable side effect profile and is considered the first-line agent, severe cardiac side effects were reported during the administration of both substances. Cardiac Na channels are common targets of therapeutics inducing cardiotoxicity. Therefore, the aim of this study was to investigate whether the differential cardiotoxicities of metoclopramide and domperidone correlate with the block of Na channels. METHODS: Effects of metoclopramide and domperidone on the human α-subunit Nav1.5 expressed in human embryonic kidney 293 cells and on Na currents in neonatal rat cardiomyocytes were investigated by means of whole-cell patch clamp recordings. RESULTS: Tonic block of resting Nav1.5 channels was more potent for domperidone (IC50 85 ± 25 µM; 95% confidence interval [CI], 36-134) compared with metoclopramide (IC50 458 ± 28 µM; 95% CI, 403-513). Both agents induced use-dependent block at 10 and 1 Hz, stabilized fast and slow inactivation, and delayed recovery from inactivation. However, metoclopramide induced considerably smaller effects compared with domperidone. Na currents in rat cardiomyocytes displayed tonic and use-dependent block by both substances, and in this system, domperidone (IC50 312 ± 15 µM; 95% CI, 22-602) and metoclopramide (IC50 250 ± 30 µM; 95% CI, 191-309) induced a similar degree of tonic block. CONCLUSIONS: Our data demonstrate that the clinically relevant cardiotoxicity of domperidone and metoclopramide corresponds to a rather potent and local anesthetic-like inhibition of cardiac Na channels including Nav1.5. These data suggest that Nav1.5 might be a hitherto unrecognized molecular mechanism of some cardiovascular side effects, for example, malignant arrhythmias of prokinetic and antiemetic agents.


Asunto(s)
Antieméticos/toxicidad , Domperidona/toxicidad , Metoclopramida/toxicidad , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Sodio/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Animales , Animales Recién Nacidos , Sitios de Unión , Cardiotoxicidad , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Potenciales de la Membrana , Miocitos Cardíacos/metabolismo , Canal de Sodio Activado por Voltaje NAV1.5/genética , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Ratas Sprague-Dawley , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...