Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurochem ; 156(6): 848-866, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32939791

RESUMEN

This study aimed to investigate and compare cell growth manners and functional differences of primary cortical neurons cultured on either poly-d-lysine (PDL) and or Matrigel, to delineate the role of extracellular matrix on providing resemblance to in vivo cellular interactions in nervous tissue. Primary cortical neurons, obtained from embryonic day 15 mice pups, seeded either on PDL- or Matrigel-coated culture ware were investigated by DIC/bright field and fluorescence/confocal microscopy for their morphology, 2D and 3D structure, and distribution patterns. Patch clamp, western blot, and RT-PCR studies were performed to investigate neuronal firing thresholds and sodium channel subtypes Nav1.2 and Nav1.6 expression. Cortical neurons cultured on PDL coating possessed a 2D structure composed of a few numbers of branched and tortuous neurites that contacted with each other in one to one manner, however, neurons on Matrigel coating showed a more complicated dimensional network that depicted tight, linear axonal bundles forming a 3D interacted neuron-astrocyte construction. This difference in growth patterns also showed a significant alteration in neuronal firing threshold which was recorded between 80 < Iinj > 120 pA on PDL and 2 < Iinj > 160 pA on Matrigel. Neurons grown up on Matrigel showed increased levels of sodium channel protein expression of Nav1.2 and Nav1.6 compared to neurons on PDL. These results have demonstrated that a 3D interacted neuron-astrocyte construction on Matrigel enhances the development of Nav1.2 and Nav1.6 in vitro and decreases neuronal firing threshold by 40 times compared to conventional PDL, resembling in vivo neuronal networks and hence would be a better in vitro model of adult neurons.


Asunto(s)
Astrocitos/fisiología , Astrocitos/ultraestructura , Colágeno , Laminina , Neuronas/fisiología , Neuronas/ultraestructura , Proteoglicanos , Canales de Sodio Activados por Voltaje/biosíntesis , Animales , Corteza Cerebral/citología , Combinación de Medicamentos , Fenómenos Electrofisiológicos , Embrión de Mamíferos/fisiología , Femenino , Ratones , Ratones Endogámicos BALB C , Microscopía Fluorescente , Canal de Sodio Activado por Voltaje NAV1.2/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.2/genética , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.6/genética , Neuritas/fisiología , Técnicas de Placa-Clamp , Embarazo , Cultivo Primario de Células
2.
J Neuroinflammation ; 16(1): 29, 2019 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-30736806

RESUMEN

BACKGROUND: Studies showed that upregulation of Nav1.6 increased the neuronal excitability and participated in neuropathic pain in the dorsal root ganglion (DRG). However, the molecular mechanisms underlying Nav1.6 upregulation were not reported yet. METHODS: The paw withdrawal threshold was measured in the rodents following lumbar 5 ventral root transection (L5-VRT). Then qPCR, western blotting, immunoprecipitation, immunohistochemistry, and chromatin immunoprecipitation assays were performed to explore the molecular mechanisms in vivo and in vitro. RESULTS: We found that the levels of Nav1.6 and phosphorylated STAT3 were significantly increased in DRG neurons following L5-VRT, and TNF-α incubation also upregulated the Nav1.6 expression in cultured DRG neurons. Furthermore, immunoprecipitation and chromatin immunoprecipitation assays demonstrated that L5-VRT increased the binding of STAT3 to the Scn8a (encoding Nav1.6) promoter and the interaction between STAT3 and p300, which contributed to the enhanced transcription of Scn8a by increasing histone H4 acetylation in Scn8a promoter in DRG. Importantly, intraperitoneal injection of the TNF-α inhibitor thalidomide reduced the phosphorylation of STAT3 and decreased the recruitment of STAT3 and histone H4 hyperacetylation in the Scn8a promoter, thus subsequently attenuating Nav1.6 upregulation in DRG neurons and mechanical allodynia induced by L5-VRT. CONCLUSION: These results suggested a new mechanism for Nav1.6 upregulation involving TNF-α/STAT3 pathway activation and subsequent STAT3-mediated histone H4 hyperacetylation in the Scn8a promoter region in DRG, which contributed to L5-VRT-induced neuropathic pain.


Asunto(s)
Epigénesis Genética/genética , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Neuralgia/genética , Factor de Transcripción STAT3/genética , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/genética , Animales , Células Cultivadas , Ganglios Espinales/efectos de los fármacos , Hiperalgesia/fisiopatología , Inmunohistoquímica , Masculino , Neuralgia/fisiopatología , Ratas , Ratas Sprague-Dawley , Raíces Nerviosas Espinales
3.
Neural Plast ; 2019: 4893103, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31933626

RESUMEN

The axon initial segment (AIS), the site of action potential initiation in neurons, is a critical determinant of neuronal excitability. Growing evidence indicates that appropriate recruitment of the AIS macrocomplex is essential for synchronized firing. However, disruption of the AIS structure is linked to the etiology of multiple disorders, including autism spectrum disorder (ASD), a condition characterized by deficits in social communication, stereotyped behaviors, and very limited interests. To date, a complete understanding of the molecular components that underlie the AIS in ASD has remained elusive. In this research, we examined the AIS structure in a BTBR T+Itpr3tf/J mouse model (BTBR), a valid model that exhibits behavioral, electrical, and molecular features of autism, and compared this to the C57BL/6J wild-type control mouse. Using Western blot studies and high-resolution confocal microscopy in the prefrontal frontal cortex (PFC), our data indicate disrupted expression of different isoforms of the voltage-gated sodium channels (NaV) at the AIS, whereas other components of AIS such as ankyrin-G and fibroblast growth factor 14 (FGF14) and contactin-associated protein 1 (Caspr) in BTBR were comparable to those in wild-type control mice. A Western blot assay showed that BTBR mice exhibited a marked increase in different sodium channel isoforms in the PFC compared to wild-type mice. Our results provide potential evidence for previously undescribed mechanisms that may play a role in the pathogenesis of autistic-like phenotypes in BTBR mice.


Asunto(s)
Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.6/genética , Imagen Óptica/métodos , Animales , Expresión Génica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Canal de Sodio Activado por Voltaje NAV1.6/análisis
4.
Exp Neurol ; 308: 111-119, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30017881

RESUMEN

Parkinson's disease (PD), the second most common age-related progressive neurodegenerative disorder, is characterized by dopamine depletion and the loss of dopaminergic (DA) neurons with accompanying neuroinflammation. Zonisamide is an-anti-convulsant drug that has recently been shown to improve clinical symptoms of PD through its inhibition of monoamine oxidase B (MAO-B). However, zonisamide has additional targets, including voltage-gated sodium channels (Nav), which may contribute to its reported neuroprotective role in preclinical models of PD. Here, we report that Nav1.6 is highly expressed in microglia of post-mortem PD brain and of mice treated with the parkinsonism-inducing neurotoxin MPTP. Administration of zonisamide (20 mg/kg, i.p. every 4 h × 3) following a single injection of MPTP (12.5 mg/kg, s.c.) reduced microglial Nav 1.6 and microglial activation in the striatum, as indicated by Iba-1 staining and mRNA expression of F4/80. MPTP increased the levels of the pro-inflammatory cytokine TNF-α and gp91phox, and this was significantly reduced by zonisamide. Together, these findings suggest that zonisamide may reduce neuroinflammation through the down-regulation of microglial Nav 1.6. Thus, in addition to its effects on parkinsonian symptoms through inhibition of MAO-B, zonisamide may have disease modifying potential through the inhibition of Nav 1.6 and neuroinflammation.


Asunto(s)
Antiparkinsonianos/farmacología , Microglía/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Trastornos Parkinsonianos/metabolismo , Zonisamida/farmacología , Anciano , Animales , Femenino , Humanos , Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Trastornos Parkinsonianos/patología
5.
Nat Med ; 22(4): 404-11, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26974309

RESUMEN

Upregulation of the persistent sodium current (I(NaP)) in motoneurons contributes to the development of spasticity after spinal cord injury (SCI). We investigated the mechanisms that regulate I(NaP) and observed elevated expression of voltage-gated sodium (Nav) 1.6 channels in spinal lumbar motoneurons of adult rats with SCI. Furthermore, immunoblots revealed a proteolysis of Nav channels, and biochemical assays identified calpain as the main proteolytic factor. Calpain-dependent cleavage of Nav channels after neonatal SCI was associated with an upregulation of I(NaP) in motoneurons. Similarly, the calpain-dependent cleavage of Nav1.6 channels expressed in human embryonic kidney (HEK) 293 cells caused the upregulation of I(NaP). The pharmacological inhibition of calpain activity by MDL28170 reduced the cleavage of Nav channels, I(NaP) in motoneurons and spasticity in rats with SCI. Similarly, the blockade of I(NaP) by riluzole alleviated spasticity. This study demonstrates that Nav channel expression in lumbar motoneurons is altered after SCI, and it shows a tight relationship between the calpain-dependent proteolysis of Nav1.6 channels, the upregulation of I(NaP) and spasticity.


Asunto(s)
Calpaína/metabolismo , Neuronas Motoras/patología , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Traumatismos de la Médula Espinal/genética , Animales , Calpaína/genética , Dipéptidos/administración & dosificación , Regulación de la Expresión Génica/efectos de los fármacos , Células HEK293 , Humanos , Neuronas Motoras/metabolismo , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Técnicas de Placa-Clamp , Ratas , Riluzol/administración & dosificación , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología
6.
Toxicol Appl Pharmacol ; 291: 58-69, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26708501

RESUMEN

We expressed rat Nav1.6 sodium channels with or without the rat ß1 subunit in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on whole-cell sodium currents. In assays with the Nav1.6 α subunit alone, both pyrethroids prolonged channel inactivation and deactivation and shifted the voltage dependence of channel activation and steady-state inactivation toward hyperpolarization. Maximal shifts in activation were ~18 mV for tefluthrin and ~24 mV for deltamethrin. These compounds also caused hyperpolarizing shifts of ~10-14 mV in the voltage dependence of steady-state inactivation and increased in the fraction of sodium current that was resistant to inactivation. The effects of pyrethroids on the voltage-dependent gating greatly increased the size of sodium window currents compared to unmodified channels; modified channels exhibited increased probability of spontaneous opening at membrane potentials more negative than the normal threshold for channel activation and incomplete channel inactivation. Coexpression of Nav1.6 with the ß1 subunit had no effect on the kinetic behavior of pyrethroid-modified channels but had divergent effects on the voltage-dependent gating of tefluthrin- or deltamethrin-modified channels, increasing the size of tefluthrin-induced window currents but decreasing the size of corresponding deltamethrin-induced currents. Unexpectedly, the ß1 subunit did not confer sensitivity to use-dependent channel modification by either tefluthrin or deltamethrin. We conclude from these results that functional reconstitution of channels in vitro requires careful attention to the subunit composition of channel complexes to ensure that channels in vitro are faithful functional and pharmacological models of channels in neurons.


Asunto(s)
Ciclopropanos/toxicidad , Hidrocarburos Fluorados/toxicidad , Insecticidas/toxicidad , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.6/química , Nitrilos/toxicidad , Piretrinas/toxicidad , Animales , Regulación de la Expresión Génica , Células HEK293 , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Subunidades de Proteína/biosíntesis , Subunidades de Proteína/química , Ratas
7.
Cell Rep ; 4(3): 405-12, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23911285

RESUMEN

Angelman syndrome (AS) is associated with symptoms that include autism, intellectual disability, motor abnormalities, and epilepsy. We recently showed that AS model mice have increased expression of the alpha1 subunit of Na/K-ATPase (α1-NaKA) in the hippocampus, which was correlated with increased expression of axon initial segment (AIS) proteins. Our developmental analysis revealed that the increase in α1-NaKA expression preceded that of the AIS proteins. Therefore, we hypothesized that α1-NaKA overexpression drives AIS abnormalities and that by reducing its expression these and other phenotypes could be corrected in AS model mice. Herein, we report that the genetic normalization of α1-NaKA levels in AS model mice corrects multiple hippocampal phenotypes, including alterations in the AIS, aberrant intrinsic membrane properties, impaired synaptic plasticity, and memory deficits. These findings strongly suggest that increased expression of α1-NaKA plays an important role in a broad range of abnormalities in the hippocampus of AS model mice.


Asunto(s)
Síndrome de Angelman/genética , Síndrome de Angelman/patología , Hipocampo/metabolismo , Hipocampo/patología , ATPasa Intercambiadora de Sodio-Potasio/genética , Síndrome de Angelman/enzimología , Síndrome de Angelman/metabolismo , Animales , Ancirinas/biosíntesis , Modelos Animales de Enfermedad , Femenino , Hipocampo/enzimología , Masculino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Neuronas/enzimología , Neuronas/metabolismo , Neuronas/patología , Subunidades de Proteína , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
8.
Epilepsy Res ; 106(1-2): 17-28, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23886654

RESUMEN

Voltage-gated Na(+) channels control neuronal excitability and are the primary target for the majority of anti-epileptic drugs. This study investigates the (sub)cellular expression patterns of three important brain-associated Na(+) channel α subunits: NaV1.1, NaV1.2 and NaV1.6 during epileptogenesis (induced by kainic acid) using time points that cover the period from induction to the chronic phase of epilepsy. NaV1.1 immunoreactivity was persistently reduced at 1 day, 3 weeks and 2 months after SE in CA1 and CA3. About 50% of the NaV1.1-positive interneurons was lost at one day after SE in all regions investigated. In the hilus a similar reduction in NeuN-positive neurons was found, while in the CA1 and CA3 region the loss in NeuN-positive neurons only reached 15% in the chronic phase of epilepsy. This implies a stronger shift in the balance between excitation and inhibition toward excitation in the CA1 and CA3 region than in the hilus. NaV1.2 immunoreactivity in the inner molecular layer of the dentate gyrus was lower than control at 1 day after SE. It increased at 3 weeks and 2 months after SE in the inner molecular layer and overlapped with sprouted mossy fibers. NaV1.6 immunoreactivity in the dendritic region of CA1 and CA3 was persistently reduced at all time-points during epileptogenesis. Some astrocytes expressed NaV1.1 and NaV1.6 at 3 weeks after SE. Expression data alone are not sufficient to explain changes in network stability, or infer causality in epileptogenesis. These results demonstrate that hippocampal sub-regional expression of NaV1.1, NaV1.2 and NaV1.6 Na(+) channel α subunits is altered during epileptogenesis in a time and location specific way. This implies that understanding epileptogenesis has to take into account several distinct and type-specific changes in sodium channel expression.


Asunto(s)
Convulsivantes , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Agonistas de Aminoácidos Excitadores , Hipocampo/metabolismo , Ácido Kaínico , Canal de Sodio Activado por Voltaje NAV1.1/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.2/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Animales , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Interpretación Estadística de Datos , Electrodos Implantados , Electroencefalografía/efectos de los fármacos , Epilepsia/patología , Técnica del Anticuerpo Fluorescente , Hipocampo/efectos de los fármacos , Hipocampo/patología , Inmunohistoquímica , Interneuronas/metabolismo , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.2/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.6/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Ratas , Ratas Sprague-Dawley , Convulsiones/fisiopatología , Estado Epiléptico/inducido químicamente , Estado Epiléptico/fisiopatología
9.
J Neuroimmunol ; 261(1-2): 21-8, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23735284

RESUMEN

Voltage-gated sodium channels (Navs) are involved in several aspects of the pathogenesis of multiple sclerosis (MS). Within acute MS plaques, they are expressed along demyelinated axons. Studies in experimental autoimmune encephalomyelitis (EAE) demonstrated a neuroprotective effect of non-specific Nav blockers. Further, block of specific Navs involved in MS is suggested to have an advantage over non-specific blockers. We investigated the effects of the synthetic Midi peptide in EAE, as it potently and specifically blocks Nav1.2, Nav1.4 and Nav1.6. Administration of this Midi peptide worsens the clinical disease pattern and Nav1.2 and Nav1.6 expression levels were elevated in brain but not in spinal cord of Midi-treated mice, implicating that Navs play a complex role in the pathogenesis of EAE.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/metabolismo , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Bloqueadores de los Canales de Sodio/toxicidad , Canales de Sodio/metabolismo , Animales , Línea Celular Transformada , Técnicas de Química Sintética , Encefalomielitis Autoinmune Experimental/patología , Femenino , Ratones , Ratones Endogámicos C57BL , Canal de Sodio Activado por Voltaje NAV1.2/biosíntesis , Canal de Sodio Activado por Voltaje NAV1.6/biosíntesis , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...