Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 824
Filtrar
1.
Biochem Biophys Res Commun ; 717: 150044, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38718567

RESUMEN

Pulpitis constitutes a significant challenge in clinical management due to its impact on peripheral nerve tissue and the persistence of chronic pain. Despite its clinical importance, the correlation between neuronal activity and the expression of voltage-gated sodium channel 1.7 (Nav1.7) in the trigeminal ganglion (TG) during pulpitis is less investigated. The aim of this study was to examine the relationship between experimentally induced pulpitis and Nav1.7 expression in the TG and to investigate the potential of selective Nav1.7 modulation to attenuate TG abnormal activity associated with pulpitis. Acute pulpitis was induced at the maxillary molar (M1) using allyl isothiocyanate (AITC). The mice were divided into three groups: control, pulpitis model, and pulpitis model treated with ProTx-II, a selective Nav1.7 channel inhibitor. After three days following the surgery, we conducted a recording and comparative analysis of the neural activity of the TG utilizing in vivo optical imaging. Then immunohistochemistry and Western blot were performed to assess changes in the expression levels of extracellular signal-regulated kinase (ERK), c-Fos, collapsin response mediator protein-2 (CRMP2), and Nav1.7 channels. The optical imaging result showed significant neurological excitation in pulpitis TGs. Nav1.7 expressions exhibited upregulation, accompanied by signaling molecular changes suggestive of inflammation and neuroplasticity. In addition, inhibition of Nav1.7 led to reduced neural activity and subsequent decreases in ERK, c-Fos, and CRMP2 levels. These findings suggest the potential for targeting overexpressed Nav1.7 channels to alleviate pain associated with pulpitis, providing practical pain management strategies.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Pulpitis , Animales , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ratones , Masculino , Pulpitis/metabolismo , Pulpitis/patología , Ganglio del Trigémino/metabolismo , Neuronas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular
2.
J Ethnopharmacol ; 330: 118218, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677570

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Zanthoxylum bungeanum Maxim. (Z. bungeanum), a member of the Rutaceae family, has a rich history of traditional use in Asia for treating arthritis and toothache conditions. As characteristic chemical components, numerous kinds of alkaloids have been extracted from plants and their diverse biological activities have been reported. However, research on the isoquinoline alkaloid, a specific type of alkaloids, in Z. bungeanum was scarce. AIM OF THE STUDY: The study aimed to isolate a novel isoquinoline alkaloid from Z. bungeanum and explore its pharmacological activity in vitro and analgesic activity in vivo. MATERIALS AND METHODS: Isoquinoline alkaloid isolation and identification from Z. bungeanum were conducted using chromatographic and spectroscopic methods. The whole-cell patch-clamp technique was applied to assess its impact on neuronal excitability, and endogenous voltage-gated potassium (Kv) and sodium (Nav) currents in acutely isolated mouse small-diameter dorsal root ganglion (DRG) neurons. Its inhibitory impacts on channels were further validated with HEK293 cells stably expressing Nav1.7 and Nav1.8, and Chinese hamster ovary (CHO) cells transiently expressing Kv2.1. The formalin inflammatory pain model was utilized to evaluate the potential analgesic activity in vivo. RESULTS: A novel isoquinoline alkaloid named HJ-69 (N-13-(3-methoxyprop-1-yl)rutaecarpine) was isolated and identified from Z. bungeanum for the first time. HJ-69 significantly suppressed the firing frequency and amplitudes of action potentials in DRG neurons. Consistently, it state-dependently inhibited endogenous Nav currents of DRG neurons, with half maximal inhibitory concentration (IC50) values of 13.06 ± 2.06 µM and 30.19 ± 2.07 µM for the inactivated and resting states, respectively. HJ-69 significantly suppressed potassium currents in DRG neurons, which notably inhibited the delayed rectifier potassium (IK) currents (IC50 = 6.95 ± 1.29 µM) and slightly affected the transient outward potassium (IA) currents (IC50 = 523.50 ± 39.16 µM). Furtherly, HJ-69 exhibited similar potencies on heterologously expressed Nav1.7, Nav1.8, and Kv2.1 channels, which correspondingly represent the main components in neurons. Notably, intraperitoneal administration of 30 mg/kg and 100 mg/kg HJ-69 significantly alleviated pain behaviors in the mouse inflammatory pain model induced by formalin. CONCLUSION: The study concluded that HJ-69 is a novel and active isoquinoline alkaloid, and the inhibition of Nav and Kv channels contributes to its analgesic activity. HJ-69 may be a promising prototype for future analgesic drug discovery based on the isoquinoline alkaloid.


Asunto(s)
Analgésicos , Ganglios Espinales , Dolor , Zanthoxylum , Animales , Zanthoxylum/química , Humanos , Células HEK293 , Analgésicos/farmacología , Analgésicos/química , Analgésicos/aislamiento & purificación , Analgésicos/uso terapéutico , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Ratones , Masculino , Dolor/tratamiento farmacológico , Isoquinolinas/farmacología , Isoquinolinas/aislamiento & purificación , Isoquinolinas/química , Alcaloides/farmacología , Alcaloides/aislamiento & purificación , Alcaloides/química , Alcaloides/uso terapéutico , Bloqueadores de los Canales de Potasio/farmacología , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Inflamación/tratamiento farmacológico , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/química , Ratones Endogámicos C57BL , Cricetulus
4.
Neuropharmacology ; 253: 109967, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657946

RESUMEN

Botulinum neurotoxin type A BoNT/A is used off-label as a third line therapy for neuropathic pain. However, the mechanism of action remains unclear. In recent years, the role of voltage-gated sodium channels (Nav) in neuropathic pain became evident and it was suggested that block of sodium channels by BoNT/A would contribute to its analgesic effect. We assessed sodium channel function in the presence of BoNT/A in heterologously expressed Nav1.7, Nav1.3, and the neuronal cell line ND7/23 by high throughput automated and manual patch-clamp. We used both the full protein and the isolated catalytic light chain LC/A for acute or long-term extracellular or intracellular exposure. To assess the toxin's effect in a human cellular system, we differentiated induced pluripotent stem cells (iPSC) into sensory neurons from a healthy control and a patient suffering from a hereditary neuropathic pain syndrome (inherited erythromelalgia) carrying the Nav1.7/p.Q875E-mutation and carried out multielectrode-array measurements. Both BoNT/A and the isolated catalytic light chain LC/A showed limited effects in heterologous expression systems and the neuronal cell line ND7/23. Spontaneous activity in iPSC derived sensory neurons remained unaltered upon BoNT/A exposure both in neurons from the healthy control and the mutation carrying patient. BoNT/A may not specifically be beneficial in pain syndromes linked to sodium channel variants. The favorable effects of BoNT/A in neuropathic pain are likely based on mechanisms other than sodium channel blockage and new approaches to understand BoNT/A's therapeutic effects are necessary.


Asunto(s)
Toxinas Botulínicas Tipo A , Células Madre Pluripotentes Inducidas , Canal de Sodio Activado por Voltaje NAV1.7 , Neuralgia , Humanos , Neuralgia/tratamiento farmacológico , Toxinas Botulínicas Tipo A/farmacología , Toxinas Botulínicas Tipo A/uso terapéutico , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Analgésicos/farmacología , Animales , Canal de Sodio Activado por Voltaje NAV1.3/genética , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Células HEK293 , Línea Celular
5.
J Med Case Rep ; 18(1): 215, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649973

RESUMEN

BACKGROUND: Dravet syndrome is an infantile-onset developmental and epileptic encephalopathy (DEE) characterized by drug resistance, intractable seizures, and developmental comorbidities. This article focuses on manifestations in two Indonesian children with Javanese ethnicity who experienced Dravet syndrome with an SCN1A gene mutation, presenting genetic analysis findings using next-generation sequencing. CASE PRESENTATION: We present a case series involving two Indonesian children with Javanese ethnicity whom had their first febrile seizure at the age of 3 months, triggered after immunization. Both patients had global developmental delay and intractable seizures. We observed distinct genetic findings in both our cases. The first patient revealed heterozygous deletion mutation in three genes (TTC21B, SCN1A, and SCN9A). In our second patient, previously unreported mutation was discovered at canonical splice site upstream of exon 24 of the SCN1A gene. Our patient's outcomes improved after therapeutic evaluation based on mutation findings When comparing clinical manifestations in our first and second patients, we found that the more severe the genetic mutation discovered, the more severe the patient's clinical manifestations. CONCLUSION: These findings emphasize the importance of comprehensive genetic testing beyond SCN1A, providing valuable insights for personalized management and tailored therapeutic interventions in patients with Dravet syndrome. Our study underscores the potential of next-generation sequencing in advancing genotype-phenotype correlations and enhancing diagnostic precision for effective disease management.


Asunto(s)
Epilepsias Mioclónicas , Canal de Sodio Activado por Voltaje NAV1.1 , Humanos , Epilepsias Mioclónicas/genética , Canal de Sodio Activado por Voltaje NAV1.1/genética , Masculino , Femenino , Lactante , Canal de Sodio Activado por Voltaje NAV1.7/genética , Indonesia , Anticonvulsivantes/uso terapéutico , Mutación , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Preescolar
6.
Elife ; 122024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38687187

RESUMEN

Nociceptive sensory neurons convey pain-related signals to the CNS using action potentials. Loss-of-function mutations in the voltage-gated sodium channel NaV1.7 cause insensitivity to pain (presumably by reducing nociceptor excitability) but clinical trials seeking to treat pain by inhibiting NaV1.7 pharmacologically have struggled. This may reflect the variable contribution of NaV1.7 to nociceptor excitability. Contrary to claims that NaV1.7 is necessary for nociceptors to initiate action potentials, we show that nociceptors can achieve similar excitability using different combinations of NaV1.3, NaV1.7, and NaV1.8. Selectively blocking one of those NaV subtypes reduces nociceptor excitability only if the other subtypes are weakly expressed. For example, excitability relies on NaV1.8 in acutely dissociated nociceptors but responsibility shifts to NaV1.7 and NaV1.3 by the fourth day in culture. A similar shift in NaV dependence occurs in vivo after inflammation, impacting ability of the NaV1.7-selective inhibitor PF-05089771 to reduce pain in behavioral tests. Flexible use of different NaV subtypes exemplifies degeneracy - achieving similar function using different components - and compromises reliable modulation of nociceptor excitability by subtype-selective inhibitors. Identifying the dominant NaV subtype to predict drug efficacy is not trivial. Degeneracy at the cellular level must be considered when choosing drug targets at the molecular level.


Asunto(s)
Analgésicos , Bencenosulfonamidas , Nociceptores , Éteres Fenílicos , Animales , Analgésicos/farmacología , Nociceptores/metabolismo , Nociceptores/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/genética , Ratones , Potenciales de Acción/efectos de los fármacos , Dolor/tratamiento farmacológico , Humanos , Canales de Sodio/metabolismo , Canales de Sodio/genética , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/genética
7.
Acta Neurochir (Wien) ; 166(1): 73, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38329587

RESUMEN

BACKGROUND: Chronic low back pain (CLBP) is a complex condition in which genetic factors play a role in its susceptibility. Catechol-O-methyltransferase (COMT) and sodium channel NaV1.7 (SCN9A) genes are implicated in pain perception. The aim is to analyze the association of COMT and SCN9A with CLBP and their interaction, in a Mexican-Mestizo population. METHODS: A case-control study was conducted. Cases corresponded to adults of both sexes with CLBP. Controls were adults with no CLBP. Variants of SCN9A and COMT were genotyped. Allelic and genotypic frequencies and Hardy-Weinberg equilibrium (HWE) were calculated. Association was tested under codominant, dominant, and recessive models. Multifactor dimensionality reduction was developed to detect epistasis. RESULTS: Gene variants were in HWE, and there was no association under different inheritance models in the whole sample. In women, in codominant and dominant models, a trend to a high risk was observed for AA of rs4680 of COMT (OR = 1.7 [0.5-5.3] and 1.6 [0.7-3.4]) and for TT of rs4633 (OR = 1.6 [0.7-3.7] and 1.6 [0.7-3.4]). In men, a trend to low risk was observed for AG genotype of rs4680 in the same models (OR = 0.6 [0.2-1.7] and 0.7 [0.3-1.7]), and for TC genotype of rs4633 in the codominant model (OR = 0.6 [0.2-1.7]). In the interaction analysis, a model of the SCN9A and COMT variants showed a CVC of 10/10; however, the TA was 0.4141. CONCLUSION: COMT and SCN9A variants are not associated with CLBP in the analyzed Mexican-Mestizo population.


Asunto(s)
Catecol O-Metiltransferasa , Dolor de la Región Lumbar , Canal de Sodio Activado por Voltaje NAV1.7 , Adulto , Femenino , Humanos , Masculino , Estudios de Casos y Controles , Catecol O-Metiltransferasa/genética , Dolor de la Región Lumbar/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética
8.
PLoS One ; 19(2): e0297367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394191

RESUMEN

Single nucleotide polymorphisms are the most common form of DNA alterations at the level of a single nucleotide in the genomic sequence. Genome-wide association studies (GWAS) were carried to identify potential risk genes or genomic regions by screening for SNPs associated with disease. Recent studies have shown that SCN9A comprises the NaV1.7 subunit, Na+ channels have a gene encoding of 1988 amino acids arranged into 4 domains, all with 6 transmembrane regions, and are mainly found in dorsal root ganglion (DRG) neurons and sympathetic ganglion neurons. Multiple forms of acute hypersensitivity conditions, such as primary erythermalgia, congenital analgesia, and paroxysmal pain syndrome have been linked to polymorphisms in the SCN9A gene. Under this study, we utilized a variety of computational tools to explore out nsSNPs that are potentially damaging to heath by modifying the structure or activity of the SCN9A protein. Over 14 potentially damaging and disease-causing nsSNPs (E1889D, L1802P, F1782V, D1778N, C1370Y, V1311M, Y1248H, F1237L, M936V, I929T, V877E, D743Y, C710W, D623H) were identified by a variety of algorithms, including SNPnexus, SNAP-2, PANTHER, PhD-SNP, SNP & GO, I-Mutant, and ConSurf. Homology modeling, structure validation, and protein-ligand interactions also were performed to confirm 5 notable substitutions (L1802P, F1782V, D1778N, V1311M, and M936V). Such nsSNPs may become the center of further studies into a variety of disorders brought by SCN9A dysfunction. Using in-silico strategies for assessing SCN9A genetic variations will aid in organizing large-scale investigations and developing targeted therapeutics for disorders linked to these variations.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Humanos , Simulación de Dinámica Molecular , Mutación , Algoritmos , Canal de Sodio Activado por Voltaje NAV1.7/genética
9.
Bioorg Med Chem Lett ; 101: 129655, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38350529

RESUMEN

The NaV1.8 channel, mainly found in the peripheral nervous system, is recognized as one of the key factors in chronic pain. The molecule VX-150 was initially promising in targeting this channel, but the phase II trials of VX-150 did not show expected pain relief results. By analyzing the interaction mode of VX-150 and NaV1.8, we developed two series with a total of 19 molecules and examined their binding affinity to NaV1.8 in vitro and analgesic effect in vivo. One compound, named 2j, stood out with notable activity against the NaV1.8 channel and showed effective pain relief in models of chronic inflammatory pain and neuropathic pain. Our research points to 2j as a strong contender for developing safer pain-relief treatments.


Asunto(s)
Amidas , Neuralgia , Compuestos Organotiofosforados , Humanos , Amidas/química , Analgésicos/farmacología , Analgésicos/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7 , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Piridonas/química , Piridonas/farmacología
10.
Nature ; 625(7995): 557-565, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172636

RESUMEN

Osteoarthritis (OA) is the most common joint disease. Currently there are no effective methods that simultaneously prevent joint degeneration and reduce pain1. Although limited evidence suggests the existence of voltage-gated sodium channels (VGSCs) in chondrocytes2, their expression and function in chondrocytes and in OA remain essentially unknown. Here we identify Nav1.7 as an OA-associated VGSC and demonstrate that human OA chondrocytes express functional Nav1.7 channels, with a density of 0.1 to 0.15 channels per µm2 and 350 to 525 channels per cell. Serial genetic ablation of Nav1.7 in multiple mouse models demonstrates that Nav1.7 expressed in dorsal root ganglia neurons is involved in pain, whereas Nav1.7 in chondrocytes regulates OA progression. Pharmacological blockade of Nav1.7 with selective or clinically used pan-Nav channel blockers significantly ameliorates the progression of structural joint damage, and reduces OA pain behaviour. Mechanistically, Nav1.7 blockers regulate intracellular Ca2+ signalling and the chondrocyte secretome, which in turn affects chondrocyte biology and OA progression. Identification of Nav1.7 as a novel chondrocyte-expressed, OA-associated channel uncovers a dual target for the development of disease-modifying and non-opioid pain relief treatment for OA.


Asunto(s)
Condrocitos , Canal de Sodio Activado por Voltaje NAV1.7 , Osteoartritis , Bloqueadores del Canal de Sodio Activado por Voltaje , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Progresión de la Enfermedad , Ganglios Espinales/citología , Ganglios Espinales/metabolismo , Canal de Sodio Activado por Voltaje NAV1.7/deficiencia , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Neuronas/metabolismo , Osteoartritis/complicaciones , Osteoartritis/tratamiento farmacológico , Osteoartritis/genética , Osteoartritis/metabolismo , Dolor/complicaciones , Dolor/tratamiento farmacológico , Dolor/metabolismo , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/uso terapéutico
11.
Mol Pharmacol ; 105(3): 233-249, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38195157

RESUMEN

Discovery and development of new molecules directed against validated pain targets is required to advance the treatment of pain disorders. Voltage-gated sodium channels (NaVs) are responsible for action potential initiation and transmission of pain signals. NaV1.8 is specifically expressed in peripheral nociceptors and has been genetically and pharmacologically validated as a human pain target. Selective inhibition of NaV1.8 can ameliorate pain while minimizing effects on other NaV isoforms essential for cardiac, respiratory, and central nervous system physiology. Here we present the pharmacology, interaction site, and mechanism of action of LTGO-33, a novel NaV1.8 small molecule inhibitor. LTGO-33 inhibited NaV1.8 in the nM potency range and exhibited over 600-fold selectivity against human NaV1.1-NaV1.7 and NaV1.9. Unlike prior reported NaV1.8 inhibitors that preferentially interacted with an inactivated state via the pore region, LTGO-33 was state-independent with similar potencies against closed and inactivated channels. LTGO-33 displayed species specificity for primate NaV1.8 over dog and rodent NaV1.8 and inhibited action potential firing in human dorsal root ganglia neurons. Using chimeras combined with mutagenesis, the extracellular cleft of the second voltage-sensing domain was identified as the key site required for channel inhibition. Biophysical mechanism of action studies demonstrated that LTGO-33 inhibition was relieved by membrane depolarization, suggesting the molecule stabilized the deactivated state to prevent channel opening. LTGO-33 equally inhibited wild-type and multiple NaV1.8 variants associated with human pain disorders. These collective results illustrate LTGO-33 inhibition via both a novel interaction site and mechanism of action previously undescribed in NaV1.8 small molecule pharmacologic space. SIGNIFICANCE STATEMENT: NaV1.8 sodium channels primarily expressed in peripheral pain-sensing neurons represent a validated target for the development of novel analgesics. Here we present the selective small molecule NaV1.8 inhibitor LTGO-33 that interdicts a distinct site in a voltage-sensor domain to inhibit channel opening. These results inform the development of new analgesics for pain disorders.


Asunto(s)
Canales de Sodio Activados por Voltaje , Humanos , Animales , Perros , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Neuronas , Potenciales de Acción , Ganglios Espinales , Canal de Sodio Activado por Voltaje NAV1.7 , Bloqueadores de los Canales de Sodio/farmacología
12.
EMBO J ; 43(2): 196-224, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38177502

RESUMEN

Ion channels, transporters, and other ion-flux controlling proteins, collectively comprising the "ion permeome", are common drug targets, however, their roles in cancer remain understudied. Our integrative pan-cancer transcriptome analysis shows that genes encoding the ion permeome are significantly more often highly expressed in specific subsets of cancer samples, compared to pan-transcriptome expectations. To enable target selection, we identified 410 survival-associated IP genes in 33 cancer types using a machine-learning approach. Notably, GJB2 and SCN9A show prominent expression in neoplastic cells and are associated with poor prognosis in glioblastoma, the most common and aggressive brain cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma cells induces transcriptome-wide changes involving neuron projection and proliferation pathways, impairs cell viability and tumor sphere formation in vitro, perturbs tunneling nanotube dynamics, and extends the survival of glioblastoma-bearing mice. Thus, aberrant activation of genes encoding ion transport proteins appears as a pan-cancer feature defining tumor heterogeneity, which can be exploited for mechanistic insights and therapy development.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Agresión , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Transcriptoma , Transporte Iónico/genética , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral , Canal de Sodio Activado por Voltaje NAV1.7/genética
13.
Clin Auton Res ; 34(1): 191-201, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38064009

RESUMEN

PURPOSE: Guanfacine is an α2A-adrenergic receptor agonist, FDA-approved to treat attention-deficit hyperactivity disorder and high blood pressure, typically as an extended-release formulation up to 7 mg/day. In our dysautonomia clinic, we observed that off-label use of short-acting guanfacine at 1 mg/day facilitated symptom relief in two families with multiple members presenting with severe generalized anxiety. We also noted anecdotal improvements in associated dysautonomia symptoms such as hyperhidrosis, cognitive impairment, and palpitations. We postulated that a genetic deficit existed in these patients that might augment guanfacine susceptibility. METHODS: We used whole-exome sequencing to identify mutations in patients with shared generalized anxiety and dysautonomia symptoms. Guanfacine-induced changes in the function of voltage-gated Na+ channels were investigated using voltage-clamp electrophysiology. RESULTS: Whole-exome sequencing uncovered the p.I739V mutation in SCN9A in the proband of two nonrelated families. Moreover, guanfacine inhibited ionic currents evoked by wild-type and mutant NaV1.7 encoded by SCN9A, as well as other NaV channel subtypes to a varying degree. CONCLUSION: Our study provides further evidence for a possible pathophysiological role of NaV1.7 in anxiety and dysautonomia. Combined with off-target effects on NaV channel function, daily administration of 1 mg short-acting guanfacine may be sufficient to normalize NaV channel mutation-induced changes in sympathetic activity, perhaps aided by partial inhibition of NaV1.7 or other channel subtypes. In a broader context, expanding genetic and functional data about ion channel aberrations may enable the prospect of stratifying patients in which mutation-induced increased sympathetic tone normalization by guanfacine can support treatment strategies for anxiety and dysautonomia symptoms.


Asunto(s)
Enfermedades del Sistema Nervioso Autónomo , Guanfacina , Humanos , Guanfacina/uso terapéutico , Canal de Sodio Activado por Voltaje NAV1.7/genética , Mutación , Ansiedad/tratamiento farmacológico , Ansiedad/genética , Agonistas alfa-Adrenérgicos
14.
Pain ; 165(4): 908-921, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37851391

RESUMEN

ABSTRACT: Pain is a significant global health issue, and the current treatment options for pain management have limitations in terms of effectiveness, side effects, and potential for addiction. There is a pressing need for improved pain treatments and the development of new drugs. Voltage-gated sodium channels, particularly Nav1.3, Nav1.7, Nav1.8, and Nav1.9, play a crucial role in neuronal excitability and are predominantly expressed in the peripheral nervous system. Targeting these channels may provide a means to treat pain while minimizing central and cardiac adverse effects. In this study, we construct protein-protein interaction (PPI) networks based on pain-related sodium channels and develop a corresponding drug-target interaction network to identify potential lead compounds for pain management. To ensure reliable machine learning predictions, we carefully select 111 inhibitor data sets from a pool of more than 1000 targets in the PPI network. We employ 3 distinct machine learning algorithms combined with advanced natural language processing (NLP)-based embeddings, specifically pretrained transformer and autoencoder representations. Through a systematic screening process, we evaluate the side effects and repurposing potential of more than 150,000 drug candidates targeting Nav1.7 and Nav1.8 sodium channels. In addition, we assess the ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties of these candidates to identify leads with near-optimal characteristics. Our strategy provides an innovative platform for the pharmacological development of pain treatments, offering the potential for improved efficacy and reduced side effects.


Asunto(s)
Canales de Sodio Activados por Voltaje , Humanos , Canales de Sodio Activados por Voltaje/metabolismo , Dolor/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.7/genética , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo
15.
Pediatr Dermatol ; 41(1): 80-83, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37345838

RESUMEN

Congenital insensitivity to pain (CIP) is a rare phenotype characterized by the inability to perceive pain stimuli with subsequent self-injuries, whereas CIP associated with anhidrosis (CIPA) is an overlapping phenotype mainly characterized by insensitivity to noxious stimuli and anhidrosis. CIP is primarily associated with pathogenetic variants in the SCN9A gene while CIPA is associated with pathogenetic variants in NGF and NRTK genes. However, in recent years, a significant overlap between these two disorders has been observed highlighting the presence of anhidrosis in SCN9A variants. We report the cases of two siblings (age 4 and 6 years) born from consanguineous parents presenting with a previously undescribed phenotype due to a novel pathogenic variant in SCN9A clinically characterized by congenital insensitivity to pain, anhidrosis, and mild cognitive impairment.


Asunto(s)
Canalopatías , Disfunción Cognitiva , Neuropatías Hereditarias Sensoriales y Autónomas , Hipohidrosis , Indoles , Insensibilidad Congénita al Dolor , Propionatos , Humanos , Preescolar , Niño , Insensibilidad Congénita al Dolor/genética , Hipohidrosis/genética , Mutación , Receptor trkA/genética , Dolor/genética , Disfunción Cognitiva/genética , Neuropatías Hereditarias Sensoriales y Autónomas/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética
16.
Hum Mol Genet ; 33(2): 103-109, 2024 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-37721535

RESUMEN

Erythromelalgia (EM), is a familial pain syndrome characterized by episodic 'burning' pain, warmth, and erythema. EM is caused by monoallelic variants in SCN9A, which encodes the voltage-gated sodium channel (NaV) NaV1.7. Over 25 different SCN9A mutations attributed to EM have been described to date, all identified in the SCN9A transcript utilizing exon 6N. Here we report a novel SCN9A missense variant identified in seven related individuals with stereotypic episodes of bilateral lower limb pain presenting in childhood. The variant, XM_011511617.3:c.659G>C;p.(Arg220Pro), resides in the exon 6A of SCN9A, an exon previously shown to be selectively incorporated by developmentally regulated alternative splicing. The mutation is located in the voltage-sensing S4 segment of domain I, which is important for regulating channel activation. Functional analysis showed the p.Arg220Pro mutation altered voltage-dependent activation and delayed channel inactivation, consistent with a NaV1.7 gain-of-function molecular phenotype. These results demonstrate that alternatively spliced isoforms of SCN9A should be included in all genomic testing of EM.


Asunto(s)
Eritromelalgia , Humanos , Eritromelalgia/genética , Mutación Missense/genética , Canal de Sodio Activado por Voltaje NAV1.7/genética , Dolor/genética , Mutación , Exones/genética
17.
J Pain ; 25(3): 730-741, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37921732

RESUMEN

The current study aims to characterize brain morphology of pain as reported by small fiber neuropathy (SFN) patients with or without a gain-of-function variant involving the SCN9A gene and compare these with findings in healthy controls without pain. The Neuropathic Pain Scale was used in patients with idiopathic SFN (N = 20) and SCN9A-associated SFN (N = 12) to capture pain phenotype. T1-weighted, structural magnetic resonance imaging (MRI) data were collected in patients and healthy controls (N = 21) to 1) compare cortical thickness and subcortical volumes and 2) quantify the association between severity, quality, and duration of pain with morphological properties. SCN9A-associated SFN patients showed significant (P < .017, Bonferroni corrected) higher cortical thickness in sensorimotor regions, compared to idiopathic SFN patients, while lower cortical thickness was found in more functionally diverse regions (eg, posterior cingulate cortex). SFN patient groups combined demonstrated a significant (Spearman's ρ = .44-.55, P = .005-.049) correlation among itch sensations (Neuropathic Pain Scale-7) and thickness of the left precentral gyrus, and midcingulate cortices. Significant associations were found between thalamic volumes and duration of pain (left: ρ = -.37, P = .043; right: ρ = -.40, P = .025). No associations were found between morphological properties and other pain qualities. In conclusion, in SCN9A-associated SFN, profound morphological alterations anchored within the pain matrix are present. The association between itch sensations of pain and sensorimotor and midcingulate structures provides a novel basis for further examining neurobiological underpinnings of itch in SFN. PERSPECTIVE: Cortical thickness and subcortical volume alterations in SFN patients were found in pain hubs, more profound in SCN9A-associated neuropathy, and correlated with itch and durations of pain. These findings contribute to our understanding of the pathophysiological pathways underlying chronic neuropathic pain and symptoms of itch in SFN.


Asunto(s)
Neuralgia , Neuropatía de Fibras Pequeñas , Humanos , Neuropatía de Fibras Pequeñas/diagnóstico , Neuralgia/diagnóstico por imagen , Neuralgia/genética , Neuralgia/complicaciones , Imagen por Resonancia Magnética , Giro del Cíngulo , Canal de Sodio Activado por Voltaje NAV1.7/genética
18.
Hum Cell ; 37(2): 502-510, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110787

RESUMEN

The most prevalent form of epileptic encephalopathy is Dravet syndrome (DRVT), which is triggered by the pathogenic variant SCN1A in 80% of cases. iPSCs with different SCN1A mutations have been constructed by several groups to model DRVT syndrome. However, no studies involving DRVT-iPSCs with rare genetic variants have been conducted. Here, we established two DRVT-iPSC lines harboring a homozygous mutation in the CPLX1 gene and heterozygous mutation in SCN9A gene. Therefore, the derivation of these iPSC lines provides a unique cellular platform to dissect the molecular mechanisms underlying the cellular dysfunctions consequent to CPLX1 and SCN9A mutations.


Asunto(s)
Epilepsias Mioclónicas , Células Madre Pluripotentes Inducidas , Humanos , Arabia Saudita , Mutación/genética , Epilepsias Mioclónicas/genética , Heterocigoto , Canal de Sodio Activado por Voltaje NAV1.7/genética
19.
J Gen Physiol ; 156(2)2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38127314

RESUMEN

Human voltage-gated sodium (hNaV) channels are responsible for initiating and propagating action potentials in excitable cells, and mutations have been associated with numerous cardiac and neurological disorders. hNaV1.7 channels are expressed in peripheral neurons and are promising targets for pain therapy. The tarantula venom peptide protoxin-II (PTx2) has high selectivity for hNaV1.7 and is a valuable scaffold for designing novel therapeutics to treat pain. Here, we used computational modeling to study the molecular mechanisms of the state-dependent binding of PTx2 to hNaV1.7 voltage-sensing domains (VSDs). Using Rosetta structural modeling methods, we constructed atomistic models of the hNaV1.7 VSD II and IV in the activated and deactivated states with docked PTx2. We then performed microsecond-long all-atom molecular dynamics (MD) simulations of the systems in hydrated lipid bilayers. Our simulations revealed that PTx2 binds most favorably to the deactivated VSD II and activated VSD IV. These state-specific interactions are mediated primarily by PTx2's residues R22, K26, K27, K28, and W30 with VSD and the surrounding membrane lipids. Our work revealed important protein-protein and protein-lipid contacts that contribute to high-affinity state-dependent toxin interaction with the channel. The workflow presented will prove useful for designing novel peptides with improved selectivity and potency for more effective and safe treatment of pain.


Asunto(s)
Canal de Sodio Activado por Voltaje NAV1.7 , Péptidos , Venenos de Araña , Humanos , Potenciales de Acción , Interneuronas , Simulación de Dinámica Molecular , Dolor , Canal de Sodio Activado por Voltaje NAV1.7/metabolismo , Venenos de Araña/metabolismo , Péptidos/metabolismo
20.
J Chem Inf Model ; 63(22): 7083-7096, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37917937

RESUMEN

Epilepsy is a neurological disorder characterized by recurrent seizures that arise from abnormal electrical activity in the brain. Voltage-gated sodium channels (NaVs), responsible for the initiation and propagation of action potentials in neurons, play a critical role in the pathogenesis of epilepsy. This study sought to discover potential anticonvulsant compounds that interact with NaVs, specifically, the brain subtype hNaV1.2. A ligand-based QSAR model and a docking model were constructed, validated, and applied in a parallel virtual screening over the DrugBank database. Montelukast, Novobiocin, and Cinnarizine were selected for in vitro testing, using the patch-clamp technique, and all of them proved to inhibit hNaV1.2 channels heterologously expressed in HEK293 cells. Two hits were evaluated in the GASH/Sal model of audiogenic seizures and demonstrated promising activity, reducing the severity of sound-induced seizures at the doses tested. The combination of ligand- and structure-based models presents a valuable approach for identifying potential NaV inhibitors. These findings may provide a basis for further research into the development of new antiseizure drugs for the treatment of epilepsy.


Asunto(s)
Anticonvulsivantes , Epilepsia , Humanos , Anticonvulsivantes/farmacología , Anticonvulsivantes/uso terapéutico , Células HEK293 , Ligandos , Epilepsia/tratamiento farmacológico , Convulsiones/tratamiento farmacológico , Canal de Sodio Activado por Voltaje NAV1.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...