Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bioenerg Biomembr ; 51(5): 341-354, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31392584

RESUMEN

The highly abundant voltage-dependent anion-selective channel (VDAC) allows transit of metabolites across the mitochondrial outer membrane. Previous studies in Neurospora crassa showed that the LoPo strain, expressing 50% of normal VDAC levels, is indistinguishable from wild-type (WT). In contrast, the absence of VDAC (ΔPor-1), or the expression of an N-terminally truncated variant VDAC (ΔN2-12porin), is associated with deficiencies in cytochromes b and aa3 of complexes III and IV and concomitantly increased alternative oxidase (AOX) activity. These observations led us to investigate complex I and complex II activities in these strains, and to explore their mitochondrial bioenergetics. The current study reveals that the total NADH dehydrogenase activity is similar in mitochondria from WT, LoPo, ΔPor-1 and ΔN2-12porin strains; however, in ΔPor-1 most of this activity is the product of rotenone-insensitive alternative NADH dehydrogenases. Unexpectedly, LoPo mitochondria have increased complex II activity. In all mitochondrial types analyzed, oxygen consumption is higher in the presence of the complex II substrate succinate, than with the NADH-linked (complex I) substrates glutamate and malate. When driven by a combination of complex I and II substrates, membrane potentials (Δψ) and oxygen consumption rates (OCR) under non-phosphorylating conditions are similar in all mitochondria. However, as expected, the induction of state 3 (phosphorylating) conditions in ΔPor-1 mitochondria is associated with smaller but significant increases in OCR and smaller decreases in Δψ than those seen in wild-type mitochondria. High ROS production, particularly in the presence of rotenone, was observed under non-phosphorylating conditions in the ΔPor-1 mitochondria. Thus, the absence of VDAC is associated with increased ROS production, in spite of AOX activity and wild-type OCR in ΔPor-1 mitochondria.


Asunto(s)
Potenciales de la Membrana , Mitocondrias/metabolismo , Neurospora crassa/ultraestructura , Especies Reactivas de Oxígeno/metabolismo , Canales Aniónicos Dependientes del Voltaje/deficiencia , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/metabolismo , Oxidorreductasas/metabolismo , Consumo de Oxígeno , Proteínas de Plantas/metabolismo
2.
J Biol Chem ; 293(5): 1666-1675, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29180450

RESUMEN

It has been suggested that voltage-dependent anion channels (VDACs) control the release of superoxide from mitochondria. We have previously shown that reactive oxygen species (ROS) such as superoxide (O2̇̄) and hydrogen peroxide (H2O2) stimulate epithelial sodium channels (ENaCs) in sodium-transporting epithelial tissue, including cortical collecting duct (CCD) principal cells. Therefore, we hypothesized that VDACs could regulate ENaC by modulating cytosolic ROS levels. Herein, we find that VDAC3-knockout(KO) mice can maintain normal salt and water balance on low-salt and high-salt diets. However, on a high-salt diet for 2 weeks, VDAC3-KO mice had significantly higher systolic blood pressure than wildtype mice. Consistent with this observation, after a high-salt diet for 2 weeks, ENaC activity in VDAC3-KO mice was significantly higher than wildtype mice. EM analysis disclosed a significant morphological change of mitochondria in the CCD cells of VDAC3-KO mice compared with wildtype mice, which may have been caused by mitochondrial superoxide overload. Of note, compared with wildtype animals, ROS levels in VDAC3-KO animals fed a normal or high-salt diet were consistently and significantly increased in renal tubules. Both the ROS scavenger 1-oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine (TEMPOL) and the mitochondrial ROS scavenger (2-(2,2,6,6-tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mito-TEMPO) could reverse the effect of high-salt on ENaC activity and systolic blood pressure in the VDAC3-KO mice. Mito-TEMPO partially correct the morphological changes in VDAC3-KO mice. Our results suggest that knocking out mitochondrial VDAC3 increases ROS, alters renal sodium transport, and leads to hypertension.


Asunto(s)
Canales Epiteliales de Sodio/metabolismo , Peróxido de Hidrógeno/metabolismo , Riñón/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Sodio/metabolismo , Superóxidos/metabolismo , Canales Aniónicos Dependientes del Voltaje/deficiencia , Animales , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/genética , Óxidos N-Cíclicos/farmacología , Canales Epiteliales de Sodio/genética , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/patología , Transporte Iónico/efectos de los fármacos , Transporte Iónico/genética , Riñón/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Compuestos Organofosforados/farmacología , Piperidinas/farmacología , Marcadores de Spin , Canales Aniónicos Dependientes del Voltaje/metabolismo
3.
Biochim Biophys Acta ; 1818(6): 1477-85, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22051019

RESUMEN

Voltage-dependant Anion Channels, also known as mitochondrial porins, are pore-forming proteins located in the mitochondrial outer membrane (MOM) that, in addition to forming complexes with other proteins that localize to the MOM, also function as the main conduit for transporting metabolites between the cytoplasm and mitochondria. VDACs are encoded by a multi-member gene family, and the number of isoforms and specific functions of VDACs varies between species. Translating the well-described in vitro characteristics of the VDAC isoforms into in vivo functions has been a challenge, with the generation of animal models of VDAC deficiency providing much of the available information about isoform-specific roles in biology. Here, we review the approaches used to create these insect and mammalian animal models, and the conclusions reached by studying the consequences of loss of function mutations on the genetic, physiologic, and biochemical properties of the resulting models. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.


Asunto(s)
Modelos Genéticos , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Células Madre Embrionarias/metabolismo , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Canales Aniónicos Dependientes del Voltaje/química , Canales Aniónicos Dependientes del Voltaje/deficiencia
4.
Biochim Biophys Acta ; 1807(1): 150-6, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20875390

RESUMEN

Voltage-dependent anion channel (VDAC) is an abundant mitochondrial outer membrane protein. In mammals, three VDAC isoforms have been characterized. We have previously reported alterations in the function of mitochondria when assessed in situ in different muscle types in VDAC1 deficient mice (Anflous et al., 2001). In the present report we extend the study to VDAC3 deficient muscles and measure the respiratory enzyme activity in both VDAC1 and VDAC3 deficient muscles. While in the heart the absence of VDAC3 causes a decrease in the apparent affinity of in situ mitochondria for ADP, in the gastrocnemius, a mixed glycolytic/oxidative muscle, the affinity of in situ mitochondria for ADP remains unchanged. The absence of VDAC1 causes multiple defects in respiratory complex activities in both types of muscle. However, in VDAC3 deficient mice the defect is restricted to the heart and only to complex IV. These functional alterations correlate with structural aberrations of mitochondria. These results demonstrate that, unlike VDAC1, there is muscle-type specificity for VDAC3 function and therefore in vivo these two isoforms may fulfill different physiologic functions.


Asunto(s)
Mitocondrias/enzimología , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Canales Aniónicos Dependientes del Voltaje/deficiencia , Canales Aniónicos Dependientes del Voltaje/genética , Adenosina Difosfato/metabolismo , Animales , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Ratones , Ratones Noqueados , Microscopía Electrónica , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/metabolismo , Músculo Estriado/enzimología , Músculo Estriado/ultraestructura , Miocardio/enzimología , Miocardio/ultraestructura , Consumo de Oxígeno , Canales Aniónicos Dependientes del Voltaje/metabolismo
5.
Nat Cell Biol ; 9(5): 550-5, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17417626

RESUMEN

Mitochondria are critically involved in necrotic cell death induced by Ca(2+) overload, hypoxia and oxidative damage. The mitochondrial permeability transition (MPT) pore - a protein complex that spans both the outer and inner mitochondrial membranes - is considered the mediator of this event and has been hypothesized to minimally consist of the voltage-dependent anion channel (Vdac) in the outer membrane, the adenine-nucleotide translocase (Ant) in the inner membrane and cyclophilin-D in the matrix. Here, we report the effects of deletion of the three mammalian Vdac genes on mitochondrial-dependent cell death. Mitochondria from Vdac1-, Vdac3-, and Vdac1-Vdac3-null mice exhibited a Ca(2+)- and oxidative stress-induced MPT that was indistinguishable from wild-type mitochondria. Similarly, Ca(2+)- and oxidative-stress-induced MPT and cell death was unaltered, or even exacerbated, in fibroblasts lacking Vdac1, Vdac2, Vdac3, Vdac1-Vdac3 and Vdac1-Vdac2-Vdac3. Wild-type and Vdac-deficient mitochondria and cells also exhibited equivalent cytochrome c release, caspase cleavage and cell death in response to the pro-death Bcl-2 family members Bax and Bid. These results indicate that Vdacs are dispensable for both MPT and Bcl-2 family member-driven cell death.


Asunto(s)
Apoptosis , Permeabilidad de la Membrana Celular , Mitocondrias Cardíacas/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Calcio/metabolismo , Caspasas/metabolismo , Muerte Celular , Células Cultivadas , Peptidil-Prolil Isomerasa F , Ciclofilinas/metabolismo , Citocromos c/metabolismo , Ratones , Ratones Noqueados , Translocasas Mitocondriales de ADP y ATP/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Proteínas Mitocondriales/metabolismo , Dilatación Mitocondrial , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-bcl-2 , Interferencia de ARN , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Factores de Tiempo , Transfección , Canal Aniónico 1 Dependiente del Voltaje/metabolismo , Canal Aniónico 2 Dependiente del Voltaje/metabolismo , Canales Aniónicos Dependientes del Voltaje/deficiencia , Canales Aniónicos Dependientes del Voltaje/genética
6.
Biochim Biophys Acta ; 1767(2): 136-42, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17207767

RESUMEN

Voltage-dependent anion channels (VDACs), also known as mitochondrial porins, are the main pathway for metabolites across the mitochondrial outer membrane and may serve as binding sites for kinases, including hexokinase. We determined that mitochondria-bound hexokinase activity is significantly reduced in oxidative muscles (heart and soleus) in vdac1(-/-) mice. The activity data were supported by western blot analysis using HK2 specific antibody. To gain more insight into the physiologic mean of the results with the activity data, VDAC deficient mice were subjected to glucose tolerance testing and exercise-induced stress, each of which involves tissue glucose uptake via different mechanisms. vdac1(-/-) mice exhibit impaired glucose tolerance whereas vdac3(-/-) mice have normal glucose tolerance and exercise capacity. Mice lacking both VDAC1 and VDAC3 (vdac1(-/-)/vdac3(-/-)) have reduced exercise capacity together with impaired glucose tolerance. Therefore, we demonstrated a link between VDAC1 mediated mitochondria-bound hexokinase activity and the capacity for glucose clearance.


Asunto(s)
Hexoquinasa/metabolismo , Mitocondrias Musculares/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/fisiología , Animales , Sitios de Unión , Western Blotting , Femenino , Prueba de Tolerancia a la Glucosa , Masculino , Ratones , Proteínas de Transporte de Membrana Mitocondrial , Proteínas Mitocondriales/deficiencia , Actividad Motora/fisiología , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Canal Aniónico 1 Dependiente del Voltaje/deficiencia , Canales Aniónicos Dependientes del Voltaje/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA