Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Br J Dermatol ; 190(6): 885-894, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38345103

RESUMEN

BACKGROUND: Allergies often present challenges in managing itch and the effects of histamine. Cooling agents that act via transient receptor potential melastatin 8 (TRPM8) agonism have shown potential in itch management. However, animal studies on itch have limitations, as animals cannot communicate subjective events and their fur-coated skin differs from that of humans. Human studies offer more direct and reliable information. OBJECTIVES: To investigate the effects of a specific TRPM8 agonist gel (cryosim-1) on itch induced by various pruritogens in human skin. METHODS: Calcium imaging experiments determined the binding of cryosim-1 and histamine to their respective receptors. Thirty healthy volunteers underwent skin prick tests with pruritogens and a control vehicle. Itch and pain intensity were measured using a numerical rating scale (NRS) across 10 min. Participants were randomly assigned to pretreatments with vehicle or TRPM8 agonist gel. Tests were repeated at a later date, and skin moisture, transepidermal water loss and mechanical sensitivity were measured. RESULTS: The in vitro study confirmed that histamine is not a TRPM8 agonist and cryosim-1 does not act as an agonist or antagonist on the human histamine 1 receptor. The TRPM8 agonist gel significantly reduced the itch intensity for all pruritogens compared with the vehicle-only gel. It also reduced itch NRS and the integrated itch score. Mechanical sensitivity was also reduced. CONCLUSIONS: The specific TRPM8 agonist gel effectively suppressed human skin itch induced by various pruritogens. These versatile actions suggest that cooling agents may be promising treatments for multiple forms of itch stimuli.


Managing itching and the effects of histamine can be difficult for people with allergies. Cooling the skin or applying menthol provides some relief from itch, but the way they work is not fully understood. Cooling agents interact with a protein called TRPM8 (also known as the 'cold and menthol receptor') and have shown potential for the management of itch. However, much of the research has been done on animals and has limitations when compared with human studies. Antihistamine medications can help with histamine-induced itching, but they may not work for other causes of itch. This study investigated the effects of a specific TRPM8 agonist (a chemical that activates a receptor to produce a biologic response) gel called cryosim-1 on itch in human skin. To do this, we conducted tests on 30 healthy people using five different substances that cause itching. Participants rated the itch intensity and pain using a scale and we measured various aspects of their skin. The results showed that all substances caused significant itching compared to a control substance, but itchiness gradually decreased over time. Histamine and compound 48/80 also caused pain. However, when participants applied the TRPM8 activator gel before exposure, they experienced less itching and lower itch intensity versus the gel without the activator. There were no significant differences in pain between the TRPM8 activator and the gel without it. In summary, our findings showed that activating TRPM8 receptors with a specific substance effectively relieved itching caused by various irritants on human skin. This suggests its potential as a treatment for itch-related conditions. Further research is needed to understand its mechanisms better and evaluate its effectiveness in real-life situations.


Asunto(s)
Histamina , Prurito , Canales Catiónicos TRPM , Humanos , Prurito/tratamiento farmacológico , Prurito/inducido químicamente , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/antagonistas & inhibidores , Adulto , Masculino , Histamina/administración & dosificación , Histamina/efectos adversos , Femenino , Adulto Joven , Geles , Persona de Mediana Edad , Antipruriginosos/administración & dosificación , Antipruriginosos/farmacología , Antipruriginosos/efectos adversos , Método Doble Ciego , Administración Cutánea
2.
J Cosmet Dermatol ; 23(3): 931-937, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38169089

RESUMEN

BACKGROUND: Prurigo nodularis (PN) is an intensively pruritic skin disease that negatively influences quality of life. Cryosim-1 (Intrinsic IB Spot) is a synthetic, selective transient receptor potential melastatin 8 agonist. AIMS: To investigate the efficacy and safety of cryosim-1 in PN patients. PATIENTS/METHODS: A randomized, double-blinded, placebo-controlled clinical trial including 30 patients was conducted. The numerical rating scale (NRS) of pruritus was evaluated before and 2 h after cryosim-1 application at every visit. RESULTS: At week 8, the mean pruritus NRS before serum application (4.7 ± 0.4 treatment, 6.1 ± 0.5 placebo; p = 0.045) and 2 h after serum application (2.8 ± 0.4 treatment, 4.3 ± 0.5 placebo; p = 0.031) were significantly lower in the treatment group, and the mean NRS for sleep disorder was significantly lower in the treatment group (2.2 ± 0.5 treatment, 4.2 ± 0.8 placebo; p = 0.031). The mean satisfaction scales for pruritus improvement were significantly higher in the treatment group (7.2 ± 0.6) than in the placebo group (4.0 ± 0.9; p = 0.005). There was no difference in TEWL between the two groups, and no adverse reactions were reported. CONCLUSIONS: Cryosim-1 is a safe and effective topical treatment for PN patients.


Asunto(s)
Prurigo , Canales Catiónicos TRPM , Humanos , Prurigo/tratamiento farmacológico , Calidad de Vida , Prurito/tratamiento farmacológico , Prurito/etiología , Administración Tópica , Proyectos de Investigación , Canales Catiónicos TRPM/agonistas , Proteínas de la Membrana
3.
J Biol Chem ; 300(1): 105528, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043794

RESUMEN

Parasitic flatworms cause various clinical and veterinary infections that impart a huge burden worldwide. The most clinically impactful infection is schistosomiasis, a neglected tropical disease caused by parasitic blood flukes. Schistosomiasis is treated with praziquantel (PZQ), an old drug introduced over 40 years ago. New drugs are urgently needed, as while PZQ is broadly effective it suffers from several limitations including poor efficacy against juvenile worms, which may prevent it from being completely curative. An old compound that retains efficacy against juvenile worms is the benzodiazepine meclonazepam (MCLZ). However, host side effects caused by benzodiazepines preclude development of MCLZ as a drug and MCLZ lacks an identified parasite target to catalyze rational drug design for engineering out human host activity. Here, we identify a transient receptor potential ion channel of the melastatin subfamily, named TRPMMCLZ, as a parasite target of MCLZ. MCLZ potently activates Schistosoma mansoni TRPMMCLZ through engagement of a binding pocket within the voltage-sensor-like domain of the ion channel to cause worm paralysis, tissue depolarization, and surface damage. TRPMMCLZ reproduces all known features of MCLZ action on schistosomes, including a lower activity versus Schistosoma japonicum, which is explained by a polymorphism within this voltage-sensor-like domain-binding pocket. TRPMMCLZ is distinct from the TRP channel targeted by PZQ (TRPMPZQ), with both anthelmintic chemotypes targeting unique parasite TRPM paralogs. This advances TRPMMCLZ as a novel druggable target that could circumvent any target-based resistance emerging in response to current mass drug administration campaigns centered on PZQ.


Asunto(s)
Antihelmínticos , Clonazepam , Esquistosomiasis mansoni , Canales Catiónicos TRPM , Animales , Humanos , Antihelmínticos/farmacología , Benzodiazepinas/farmacología , Benzodiazepinonas/farmacología , Clonazepam/análogos & derivados , Clonazepam/farmacología , Praziquantel/farmacología , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/metabolismo , Esquistosomiasis mansoni/tratamiento farmacológico , Canales Catiónicos TRPM/agonistas
4.
Neurosci Lett ; 816: 137492, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37742941

RESUMEN

Sepsis is a significant global public health challenge, resulting in millions of human deaths annually. Transient receptor potential melastatin 8 (TRPM8), a non-selective ion channel, is the primary cold sensor in humans; however, its effects on endotoxin-induced inflammation remain unclear. We previously reported that TRPM8 knockout mice exhibited more severe physiological and behavioral endotoxemia responses upon a high-dose injection with lipopolysaccharide (LPS). In the present study, we investigated whether icilin, a TRPM8 agonist, was a target for the suppression of sickness responses using a mouse model of LPS-induced sepsis. A peripheral high-dose injection of LPS at 5 mg/kg showed a maximal body temperature decrease of 5.1 °C in mice subcutaneously pretreated with vehicle and 1.5 °C in icilin-pretreated animals. The decline in locomotor activity was attenuated in icilin-pretreated mice and its recovery was faster; however, the high-dose LPS injection rapidly decreased locomotor activity regardless of the icilin pretreatment. Furthermore, the icilin pretreatment attenuated LPS-induced decreases in body weight and food and water intakes and accelerated recovery from these sickness responses. Therefore, the present results demonstrated that the icilin pretreatment alleviated LPS-induced sickness responses or decreases in body temperature, locomotor activity, body weight loss, and food and water intakes, suggesting its potential as a therapeutic target for sepsis.


Asunto(s)
Sepsis , Canales Catiónicos TRPM , Humanos , Animales , Ratones , Lipopolisacáridos , Canales Catiónicos TRPM/agonistas , Sepsis/inducido químicamente , Sepsis/tratamiento farmacológico , Agua , Frío
5.
J Appl Physiol (1985) ; 134(2): 307-315, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603045

RESUMEN

Inhalation of noxious irritants activates nociceptive sensory afferent nerves innervating the airways, inducing reflex regulation of autonomic networks and the modulation of respiratory drive and cardiovascular (CV) parameters such as heart rate and blood pressure. In healthy mammals, irritant-evoked pulmonary-cardiac reflexes cause parasympathetic-mediated bradycardia. However, in spontaneously hypertensive (SH) rats, irritant inhalation also increases sympathetic drive to the heart. This remodeled pulmonary-cardiac reflex may contribute to cardiovascular risk caused by inhalation of air pollutants/irritants in susceptible individuals with cardiovascular disease (CVD). Previous studies have shown that the cooling mimic l-menthol, an agonist for the cold-sensitive transient receptor potential melastatin 8 (TRPM8), can alleviate nasal inflammatory symptoms and respiratory reflexes evoked by irritants. Here, we investigated the impact of inhalation of TRPM8 agonists l-menthol and WS-12 on pulmonary-cardiac reflexes evoked by inhalation of the irritant allyl isothiocyanate (AITC) using radiotelemetry. l-Menthol, but not its inactive analog d-menthol, significantly reduced the AITC-evoked reflex tachycardia and premature ventricular contractions (PVCs) in SH rats but had no effect on the AITC-evoked bradycardia in either SH or normotensive Wistar-Kyoto (WKY) rats. WS-12 reduced AITC-evoked tachycardia and PVCs in SH rats, but this more potent TRPM8 agonist also reduced AITC-evoked bradycardia. l-Menthol had no effect on heart rate when given alone, whereas WS-12 evoked a minor bradycardia in WKY rats. We conclude that stimulation of TRPM8-expressing afferents within the airways reduces irritant-evoked pulmonary-cardiac reflexes, especially the aberrant reflex tachyarrhythmia in SH rats. Airway menthol treatment may be an effective therapy for reducing pollution-associated CV exacerbations.NEW & NOTEWORTHY Irritant-evoked pulmonary-cardiac reflexes are remodeled in spontaneously hypertensive (SH) rats-causing de novo sympathetic reflexes that drive tachyarrhythmia. This remodeling may contribute to air pollution-associated risk in susceptible individuals with cardiovascular disease. We found that inhalation of TRPM8 agonists, l-menthol and WS-12, but not the inactive analog d-menthol, selectively reduces the reflex tachyarrhythmia evoked by allyl isothiocyanate (AITC) inhalation in SH rats. Use of menthol may protect susceptible individuals from pollution-associated CV exacerbations.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Canales Catiónicos TRPM , Animales , Ratas , Bradicardia/tratamiento farmacológico , Irritantes/farmacología , Pulmón , Mamíferos , Mentol/farmacología , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Reflejo , Taquicardia/tratamiento farmacológico , Canales Catiónicos TRPM/agonistas
6.
Science ; 378(6616): eadd1268, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36227998

RESUMEN

The transient receptor potential melastatin 8 (TRPM8) channel is the primary molecular transducer responsible for the cool sensation elicited by menthol and cold in mammals. TRPM8 activation is controlled by cooling compounds together with the membrane lipid phosphatidylinositol 4,5-bisphosphate (PIP2). Our knowledge of cold sensation and the therapeutic potential of TRPM8 for neuroinflammatory diseases and pain will be enhanced by understanding the structural basis of cooling agonist- and PIP2-dependent TRPM8 activation. We present cryo-electron microscopy structures of mouse TRPM8 in closed, intermediate, and open states along the ligand- and PIP2-dependent gating pathway. Our results uncover two discrete agonist sites, state-dependent rearrangements in the gate positions, and a disordered-to-ordered transition of the gate-forming S6-elucidating the molecular basis of chemically induced cool sensation in mammals.


Asunto(s)
Frío , Activación del Canal Iónico , Fosfatidilinositol 4,5-Difosfato , Pirimidinonas , Canales Catiónicos TRPM , Sensación Térmica , Animales , Ratones , Microscopía por Crioelectrón , Ligandos , Mentol/química , Mentol/farmacología , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/química , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/farmacología , Sensación Térmica/efectos de los fármacos , Sensación Térmica/fisiología , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Conformación Proteica , Pirimidinonas/química , Pirimidinonas/farmacología
7.
Ocul Surf ; 26: 166-173, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35970431

RESUMEN

PURPOSE: Dry eye disease (DED) symptoms can negatively impact quality of life (QoL). AR-15512, a transient receptor potential melastatin 8 (TRPM8) agonist, was evaluated as a potential therapy for DED. METHODS: In a Phase 2b study, patients with DED were randomized 1:1:1 to 0.0014% AR-15512, 0.003% AR-15512, or vehicle twice daily for 12 weeks. Eligibility criteria included DED signs and symptoms of prespecified severity levels. Outcomes assessed were DED signs (Schirmer score ± anesthetic, ocular surface staining, hyperemia), symptoms (Ocular Discomfort [ODS-VAS], Symptoms Assessment iN Dry Eye [SANDE], Eye Dryness-VAS, Ocular Pain-VAS), QoL-VAS, and adverse events. Co-primary endpoints were changes from baseline in ODS-VAS and anesthetized Schirmer score at Day 28. RESULTS: 0.003% AR-15512 (n = 122) was associated with early and sustained improvements in unanesthetized Schirmer score (Days 1 and 14, p < 0.0001), as well as improvements in ocular surface staining (Days 14 and 84, p ≤ 0.0365) and hyperemia (Day 84, p < 0.0215). Statistically significant improvements in symptoms were observed for the 0.003% concentration on SANDE (Days 14, 28, and 84, p ≤ 0.0254), ODS-VAS (Day 84, p = 0.0281), Eye Dryness-VAS (Day 84, p = 0.0302), and multiple QoL measures (Days 14, 28, and 84, p < 0.05). There were no significant differences between active and vehicle groups for the co-primary endpoints. The most common adverse events were burning and stinging upon instillation. CONCLUSIONS: Although predefined co-primary study endpoints were not met, AR-15512 demonstrated statistically significant improvements in DED signs, symptoms, and disease-related QoL.


Asunto(s)
Síndromes de Ojo Seco , Hiperemia , Canales Catiónicos TRPM , Humanos , Método Doble Ciego , Síndromes de Ojo Seco/tratamiento farmacológico , Proteínas de la Membrana , Calidad de Vida , Lágrimas , Canales Catiónicos TRPM/agonistas
8.
J Leukoc Biol ; 112(3): 361-363, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35570407

RESUMEN

Understanding the innate immune system and how aberrant activation or impaired inhibition leads to the development of hyperinflammatory conditions, including inflammatory bowel disease, is crucial for patient management and treatment. An emerging area of interest surrounding dysregulated inflammation focuses on membrane bound transient receptor potential (TRP) ion channels. These channels are permeable to calcium and other cations involved in the balance of leukocyte membrane potential and function, as well as afferent neuron signaling within the myenteric plexus of the GI tract, bladder, and skin. A particular channel, TRPM8, is an important cell surface marker for prostate cancer and participates in the function of cold sensing neurons. Specifically, this ion-gated receptor is shown to be activated by agonists such as menthol and eucalyptus, which aid in the soothing, cooling effects of these agents. Furthermore, the TRPM8 channel is also identified on the surface of resident tissue Mϕs and is also linked to the protective role and release of calcitonin gene-related peptide (CGRP) by sensory neurons.


Asunto(s)
Monocitos , Canales Catiónicos TRPM , Señalización del Calcio , Frío , Humanos , Mentol/farmacología , Monocitos/metabolismo , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/metabolismo
9.
FASEB J ; 36(3): e22205, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35157333

RESUMEN

Increasing whole-body energy expenditure via the pharmacological activation of uncoupling protein 1 (UCP1)-dependent brown adipose tissue (BAT) thermogenesis is a promising weight management strategy, yet most therapeutics studied in rodents to date either induce compensatory increases in energy intake, have thermogenic effects that are confounded by sub-thermoneutral housing temperatures or are not well tolerated in humans. Here, we sought to determine whether the non-invasive topical application of the pharmacological cold mimetic and transient receptor potential (TRP) cation channel subfamily M member 8 (TRPM8) agonist L-menthol (MNTH), could be used to stimulate BAT thermogenesis and attenuate weight gain in mice housed at thermoneutrality. Using three different strains of mice and multiple complimentary approaches to quantify thermogenesis in vivo, coupled with ex vivo models to quantify direct thermogenic effects, we were able to convincingly demonstrate the following: (1) acute topical MNTH application induces BAT thermogenesis in a TRPM8- and UCP1-dependent manner; (2) MNTH-induced BAT thermogenesis is sufficient to attenuate weight gain over time without affecting energy intake in lean and obese mice; (3) the ability of topical MNTH application to stimulate BAT thermogenesis is mediated, in part, by a central mechanism involving the release of norepinephrine. These data collectively suggest that topical application of MNTH may be a promising weight management strategy.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Mentol/farmacología , Canales Catiónicos TRPM/metabolismo , Termogénesis , Proteína Desacopladora 1/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Animales , Frío , Masculino , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPM/agonistas
10.
Int J Mol Sci ; 23(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35163382

RESUMEN

Transient receptor potential melastatin-4 (TRPM4) is activated by an increase in intracellular Ca2+ concentration and is expressed on smooth muscle cells (SMCs). It is implicated in the myogenic constriction of cerebral arteries. We hypothesized that TRPM4 has a general role in intracellular Ca2+ signal amplification in a wide range of blood vessels. TRPM4 function was tested with the TRPM4 antagonist 9-phenanthrol and the TRPM4 activator A23187 on the cardiovascular responses of the rat, in vivo and in isolated basilar, mesenteric, and skeletal muscle arteries. TRPM4 inhibition by 9-phenanthrol resulted in hypotension and a decreased heart rate in the rat. TRPM4 inhibition completely antagonized myogenic tone development and norepinephrine-evoked vasoconstriction, and depolarization (high extracellular KCl concentration) evoked vasoconstriction in a wide range of peripheral arteries. Vasorelaxation caused by TRPM4 inhibition was accompanied by a significant decrease in intracellular Ca2+ concentration, suggesting an inhibition of Ca2+ signal amplification. Immunohistochemistry confirmed TRPM4 expression in the smooth muscle cells of the peripheral arteries. Finally, TRPM4 activation by the Ca2+ ionophore A23187 was competitively inhibited by 9-phenanthrol. In summary, TRPM4 was identified as an essential Ca2+-amplifying channel in peripheral arteries, contributing to both myogenic tone and agonist responses. These results suggest an important role for TRPM4 in the circulation. The modulation of TRPM4 activity may be a therapeutic target for hypertension. Furthermore, the Ca2+ ionophore A23187 was identified as the first high-affinity (nanomolar) direct activator of TRPM4, acting on the 9-phenanthrol binding site.


Asunto(s)
Señalización del Calcio , Canales Catiónicos TRPM/metabolismo , Vasoconstricción , Administración Intravenosa , Animales , Arterias/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Calcimicina/farmacología , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/fisiología , Frecuencia Cardíaca/efectos de los fármacos , Ionóforos/farmacología , Masculino , Desarrollo de Músculos/efectos de los fármacos , Músculo Esquelético/irrigación sanguínea , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Norepinefrina/farmacología , Fenantrenos/administración & dosificación , Fenantrenos/farmacología , Cloruro de Potasio/farmacología , Ratas Wistar , Canales Catiónicos TRPM/agonistas , Vasoconstricción/efectos de los fármacos
11.
J Headache Pain ; 23(1): 4, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35012445

RESUMEN

BACKGROUND: Migraine is a common brain disorder that predominantly affects women. Migraine pain seems mediated by the activation of mechanosensitive channels in meningeal afferents. Given the role of transient receptor potential melastatin 3 (TRPM3) channels in mechanical activation, as well as hormonal regulation, these channels may play a role in the sex difference in migraine. Therefore, we investigated whether nociceptive firing induced by TRPM3 channel agonists in meningeal afferents was different between male and female mice. In addition, we assessed the relative contribution of mechanosensitive TRPM3 channels and that of mechanosensitive Piezo1 channels and transient receptor potential vanilloid 1 (TRPV1) channels to nociceptive firing relevant to migraine in both sexes. METHODS: Ten- to 13-week-old male and female wildtype (WT) C57BL/6 J mice were used. Nociceptive spikes were recorded directly from nerve terminals in the meninges in the hemiskull preparations. RESULTS: Selective agonists of TRPM3 channels profoundly activated peripheral trigeminal nerve fibres in mouse meninges. A sex difference was observed for nociceptive firing induced by either PregS or CIM0216, both agonists of TRPM3 channels, with the induced firing being particularly prominent for female mice. Application of Yoda1, an agonist of Piezo1 channels, or capsaicin activating TRPV1 channels, although also leading to increased nociceptive firing of meningeal fibres, did not reveal a sex difference. Cluster analyses of spike activities indicated a massive and long-lasting activation of TRPM3 channels with preferential induction of large-amplitude spikes in female mice. Additional spectral analysis revealed ​a dominant contribution of spiking activity in the α- and ß-ranges following TRPM3 agonists in female mice. CONCLUSIONS: Together, we revealed a specific mechanosensitive profile of nociceptive firing in females and suggest TRPM3 channels as a potential novel candidate for the generation of migraine pain, with particular relevance to females.


Asunto(s)
Trastornos Migrañosos , Canales Catiónicos TRPM , Animales , Femenino , Canales Iónicos , Masculino , Meninges , Ratones , Ratones Endogámicos C57BL , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPV , Nervio Trigémino
12.
Microvasc Res ; 139: 104271, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34717968

RESUMEN

Topical menthol-based analgesics increase skin blood flow (SkBF) through transient receptor potential melastatin 8 (TRPM8) receptor-dependent activation of sensory nerves and endothelium-derived hyperpolarization factors. It is unclear if menthol-induced TRPM8 activation mediates a reflex change in SkBF across the dermatome in an area not directly treated with menthol. The purpose of this study was to determine the effects of localized topical menthol application on SkBF across a common dermatome. We hypothesized that SkBF would be increased with menthol at the site of application and across the dermatome (contralateral limb) through a spinal reflex mechanism. In a double blind, placebo controlled, cross-over design, 15 healthy participants (7 men; age = 22 ± 1 yrs) were treated with direct application (3 ml over 8 × 13 cm) of 5% menthol gel (Biofreeze™) or placebo gel on the L4 dermatome, separated by 48 h. Red blood cell flux was measured using laser Doppler flowmetry over the area of application, on the contralateral leg of the same dermatome, and in a separate dermatome (L5/S1) to serve as control. Cutaneous vascular conductance was calculated for each measurement site (CVC = flux/MAP). At baseline there were no differences in CVC between menthol and placebo gels, or among sites (all p > 0.05). After 30 ± 6 min, CVC increased at the treated site with menthol (0.12 ± 0.02 vs. 1.36 ± 0.19 flux/mm Hg, p < 0.01) but not the placebo (0.10 ± 0.01 vs. 0.18 ± 0.04 flux/mm Hg, p = 0.91). There was a modest increase in CVC at the contralateral L4 dermatome with menthol gel (0.16 ± 0.04 vs. 0.29 ± 0.06 flux/mm Hg, p < 0.01), but not placebo (0.11 ± 0.02 vs. 0.15 ± 0.03 flux/mm Hg, p = 0.41). There was no effect on SkBF from either treatments at the L5/S1 control dermatome (both, p > 0.05), suggesting the lack of a systemic response. In conclusion, menthol containing topical analgesic gels increased SkBF at the treated site, and modestly throughout the dermatome. These data suggest menthol-induced activation of the TRPM8 receptors induces an increase in SkBF across the area of common innervation through a localized spinal reflex mechanism.


Asunto(s)
Analgésicos/administración & dosificación , Mentol/administración & dosificación , Células Receptoras Sensoriales/efectos de los fármacos , Piel/irrigación sanguínea , Piel/inervación , Canales Catiónicos TRPM/agonistas , Vasodilatación/efectos de los fármacos , Administración Cutánea , Velocidad del Flujo Sanguíneo , Estudios Cruzados , Método Doble Ciego , Femenino , Geles , Humanos , Flujometría por Láser-Doppler , Masculino , Flujo Sanguíneo Regional , Células Receptoras Sensoriales/metabolismo , Transducción de Señal , Canales Catiónicos TRPM/metabolismo , Sensación Térmica/efectos de los fármacos , Adulto Joven
13.
Cancer Lett ; 525: 179-197, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-34752845

RESUMEN

The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitous cation channel possessing kinase activity. TRPM7 mediates a variety of physiological responses by conducting flow of cations such as Ca2+, Mg2+, and Zn2+. Here, we show that the activation of TRPM7 channel stimulated by chemical agonists of TRPM7, Clozapine or Naltriben, inhibited autophagy via mediating Zn2+ release to the cytosol, presumably from the intracellular Zn2+-accumulating vesicles where TRPM7 localizes. Zn2+ release following the activation of TRPM7 disrupted the fusion between autophagosomes and lysosomes by disturbing the interaction between Sxt17 and VAMP8 which determines fusion status of autophagosomes and lysosomes. Ultimately, the disrupted fusion resulting from stimulation of TRPM7 channels arrested autophagy. Functionally, we demonstrate that the autophagy inhibition mediated by TRPM7 triggered cell death and suppressed metastasis of cancer cells in vitro, more importantly, restricted tumor growth and metastasis in vivo, by evoking apoptosis, cell cycle arrest, and reactive oxygen species (ROS) elevation. These findings represent a strategy for stimulating TRPM7 to combat cancer.


Asunto(s)
Neoplasias/tratamiento farmacológico , Células Madre Neoplásicas/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas R-SNARE/genética , Canales Catiónicos TRPM/genética , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Clozapina/farmacología , Humanos , Lisosomas/efectos de los fármacos , Naltrexona/análogos & derivados , Naltrexona/farmacología , Metástasis de la Neoplasia , Neoplasias/genética , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPM/agonistas , Zinc/farmacología
14.
Int J Mol Sci ; 22(23)2021 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-34884938

RESUMEN

In pancreatic ß-cells of the line INS-1, glucose uptake and metabolism induce the openings of Ca2+-permeable TRPM3 channels that contribute to the elevation of the intracellular Ca2+ concentration and the fusion of insulin granules with the plasma membrane. Conversely, glucose-induced Ca2+ signals and insulin release are reduced by the activity of the serine/threonine kinase CK2. Therefore, we hypothesized that TRPM3 channels might be regulated by CK2 phosphorylation. We used recombinant TRPM3α2 proteins, native TRPM3 proteins from INS-1 ß-cells, and TRPM3-derived oligopeptides to analyze and localize CK2-dependent phosphorylation of TRPM3 channels. The functional consequences of CK2 phosphorylation upon TRPM3-mediated Ca2+ entry were investigated in Fura-2 Ca2+-imaging experiments. Recombinant TRPM3α2 channels expressed in HEK293 cells displayed enhanced Ca2+ entry in the presence of the CK2 inhibitor CX-4945 and their activity was strongly reduced after CK2 overexpression. TRPM3α2 channels were phosphorylated by CK2 in vitro at serine residue 1172. Accordingly, a TRPM3α2 S1172A mutant displayed enhanced Ca2+ entry. The TRPM3-mediated Ca2+ entry in INS-1 ß-cells was also strongly increased in the presence of CX-4945 and reduced after overexpression of CK2. Our study shows that CK2-mediated phosphorylation controls TRPM3 channel activity in INS-1 ß-cells.


Asunto(s)
Quinasa de la Caseína II/metabolismo , Células Secretoras de Insulina/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Quinasa de la Caseína II/antagonistas & inhibidores , Quinasa de la Caseína II/genética , Línea Celular , Células HEK293 , Humanos , Mutación , Naftiridinas/farmacología , Fenazinas/farmacología , Fosforilación , Pregnenolona/farmacología , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/genética
15.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34948452

RESUMEN

Sex hormone steroidal drugs were reported to have modulating actions on the ion channel TRPM3. Pregnenolone sulphate (PS) presents the most potent known endogenous chemical agonist of TRPM3 and affects several gating modes of the channel. These includes a synergistic action of PS and high temperatures on channel opening and the PS-induced opening of a noncanonical pore in the presence of other TRPM3 modulators. Moreover, human TRPM3 variants associated with neurodevelopmental disease exhibit an increased sensitivity for PS. However, other steroidal sex hormones were reported to influence TRPM3 functions with activating or inhibiting capacity. Here, we aimed to answer how DHEAS, estradiol, progesterone and testosterone act on the various modes of TRPM3 function in the wild-type channel and two-channel variants associated with human disease. By means of calcium imaging and whole-cell patch clamp experiments, we revealed that all four drugs are weak TRPM3 agonists that share a common steroidal interaction site. Furthermore, they exhibit increased activity on TRPM3 at physiological temperatures and in channels that carry disease-associated mutations. Finally, all steroids are able to open the noncanonical pore in wild-type and DHEAS also in mutant TRPM3. Collectively, our data provide new valuable insights in TRPM3 gating, structure-function relationships and ligand sensitivity.


Asunto(s)
Sulfato de Deshidroepiandrosterona/farmacología , Estradiol/farmacología , Progesterona/farmacología , Canales Catiónicos TRPM/metabolismo , Testosterona/farmacología , Sitios de Unión , Calcio/metabolismo , Sulfato de Deshidroepiandrosterona/química , Estradiol/química , Células HEK293 , Humanos , Estructura Molecular , Mutación , Progesterona/química , Relación Estructura-Actividad , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/química , Canales Catiónicos TRPM/genética , Temperatura , Testosterona/química , Regulación hacia Arriba
16.
Sci Rep ; 11(1): 23232, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34853378

RESUMEN

Transient receptor potential melastatin-8 (TRPM8) represents an emerging target in prostate cancer, although its mechanism of action remains unclear. Here, we have characterized and investigated the effects of TRPM8 modulators in prostate cancer aggressiveness disclosing the molecular mechanism underlying their biological activity. Patch-clamp and calcium fluorometric assays were used to characterize the synthesized compounds. Androgen-stimulated prostate cancer-derived cells were challenged with the compounds and the DNA synthesis was investigated in a preliminary screening. The most effective compounds were then employed to inhibit the pro-metastatic behavior of in various PC-derived cells, at different degree of malignancy. The effect of the compounds was then assayed in prostate cancer cell-derived 3D model and the molecular targets of selected compounds were lastly identified using transcriptional and non-transcriptional reporter assays. TRPM8 antagonists inhibit the androgen-dependent prostate cancer cell proliferation, migration and invasiveness. They are highly effective in reverting the androgen-induced increase in prostate cancer cell spheroid size. The compounds also revert the proliferation of castrate-resistant prostate cancer cells, provided they express the androgen receptor. In contrast, no effects were recorded in prostate cancer cells devoid of the receptor. Selected antagonists interfere in non-genomic androgen action and abolish the androgen-induced androgen receptor/TRPM8 complex assembly as well as the increase in intracellular calcium levels in prostate cancer cells. Our results shed light in the processes controlling prostate cancer progression and make the transient receptor potential melastatin-8 as a 'druggable' target in the androgen receptor-expressing prostate cancers.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/antagonistas & inhibidores , Andrógenos/farmacología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Masculino , Invasividad Neoplásica , Receptores Androgénicos , Esferoides Celulares
17.
Biol Pharm Bull ; 44(7): 947-957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34193690

RESUMEN

Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel activated by mild cooling and chemical agents including menthol. Nonsteroidal anti-inflammatory drugs have antipyretic, analgesic effects, and they can cause stomach and small intestinal injury. The current study investigated the role of TRPM8 in the pathogenesis of indomethacin-induced small intestinal injury. In male TRPM8-deficient (TRPM8KO) and wild-type (WT) mice, intestinal injury was induced via the subcutaneous administration of indomethacin. In addition, the effect of WS-12, a specific TRPM8 agonist, was examined in TRPM8KO and WT mice with indomethacin-induced intestinal injury. TRPM8KO mice had a significantly higher intestinal ulcerogenic response to indomethacin than WT mice. The repeated administration of WS-12 significantly attenuated the severity of intestinal injury in WT mice. However, this response was abrogated in TRPM8KO mice. Furthermore, in TRPM8-enhanced green fluorescent protein (EGFP) transgenic mice, which express EGFP under the direction of TRPM8 promoter, the EGFP signals in the indomethacin-treated intestinal mucosa were upregulated. Further, the EGFP signals were commonly found in calcitonin gene-related peptide (CGRP)-positive sensory afferent neurons and partly colocalized with substance P (SP)-positive neurons in the small intestine. The intestinal CGRP-positive neurons were significantly upregulated after the administration of indomethacin in WT mice. Nevertheless, this response was abrogated in TRPM8KO mice. In contrast, indomethacin increased the expression of intestinal SP-positive neurons in not only WT mice but also TRPM8KO mice. Thus, TRPM8 has a protective effect against indomethacin-induced small intestinal injury. This response may be mediated by the upregulation of CGRP, rather than SP.


Asunto(s)
Antiinflamatorios no Esteroideos , Indometacina , Canales Catiónicos TRPM/genética , Anilidas/farmacología , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Intestino Delgado/efectos de los fármacos , Intestino Delgado/lesiones , Intestino Delgado/metabolismo , Intestino Delgado/patología , Masculino , Mentol/análogos & derivados , Mentol/farmacología , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Sustancia P/metabolismo , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/metabolismo
18.
J Med Chem ; 64(9): 5931-5955, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33890770

RESUMEN

Transient receptor potential cation channel subfamily M member 5 (TRPM5) is a nonselective monovalent cation channel activated by intracellular Ca2+ increase. Within the gastrointestinal system, TRPM5 is expressed in the stoma, small intestine, and colon. In the search for a selective agonist of TRPM5 possessing in vivo gastrointestinal prokinetic activity, a high-throughput screening was performed and compound 1 was identified as a promising hit. Hit validation and hit to lead activities led to the discovery of a series of benzo[d]isothiazole derivatives. Among these, compounds 61 and 64 showed nanomolar activity and excellent selectivity (>100-fold) versus related cation channels. The in vivo drug metabolism and pharmacokinetic profile of compound 64 was found to be ideal for a compound acting locally at the intestinal level, with minimal absorption into systemic circulation. Compound 64 was tested in vivo in a mouse motility assay at 100 mg/kg, and demonstrated increased prokinetic activity.


Asunto(s)
Benzotiazoles/química , Benzotiazoles/farmacología , Tracto Gastrointestinal/metabolismo , Ensayos Analíticos de Alto Rendimiento , Canales Catiónicos TRPM/agonistas , Animales , Benzotiazoles/metabolismo , Benzotiazoles/farmacocinética , Diseño de Fármacos , Tracto Gastrointestinal/efectos de los fármacos , Humanos , Masculino , Ratones , Terapia Molecular Dirigida , Reproducibilidad de los Resultados , Distribución Tisular
19.
Molecules ; 26(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572112

RESUMEN

AR-15512 (formerly known as AVX-012 and WS-12) is a TRPM8 receptor agonist currently in phase 2b clinical trials for the treatment of dry eye. This bioactive compound with menthol-like cooling activity has three stereogenic centers, and its final structure and absolute configuration, (1R,2S,5R), have been previously solved by cryo-electron microscopy. The route of synthesis of AR-15512 has also been reported, revealing that epimerization processes at the C-1 can occur at specific stages of the synthesis. In order to confirm that the desired configuration of AR-15512 does not change throughout the process and to discard the presence of the enantiomer in the final product due to possible contamination of the initial starting material, both the enantiomer of AR-15512 and the diastereomer at the C-1 were synthesized and fully characterized. In addition, the absolute configuration of the (1S,2S,5R)-diastereomer was determined by X-ray crystallographic analysis, and new HPLC methods were designed and developed for the identification of the two stereoisomers and their comparison with the clinical candidate AR-15512.


Asunto(s)
Anilidas/química , Anilidas/farmacología , Cromatografía Líquida de Alta Presión/métodos , Mentol/análogos & derivados , Canales Catiónicos TRPM/agonistas , Cristalografía por Rayos X , Humanos , Mentol/química , Mentol/farmacología , Estructura Molecular , Estereoisomerismo
20.
Biol Pharm Bull ; 44(2): 181-187, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33518671

RESUMEN

Oligodendrocyte precursor cells (OPCs) are glial cells that differentiate into oligodendrocytes and myelinate axons. The number of OPCs is reportedly increased in brain lesions in some demyelinating diseases and during ischemia; however, these cells also secrete cytokines and elicit both protective and deleterious effects in response to brain injury. The mechanism regulating the behaviors of OPCs in physiological and pathological conditions must be elucidated to control these cells and to treat demyelinating diseases. Here, we focused on transient receptor potential melastatin 3 (TRPM3), a Ca2+-permeable channel that is activated by the neurosteroid pregnenolone sulfate (PS) and body temperature. Trpm3+/Pdgfra+ OPCs were detected in the cerebral cortex (CTX) and corpus callosum (CC) of P4 and adult rats by in situ hybridization. Trpm3 expression was detected in primary cultured rat OPCs and was increased by treatment with tumor necrosis factor α (TNFα). Application of PS (30-100 µM) increased the Ca2+ concentration in OPCs and this effect was inhibited by co-treatment with the TRP channel blocker Gd3+ (100 µM) or the TRPM3 inhibitor isosakuranetin (10 µM). Stimulation of TRPM3 with PS (50 µM) did not affect the differentiation or migration of OPCs. The number of Trpm3+ OPCs was markedly increased in demyelinated lesions in an endothelin-1 (ET-1)-induced ischemic rat model. In conclusion, TRPM3 is functionally expressed in OPCs in vivo and in vitro and is upregulated in inflammatory conditions such as ischemic insults and TNFα treatment, implying that TRPM3 is involved in the regulation of specific behaviors of OPCs in pathological conditions.


Asunto(s)
Corteza Cerebral/patología , Enfermedades Desmielinizantes/patología , Células Precursoras de Oligodendrocitos/patología , Accidente Vascular Cerebral Lacunar/patología , Canales Catiónicos TRPM/metabolismo , Animales , Células Cultivadas , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/citología , Cuerpo Calloso/irrigación sanguínea , Cuerpo Calloso/citología , Cuerpo Calloso/patología , Enfermedades Desmielinizantes/etiología , Modelos Animales de Enfermedad , Humanos , Células Precursoras de Oligodendrocitos/efectos de los fármacos , Pregnenolona/farmacología , Cultivo Primario de Células , Ratas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Accidente Vascular Cerebral Lacunar/complicaciones , Canales Catiónicos TRPM/agonistas , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...