Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Commun Biol ; 5(1): 746, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35882956

RESUMEN

Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism.


Asunto(s)
Hiperaldosteronismo , Canales Catiónicos TRPM , Aldosterona/farmacología , Animales , Fibrosis , Hiperaldosteronismo/genética , Hiperaldosteronismo/metabolismo , Riñón/metabolismo , Magnesio/metabolismo , Ratones , Proteína Fosfatasa 2C/metabolismo , Cloruro de Sodio , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo
2.
Cell Rep ; 37(3): 109851, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34686339

RESUMEN

Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.


Asunto(s)
Calcio/metabolismo , Adhesión Celular , Proliferación Celular , Magnesio/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Canales Catiónicos TRPM/deficiencia , Trofoblastos/metabolismo , Animales , Muerte Celular , Linaje de la Célula , Células Cultivadas , Implantación del Embrión , Desarrollo Embrionario , Femenino , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones , Ratones Noqueados , Células Madre Embrionarias de Ratones/patología , Transducción de Señal , Canales Catiónicos TRPM/genética , Trofoblastos/patología
3.
Mol Neurobiol ; 58(11): 5581-5601, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34370177

RESUMEN

Excessive Ca2+ influx and mitochondrial oxidative stress (OS) of trigeminal ganglia (TG) have essential roles in the etiology of migraine headache and aura. The stimulation of TRPM2 channel via the generation of OS and ADP-ribose (ADPR) induces pain, inflammatory, and oxidative neurotoxicity, although its inhibition reduces the intensity of pain and neurotoxicity in several neurons. However, the cellular and molecular effects of TRPM2 in the TG of migraine model (glyceryl trinitrate, GTN) on the induction of pain, OS, apoptosis, and inflammation remain elusive. GTN-mediated increases of pain intensity, apoptosis, death, cytosolic reactive oxygen species (ROS), mitochondrial ROS, caspase -3, caspase -9, cytosolic Ca2+ levels, and cytokine generations (TNF-α, IL-1ß, and IL-6) in the TG of TRPM2 wild-type mouse were further increased by the TRPM2 activation, although they were modulated by the treatments of GSH, PARP-1 inhibitors (PJ34 and DPQ), and TRPM2 blockers (ACA and 2APB). However, the effects of GTN were not observed in the TG of TRPM2 knockout mice. The current data indicate that the maintaining activation of TRPM2 is not only important for the quenching OS, inflammation, and neurotoxicity in the TG neurons of mice with experimental migraine but also equally critical to the modulation of GTN-induced pain.


Asunto(s)
Trastornos Migrañosos/metabolismo , Canales Catiónicos TRPM/fisiología , Ganglio del Trigémino/metabolismo , Adenosina Difosfato Ribosa/metabolismo , Animales , Apoptosis , Compuestos de Boro/farmacología , Señalización del Calcio , Caspasas/metabolismo , Cinamatos/farmacología , Citocinas/biosíntesis , Citocinas/genética , Activación Enzimática , Glutatión/metabolismo , Hiperalgesia/etiología , Hiperalgesia/fisiopatología , Peroxidación de Lípido , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/fisiopatología , Enfermedades Neuroinflamatorias , Neuronas/patología , Nitroglicerina/toxicidad , Estrés Oxidativo , Fenantrenos/farmacología , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/deficiencia , Ganglio del Trigémino/efectos de los fármacos , ortoaminobenzoatos/farmacología
4.
Nat Commun ; 12(1): 3683, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140503

RESUMEN

Blood pressure has a daily pattern, with higher values in the active period. Its elevation at the onset of the active period substantially increases the risk of fatal cardiovascular events. Renin secretion stimulated by renal sympathetic neurons is considered essential to this process; however, its regulatory mechanism remains largely unknown. Here, we show the importance of transient receptor potential melastatin-related 6 (TRPM6), a Mg2+-permeable cation channel, in augmenting renin secretion in the active period. TRPM6 expression is significantly reduced in the distal convoluted tubule of hypotensive Cnnm2-deficient mice. We generate kidney-specific Trpm6-deficient mice and observe a decrease in blood pressure and a disappearance of its circadian variation. Consistently, renin secretion is not augmented in the active period. Furthermore, renin secretion after pharmacological activation of ß-adrenoreceptor, the target of neuronal stimulation, is abrogated, and the receptor expression is decreased in renin-secreting cells. These results indicate crucial roles of TRPM6 in the circadian regulation of blood pressure.


Asunto(s)
Presión Sanguínea/fisiología , Túbulos Renales Distales/metabolismo , Riñón/metabolismo , Renina/metabolismo , Canales Catiónicos TRPM/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Presión Sanguínea/genética , Proteínas de Transporte de Catión/deficiencia , Proteínas de Transporte de Catión/genética , Línea Celular , Ritmo Circadiano/genética , Ritmo Circadiano/fisiología , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica/genética , Homeostasis , Isoproterenol/farmacología , Riñón/patología , Magnesio/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Interferencia de ARN , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Regulación hacia Arriba
5.
Transl Res ; 233: 127-143, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33691194

RESUMEN

Ophiocordyceps sinensis (OCS), an entomopathogenic fungus, is known to exert antiproliferative and antitissue remodeling effects. Vascular remodeling and vasoconstriction play critical roles in the development of pulmonary hypertension (PH). The therapeutic potential of OCS for PH was investigated using rodent PH models, and cultured pulmonary artery endothelial and smooth muscle cells (PAECs and PASMCs), with a focus on the involvement of TRPM7. OCS ameliorated the development of PH, right ventricular hypertrophy and dysfunction in the monocrotaline-induced PH rats. The genetic knockout of TRPM7 attenuated the development of PH in mice with monocrotaline pyrrole-induced PH. TRPM7 was associated with medial hypertrophy and the plexiform lesions in rats and humans with PH. OCS suppressed proliferation of PASMCs derived from the PH patients. Ethanol extracts of OCS inhibited TRPM7-like current, TGF-ß2-induced endothelial-mesenchymal transition, IL-6-induced STAT3 phosphorylation, and PDGF-induced Akt phosphorylation in PAECs or PASMCs. These inhibitory effects were recapitulated by either siRNA-mediated TRPM7 knockdown or treatment with TRPM7 antagonist FTY-720. OCS and FTY-720 induced vasorelaxation in the isolated normal human pulmonary artery. As a result, the present study proposes the therapeutic potential of OCS for the treatment of PH. The inhibition of TRPM7 is suggested to underlie the therapeutic effect of OCS.


Asunto(s)
Cordyceps/fisiología , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/terapia , Canales Catiónicos TRPM/antagonistas & inhibidores , Animales , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Clorhidrato de Fingolimod/farmacología , Técnicas de Silenciamiento del Gen , Humanos , Hipertensión Pulmonar/patología , Masculino , Medicina Tradicional China , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Factor de Transcripción STAT3/metabolismo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/fisiología , Investigación Biomédica Traslacional , Vasodilatación
6.
Mol Brain ; 14(1): 61, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785025

RESUMEN

The 15q13.3 microdeletion syndrome is a genetic disorder characterized by a wide spectrum of psychiatric disorders that is caused by the deletion of a region containing 7 genes on chromosome 15 (MTMR10, FAN1, TRPM1, MIR211, KLF13, OTUD7A, and CHRNA7). The contribution of each gene in this syndrome has been studied using mutant mouse models, but no single mouse model recapitulates the whole spectrum of human 15q13.3 microdeletion syndrome. The behavior of Trpm1-/- mice has not been investigated in relation to 15q13.3 microdeletion syndrome due to the visual impairment in these mice, which may confound the results of behavioral tests involving vision. We were able to perform a comprehensive behavioral test battery using Trpm1 null mutant mice to investigate the role of Trpm1, which is thought to be expressed solely in the retina, in the central nervous system and to examine the relationship between TRPM1 and 15q13.3 microdeletion syndrome. Our data demonstrate that Trpm1-/- mice exhibit abnormal behaviors that may explain some phenotypes of 15q13.3 microdeletion syndrome, including reduced anxiety-like behavior, abnormal social interaction, attenuated fear memory, and the most prominent phenotype of Trpm1 mutant mice, hyperactivity. While the ON visual transduction pathway is impaired in Trpm1-/- mice, we did not detect compensatory high sensitivities for other sensory modalities. The pathway for visual impairment is the same between Trpm1-/- mice and mGluR6-/- mice, but hyperlocomotor activity has not been reported in mGluR6-/- mice. These data suggest that the phenotype of Trpm1-/- mice extends beyond that expected from visual impairment alone. Here, we provide the first evidence associating TRPM1 with impairment of cognitive function similar to that observed in phenotypes of 15q13.3 microdeletion syndrome.


Asunto(s)
Ansiedad/genética , Cromosomas Humanos Par 15/genética , Hipercinesia/genética , Canales Catiónicos TRPM/genética , Animales , Monoaminas Biogénicas/análisis , Química Encefálica , Conducta Exploratoria , Estudios de Asociación Genética , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Metilfenidato/farmacología , Ratones , Ratones Noqueados , Prueba de Campo Abierto , Reflejo de Sobresalto , Prueba de Desempeño de Rotación con Aceleración Constante , Eliminación de Secuencia , Interacción Social , Memoria Espacial , Natación , Canales Catiónicos TRPM/deficiencia , Trastornos de la Visión/genética
7.
Biochem Pharmacol ; 183: 114310, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33130130

RESUMEN

During the molecular transduction of itch, the stimulation of pruriceptors on sensory fibers leads to the activation or sensitization of ion channels, which results in a consequent depolarization of the neurons. These ion channels mostly belong to the transient receptor potential (TRP) channels, which are involved in nociception and thermosensation. In particular, TRPV1 and TRPA1 were described in the transduction of both thermal nociception as well as histaminergic and non-histaminergic itch. The thermosensitive TRPM3 plays an indispensable role in heat nociception together with TRPV1 and TRPA1. However, the role of TRPM3 in the development of pruritus has not been studied yet. Therefore, in this study we aimed at investigating the potential role of TRPM3 in the transduction of pruritus and pain by investigating itch- and nociception-related behavior of Trpm3+/+ and Trpm3-/- mice, and by studying the activation of somatosensory neurons isolated from trigeminal ganglia upon application of algogenic and pruritogenic substances. Activators of TRPM3 evoked only nocifensive responses, but not itch in Trpm3+/+ animals, and these nocifensive responses were abolished in the Trpm3-/- strain. Histamine and endogenous non-histaminergic pruritogens induced itch in both Trpm3+/+ and Trpm3-/- mice to a similar extent. Genetic deletion or pharmacological blockade diminished TRPM3 mediated Ca2+ responses of sensory neurons, but did not affect responses evoked by pruritogenic substances. Our results demonstrate that, in contrast to other thermosensitive TRP channels, TRPM3 selectively mediates nociception, but not itch sensation, and suggest that TRPM3 is a promising candidate to selectively target pain sensation.


Asunto(s)
Nocicepción/fisiología , Prurito/inducido químicamente , Prurito/metabolismo , Canales Catiónicos TRPM/deficiencia , Animales , Capsaicina/toxicidad , Endotelina-1/toxicidad , Histamina/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Canales Catiónicos TRPM/antagonistas & inhibidores
8.
Eur J Pharmacol ; 891: 173671, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33131720

RESUMEN

Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca2+-permeable channel. The activation of TRPM2 by H2O2 causes cell death in various types of cells. 5-Fluorouracil (5-FU) is an important anticancer drug, but myelosuppression is one of the most frequent adverse effects. The involvement of oxidative stress in 5-FU-induced myelosuppression has been reported, and bone marrow cells are known to express TRPM2. The aim of this study was to investigate whether TRPM2 is involved in 5-FU-induced myelosuppression. Enhancement of H2O2-induced intracellular Ca2+ concentration ([Ca2+]i) increase by 5-FU treatment was observed in human embryonic kidney 293 (HEK) cells stably expressing TRPM2 but not in HEK cells, indicating that 5-FU stimulates TRPM2 activation. In CD117 positive cells from wild type (WT) mouse bone marrow, 5-FU also enhanced the H2O2-induced [Ca2+]i increases, but not in cells from Trpm2 knockout (KO) mice. In the CFU-GM colony assay, the 5-FU-induced reduction of colony number was alleviated by Trpm2 deficiency. Moreover, the reduction of leukocytes in blood by administration with 5-FU in WT mice was also alleviated in Trpm2 KO mice. The activation of TRPM2 in bone marrow cells seems to be involved in 5-FU-induced myelosuppression.


Asunto(s)
Antimetabolitos Antineoplásicos/toxicidad , Proliferación Celular/efectos de los fármacos , Fluorouracilo/toxicidad , Células Madre Hematopoyéticas/efectos de los fármacos , Canales Catiónicos TRPM/agonistas , Canales Catiónicos TRPM/metabolismo , Animales , Células HEK293 , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética
9.
Basic Res Cardiol ; 115(6): 70, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33205255

RESUMEN

Transient receptor potential melastatin 4 (TRPM4) cation channels act in cardiomyocytes as a negative modulator of the L-type Ca2+ current. Ubiquitous Trpm4 deletion in mice leads to an increased ß-adrenergic inotropy in healthy mice as well as after myocardial infarction. In this study, we set out to investigate cardiac inotropy in mice with cardiomyocyte-specific Trpm4 deletion. The results guided us to investigate the relevance of TRPM4 for catecholamine-evoked Ca2+ signaling in cardiomyocytes and inotropy in vivo in TRPM4-deficient mouse models of different genetic background. Cardiac hemodynamics were investigated using pressure-volume analysis. Surprisingly, an increased ß-adrenergic inotropy was observed in global TRPM4-deficient mice on a 129SvJ genetic background, but the inotropic response was unaltered in mice with global and cardiomyocyte-specific TRPM4 deletion on the C57Bl/6N background. We found that the expression of TRPM4 proteins is about 78 ± 10% higher in wild-type mice on the 129SvJ versus C57Bl/6N background. In accordance with contractility measurements, our analysis of the intracellular Ca2+ transients revealed an increase in ISO-evoked Ca2+ rise in Trpm4-deficient cardiomyocytes of the 129SvJ strain, but not of the C57Bl/6N strain. No significant differences were observed between the two mouse strains in the expression of other regulators of cardiomyocyte Ca2+ homeostasis. We conclude that the relevance of TRPM4 for cardiac contractility depends on homeostatic TRPM4 expression levels or the genetic endowment in different mouse strains as well as on the health/disease status. Therefore, the concept of inhibiting TRPM4 channels to improve cardiac contractility needs to be carefully explored in specific strains and species and prospectively in different genetically diverse populations of patients.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Canales Catiónicos TRPM/metabolismo , Agonistas Adrenérgicos beta/farmacología , Animales , Señalización del Calcio/efectos de los fármacos , Isoproterenol/farmacología , Cinética , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Contracción Miocárdica , Miocitos Cardíacos/efectos de los fármacos , Especificidad de la Especie , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Función Ventricular Izquierda
10.
Front Immunol ; 11: 2124, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013896

RESUMEN

The importance of the intracellular Ca2+ concentration ([Ca2+]i) in neutrophil function has been intensely studied. However, the role of the intracellular Na+ concentration ([Na+]i) which is closely linked to the intracellular Ca2+ regulation has been largely overlooked. The [Na+]i is regulated by Na+ transport proteins such as the Na+/Ca2+-exchanger (NCX1), Na+/K+-ATPase, and Na+-permeable, transient receptor potential melastatin 2 (TRPM2) channel. Stimulating with either N-formylmethionine-leucyl-phenylalanine (fMLF) or complement protein C5a causes distinct changes of the [Na+]i. fMLF induces a sustained increase of [Na+]i, surprisingly, reaching higher values in TRPM2-/- neutrophils. This outcome is unexpected and remains unexplained. In both genotypes, C5a elicits only a transient rise of the [Na+]i. The difference in [Na+]i measured at t = 10 min after stimulation is inversely related to neutrophil chemotaxis. Neutrophil chemotaxis is more efficient in C5a than in an fMLF gradient. Moreover, lowering the extracellular Na+ concentration from 140 to 72 mM improves chemotaxis of WT but not of TRPM2-/- neutrophils. Increasing the [Na+]i by inhibiting the Na+/K+-ATPase results in disrupted chemotaxis. This is most likely due to the impact of the altered Na+ homeostasis and presumably NCX1 function whose expression was shown by means of qPCR and which critically relies on proper extra- to intracellular Na+ concentration gradients. Increasing the [Na+]i by a few mmol/l may suffice to switch its transport mode from forward (Ca2+-efflux) to reverse (Ca2+-influx) mode. The role of NCX1 in neutrophil chemotaxis is corroborated by its blocker, which also causes a complete inhibition of chemotaxis.


Asunto(s)
Quimiotaxis de Leucocito/inmunología , Homeostasis/inmunología , Sodio/fisiología , Canales Catiónicos TRPM/fisiología , Animales , Calcio/fisiología , Línea Celular Tumoral , Células Cultivadas , Quimiotaxis de Leucocito/efectos de los fármacos , Complemento C5a/inmunología , Complemento C5a/farmacología , Líquido Intracelular/inmunología , Leucemia Mieloide , Ratones , Ratones Endogámicos C57BL , N-Formilmetionina Leucil-Fenilalanina/farmacología , Activación Neutrófila/efectos de los fármacos , Intercambiador de Sodio-Calcio/fisiología , ATPasa Intercambiadora de Sodio-Potasio/fisiología , Canales Catiónicos TRPM/deficiencia
11.
J Alzheimers Dis ; 76(2): 613-621, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32538852

RESUMEN

BACKGROUND: Previous studies indicate that taste dysfunction occurs early in the development of Alzheimer's disease. It is debatable whether the deficit in taste is due primarily to peripheral sensory mechanisms or to central processing, or a combination of the two. OBJECTIVE: The aim of our current study is to combine behavior and histological data in APP/PS1 transgenic mice to determine whether APP/PS1 transgenic mice show deficits in unconditioned taste preference and avoidance behaviors and whether taste impairments are due to defects in the peripheral taste system and/or problems with central processing of taste information. METHODS: The APP/PS1 transgenic mutant mice were used as a model of Alzheimer's disease. We employed a brief-access gustometer test to assess immediate orosensory taste responses of APP/PS1 mice. We used immunohistochemistry to examine tongue, gustatory ganglion, and brain tissues to determine a cytological basis for behavioral deficits. RESULTS: There is a significant, selective reduction of bitter taste sensitivity in APP/PS1 mice. These mice also have a loss of TRPM5-expressing taste receptor cells in the circumvallate papillae of the tongue. While we observed no overt loss of neuron cell bodies within the primary gustatory sensory neurons, degeneration of the neurons' peripheral axons innervating the taste bud may play a role in the observed loss of TRPM5-expressing taste receptor cells. CONCLUSION: This data supports a potential role for peripheral taste dysfunction in AD through the selective loss of taste receptor cells. Further study is necessary to delineate the mechanisms and pathological significance of this deficit in AD.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Mutación/genética , Presenilina-1/genética , Trastornos del Gusto/genética , Gusto/genética , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Quinina/administración & dosificación , Sacarosa/administración & dosificación , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Gusto/efectos de los fármacos , Trastornos del Gusto/fisiopatología
12.
Immunity ; 52(4): 683-699.e11, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32294408

RESUMEN

Mucociliary clearance through coordinated ciliary beating is a major innate defense removing pathogens from the lower airways, but the pathogen sensing and downstream signaling mechanisms remain unclear. We identified virulence-associated formylated bacterial peptides that potently stimulated ciliary-driven transport in the mouse trachea. This innate response was independent of formyl peptide and taste receptors but depended on key taste transduction genes. Tracheal cholinergic chemosensory cells expressed these genes, and genetic ablation of these cells abrogated peptide-driven stimulation of mucociliary clearance. Trpm5-deficient mice were more susceptible to infection with a natural pathogen, and formylated bacterial peptides were detected in patients with chronic obstructive pulmonary disease. Optogenetics and peptide stimulation revealed that ciliary beating was driven by paracrine cholinergic signaling from chemosensory to ciliated cells operating through muscarinic M3 receptors independently of nerves. We provide a cellular and molecular framework that defines how tracheal chemosensory cells integrate chemosensation with innate defense.


Asunto(s)
Acetilcolina/inmunología , Proteínas Bacterianas/farmacología , Cilios/inmunología , Depuración Mucociliar/inmunología , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Canales Catiónicos TRPM/inmunología , Tráquea/inmunología , Acetilcolina/metabolismo , Animales , Proteínas Bacterianas/inmunología , Transporte Biológico , Cilios/efectos de los fármacos , Cilios/metabolismo , Femenino , Formiatos/metabolismo , Expresión Génica , Humanos , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Optogenética/métodos , Comunicación Paracrina/inmunología , Enfermedad Pulmonar Obstructiva Crónica/genética , Enfermedad Pulmonar Obstructiva Crónica/patología , Receptor Muscarínico M3/genética , Receptor Muscarínico M3/inmunología , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/inmunología , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Papilas Gustativas/inmunología , Papilas Gustativas/metabolismo , Tráquea/efectos de los fármacos , Tráquea/patología , Virulencia
13.
Front Immunol ; 11: 97, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32117251

RESUMEN

During infection, phagocytic cells pursue homeostasis in the host via multiple mechanisms that control microbial invasion. Neutrophils respond to infection by exerting a variety of cellular processes, including chemotaxis, activation, phagocytosis, degranulation and the generation of reactive oxygen species (ROS). Calcium (Ca2+) signaling and the activation of specific Ca2+ channels are required for most antimicrobial effector functions of neutrophils. The transient receptor potential melastatin-2 (TRPM2) cation channel has been proposed to play important roles in modulating Ca2+ mobilization and oxidative stress in neutrophils. In the present study, we use a mouse model of Listeria monocytogenes infection to define the role of TRPM2 in the regulation of neutrophils' functions during infection. We show that the susceptibility of Trpm2-/- mice to L. monocytogenes infection is characterized by increased migration rates of neutrophils and monocytes to the liver and spleen in the first 24 h. During the acute phase of L. monocytogenes infection, Trpm2-/- mice developed septic shock, characterized by increased serum levels of TNF-α, IL-6, and IL-10. Furthermore, in vivo depletion of neutrophils demonstrated a critical role of these immune cells in regulating acute inflammation in Trpm2-/- infected mice. Gene expression and inflammatory cytokine analyses of infected tissues further confirmed the hyperinflammatory profile of Trpm2-/- neutrophils. Finally, the increased inflammatory properties of Trpm2-/- neutrophils correlated with the dysregulated cytoplasmic concentration of Ca2+ and potentiated membrane depolarization, in response to L. monocytogenes. In conclusion, our findings suggest that the TRPM2 channel plays critical functional roles in regulating the inflammatory properties of neutrophils and preventing tissue damage during Listeria infection.


Asunto(s)
Listeriosis/inmunología , Neutrófilos/inmunología , Canales Catiónicos TRPM/fisiología , Animales , Señalización del Calcio/inmunología , Muerte Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Expresión Génica , Inflamación/metabolismo , Listeria monocytogenes , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/metabolismo
14.
Cardiovasc Res ; 116(3): 721-735, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31250885

RESUMEN

AIMS: Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. METHODS AND RESULTS: TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFß) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFß in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. CONCLUSIONS: We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes.


Asunto(s)
Cardiomegalia/metabolismo , Cardiomiopatías/metabolismo , Mediadores de Inflamación/metabolismo , Inflamación/metabolismo , Miocardio/metabolismo , Canales Catiónicos TRPM/metabolismo , Remodelación Ventricular , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Cardiomegalia/fisiopatología , Cardiomiopatías/genética , Cardiomiopatías/patología , Cardiomiopatías/fisiopatología , Proliferación Celular , Células Cultivadas , Técnicas de Cocultivo , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Inflamación/genética , Inflamación/patología , Inflamación/fisiopatología , Rodamiento de Leucocito , Macrófagos/metabolismo , Macrófagos/patología , Magnesio/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Miocardio/patología , Transducción de Señal , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Migración Transendotelial y Transepitelial
15.
Cancer Biomark ; 26(4): 451-460, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31640089

RESUMEN

BACKGROUND: It has been documented that transient receptor potential melastatin 7 (TRPM7) plays a pivotal role in the development of multiple cancers. However, the role of TRPM7 in human colorectal cancer (CRC) is poorly understood. Therefore, the aim of this study was to investigate the expression and significance of TRPM7 in CRC. METHODS: In this study, TRPM7 expression was first investigated in Gene Expression Omnibus (GEO), and then validated it with the data from our medical center. CCK-8, colony survival, transwell, and flow cytometry assays were employed to evaluate the effects of TRPM7 knockdown on the CRC cell proliferation, migration, and invasion, as well as cell cycle and apoptosis. RESULTS: We observed markedly increased TRPM7 expression in CRC tissues. CRC patients with high expression of TRPM7 suggested deeper tumor infiltration, positive lymph node metastasis, distant metastasis, and advanced clinical stage. In addition, TRPM7 was also overexpressed in CRC cell lines. Downregulated TRPM7 in vitro suppressed CRC cell proliferation, migration, and invasion, as well as triggered cell cycle arrest at the G0/G1 phase, reduced the S phase, and promoted apoptosis. Importantly, decreased TRPM7 in CRC cells reversed the epithelial-mesenchymal transition (EMT) status, accompanied by downregulation of N-cadherin and upregulation of E-cadherin. CONCLUSION: Our study indicated that the expression of TRPM7 was positively correlated with tumor infiltration, lymph node metastasis, distant metastasis and clinical stage of CRC. Besides, decreased TRPM7 in vitro inhibited CRC cell proliferation, migration and invasion by modulating EMT.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Proteínas Serina-Treonina Quinasas/deficiencia , Canales Catiónicos TRPM/deficiencia , Línea Celular Tumoral , Movimiento Celular/fisiología , Neoplasias Colorrectales/patología , Regulación hacia Abajo , Transición Epitelial-Mesenquimal , Femenino , Humanos , Metástasis Linfática , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal , Canales Catiónicos TRPM/metabolismo , Transfección
16.
Artif Cells Nanomed Biotechnol ; 47(1): 3448-3455, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31411068

RESUMEN

Ventilator has been widely used for life support, but ventilator-induced lung injury (VILI) is still a major problem. Oxidative stress has been considered as a key contributor for VILI, but the specific mechanism remains unclear. The expression of NLRP3 inflammasome in cells and inflammatory factors in the supernatant were measured. Mitochondrial ROS and TRPM2 channel currents were investigated using flow cytometry and Patch-clamp technique, respectively. TRPM2-/- and NLRP3-/- mice were used for animal experiments. Lung tissues were stained by HE and the wet-dry ratio, bronchoalveolar lavage fluid (BALF) protein, MPO (marrow peroxidase), NLRP3 inflammasome were also investigated. Knockdown of NLRP3 or Caspase-1 or treatments with SS-31 or YVAD inhibited the expression of the NLRP3 inflammasome, and reduced IL-1ß and IL-18 levels in cell supernatant. These treatments suppressed the production of ROS and lowered the TRPM2 channel currents, but Rotenone exerted an opposite effect. High-tidal volume ventilation significantly increased the levels of IL-1ß, IL-18, NLRP3 inflammasome, wet-dry ratio of lung, MPO and BALF protein. However, these parameters were down-regulated in TRPM2-/- and NLRP3-/- mice. These parameters were suppressed in TRPM2-/- and NLRP3-/- mice indicate that oxidative stress might promote VILI through activating NLRP3 inflammasome and TRPM2 channel.


Asunto(s)
Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Estrés Oxidativo , Canales Catiónicos TRPM/metabolismo , Lesión Pulmonar Inducida por Ventilación Mecánica/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Lesión Pulmonar Inducida por Ventilación Mecánica/genética
17.
Biochem Biophys Res Commun ; 516(3): 825-830, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31262448

RESUMEN

(-)-menthol, a major form of menthol, is one of the most commonly used chemicals. Many studies have demonstrated that (-)-menthol produces analgesic action through peripheral mechanisms which are mainly mediated by activation of TRPM8. Moreover, intrathecal injection of menthol induces analgesia as well. However, the central actions and mechanisms of (-)-menthol remain unclear. Here, we have investigated the action of (-)-menthol on excitatory synaptic transmission in spinal lamina II layer which plays a pivotal role in modulating nociceptive transmission from the periphery by using patch-clamp technique in mice spinal cord. We found that (-)-menthol increased miniature excitatory postsynaptic current frequency. The frequency increases which (-)-menthol induced were in a dose-dependent manner (EC50: 0.1079 mM). However, neither genetic knockout nor pharmacological inhibition of TRPM8 could block (-)-menthol-induced effects entirely. Furthermore, this increase was also impaired by TRPA1 antagonist HC030031, but abolished utterly by co-application of TRPM8 and TRPA1 antagonist. Our results indicate that (-)-menthol increases the excitatory synaptic transmission by activating either TRPA1 or TRPM8 channels in spinal lamina II layer.


Asunto(s)
Potenciales Postsinápticos Excitadores/efectos de los fármacos , Mentol/farmacología , Médula Espinal/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/genética , Acetanilidas/farmacología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Benzamidas/farmacología , Relación Dosis-Respuesta a Droga , Potenciales Postsinápticos Excitadores/fisiología , Regulación de la Expresión Génica , Inyecciones Espinales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microtomía , Técnicas de Placa-Clamp , Purinas/farmacología , Médula Espinal/citología , Médula Espinal/fisiología , Transmisión Sináptica/fisiología , Canal Catiónico TRPA1/antagonistas & inhibidores , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/antagonistas & inhibidores , Canales Catiónicos TRPM/deficiencia , Tetrodotoxina/farmacología , Tiofenos/farmacología , Técnicas de Cultivo de Tejidos
18.
Mol Neurobiol ; 56(5): 3819-3832, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30215158

RESUMEN

TRPM2 a cation channel is also known to work as an enzyme that hydrolyzes highly reactive, neurotoxic ADP-ribose (ADPR). Although ADPR is hydrolyzed by NUT9 pyrophosphatase in major organs, the enzyme is defective in the brain. The present study questions the role of TRPM2 in the catabolism of ADPR in the brain. Genetic ablation of Trpm2 results in the disruption of ADPR catabolism that leads to the accumulation of ADPR and reduction in AMP. Trpm2-/- mice elicit the reduction in autophagosome formation in the hippocampus. Trpm2-/- mice also show aggregations of proteins in the hippocampus, aberrant structural changes and neuronal connections in synapses, and neuronal degeneration. Trpm2-/- mice exhibit learning and memory impairment, enhanced neuronal intrinsic excitability, and imbalanced synaptic transmission. These results respond to long-unanswered questions regarding the potential role of the enzymatic function of TRPM2 in the brain, whose dysfunction evokes protein aggregation. In addition, the present finding answers to the conflicting reports such as neuroprotective or neurodegenerative phenotypes observed in Trpm2-/- mice.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Autofagia , Encéfalo/metabolismo , Eliminación de Gen , Agregado de Proteínas , Canales Catiónicos TRPM/deficiencia , Animales , Cognición , Hipocampo/metabolismo , Hidrólisis , Memoria , Ratones Endogámicos C57BL , Ratones Noqueados , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Plasticidad Neuronal , Neuronas/metabolismo , Transmisión Sináptica , Canales Catiónicos TRPM/metabolismo
19.
Sci Rep ; 8(1): 5510, 2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29615639

RESUMEN

Transient receptor potential melastatin 7 (TRPM7) is a membrane ion channel and kinase. TRPM7 was abundantly expressed in the kidney, and up-regulated by ischemia reperfusion (IR) injury. Our previous studies showed that cyclic helix B peptide (CHBP) improved renal IR-related injury, but its underlying mechanism is not well defined. IR-related injury was established in renal tubular epithelial cells (TCMK-1 and HK-2) via 12 to 24-h hypoxia (H) followed by 2-24 h reoxygenation (R), and in mouse kidneys subjected to 30-min ischemia and 12-h to 7-day reperfusion. TRPM7-like current in TCMK-1 cells, TRPM7 mRNA and protein in the in vitro and in vivo models were increased, but reversed by CHBP. TRPM7 was also positively associated with LDH, HMGB1, caspase-3, Bax/Bcl-2, inflammation, apoptosis, tubulointerstitial damage and renal function respectively. Furthermore, silencing TRPM7 improved injury parameters, renal histology and function in the both models. Specific TRPM7 agonist, bradykinin, exaggerated HR induced injury in TCMK-1 cells, and partially blocked the renoprotection of CHBP as well. In conclusion, TRPM7 is involved not only in IR-related injury, but also CHBP-induced renoprotection, which are through its ion channel and subsequent affects inflammation and apoptosis. Therefore, TRPM7 could be a potential biomarker for IR-induced acute kidney injury.


Asunto(s)
Riñón/efectos de los fármacos , Riñón/lesiones , Péptidos Cíclicos/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Daño por Reperfusión/patología , Canales Catiónicos TRPM/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Expresión Génica/efectos de los fármacos , Silenciador del Gen , Humanos , Riñón/metabolismo , Riñón/patología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/patología , Ratones , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/genética , ARN Interferente Pequeño/genética , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética
20.
Nature ; 555(7698): 662-666, 2018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29539642

RESUMEN

Acute pain represents a crucial alarm signal to protect us from injury. Whereas the nociceptive neurons that convey pain signals were described more than a century ago, the molecular sensors that detect noxious thermal or mechanical insults have yet to be fully identified. Here we show that acute noxious heat sensing in mice depends on a triad of transient receptor potential (TRP) ion channels: TRPM3, TRPV1, and TRPA1. We found that robust somatosensory heat responsiveness at the cellular and behavioural levels is observed only if at least one of these TRP channels is functional. However, combined genetic or pharmacological elimination of all three channels largely and selectively prevents heat responses in both isolated sensory neurons and rapidly firing C and Aδ sensory nerve fibres that innervate the skin. Strikingly, Trpv1-/-Trpm3-/-Trpa1-/- triple knockout (TKO) mice lack the acute withdrawal response to noxious heat that is necessary to avoid burn injury, while showing normal nociceptive responses to cold or mechanical stimuli and a preserved preference for moderate temperatures. These findings indicate that the initiation of the acute heat-evoked pain response in sensory nerve endings relies on three functionally redundant TRP channels, representing a fault-tolerant mechanism to avoid burn injury.


Asunto(s)
Calor/efectos adversos , Dolor Nociceptivo/fisiopatología , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo , Sensación Térmica/fisiología , Animales , Quemaduras/fisiopatología , Quemaduras/prevención & control , Frío/efectos adversos , Femenino , Masculino , Ratones , Ratones Noqueados , Terminaciones Nerviosas/fisiología , Fibras Nerviosas/fisiología , Nocicepción/fisiología , Células Receptoras Sensoriales/fisiología , Piel/inervación , Piel/fisiopatología , Canal Catiónico TRPA1/deficiencia , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Sensación Térmica/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...