Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.954
Filtrar
1.
Zhonghua Yi Xue Za Zhi ; 104(28): 2642-2647, 2024 Jul 23.
Artículo en Chino | MEDLINE | ID: mdl-39019822

RESUMEN

The data of 57 renal cyst patients who visited the First Affiliated Hospital of Zhengzhou University from January 2023 to March 2024 were retrospectively analyzed. The age of patients ranged from three months to 60 years old, with 31 males and 26 females. The whole exome sequencing (WES) detected pathogenic or suspected pathogenic (P/LP) variants in 48 renal cystic probands, with a detection rate of 84.2% (48/57), including PKD1, PKD2, PKHD1, LRP5, COL4A4 and ALG8 gene variants as well as copy number variations (CNV). In addition, four PKD1 gene variants of uncertain significance (VUS) were detected. In five WES negative families, one PKD1 nonsense variation was detected through long-range PCR (LR-PCR)+Oxford nanopore technologies, and one heterozygous deletion in exon 22 of PKD1 gene was detected through multiplex ligation-dependent probe amplification (MLPA). In summary, WES can detect multiple types of variations, which is helpful for early diagnosis and prognosis prediction of renal cyst patients. However, there is still a risk of failing to detect PKD1 gene by WES, therefore, healthcare practitioners should beware of the negative results of WES.


Asunto(s)
Variaciones en el Número de Copia de ADN , Secuenciación del Exoma , Enfermedades Renales Quísticas , Humanos , Masculino , Femenino , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Adolescente , Niño , Enfermedades Renales Quísticas/genética , Enfermedades Renales Quísticas/diagnóstico , Preescolar , Lactante , Adulto Joven , Canales Catiónicos TRPP/genética , Mutación
2.
Int J Mol Sci ; 25(13)2024 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-39000280

RESUMEN

Multiple alterations of cellular metabolism have been documented in experimental studies of autosomal dominant polycystic kidney disease (ADPKD) and are thought to contribute to its pathogenesis. To elucidate the molecular pathways and transcriptional regulators associated with the metabolic changes of renal cysts in ADPKD, we compared global gene expression data from human PKD1 renal cysts, minimally cystic tissues (MCT) from the same patients, and healthy human kidney cortical tissue samples. We found gene expression profiles of PKD1 renal cysts were consistent with the Warburg effect with gene pathway changes favoring increased cellular glucose uptake and lactate production, instead of pyruvate oxidation. Additionally, mitochondrial energy metabolism was globally depressed, associated with downregulation of gene pathways related to fatty acid oxidation (FAO), branched-chain amino acid (BCAA) degradation, the Krebs cycle, and oxidative phosphorylation (OXPHOS) in renal cysts. Activation of mTORC1 and its two target proto-oncogenes, HIF-1α and MYC, was predicted to drive the expression of multiple genes involved in the observed metabolic reprogramming (e.g., GLUT3, HK1/HK2, ALDOA, ENO2, PKM, LDHA/LDHB, MCT4, PDHA1, PDK1/3, MPC1/2, CPT2, BCAT1, NAMPT); indeed, their predicted expression patterns were confirmed by our data. Conversely, we found AMPK inhibition was predicted in renal cysts. AMPK inhibition was associated with decreased expression of PGC-1α, a transcriptional coactivator for transcription factors PPARα, ERRα, and ERRγ, all of which play a critical role in regulating oxidative metabolism and mitochondrial biogenesis. These data provide a comprehensive map of metabolic pathway reprogramming in ADPKD and highlight nodes of regulation that may serve as targets for therapeutic intervention.


Asunto(s)
Metabolismo Energético , Riñón Poliquístico Autosómico Dominante , Biología de Sistemas , Humanos , Biología de Sistemas/métodos , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Fosforilación Oxidativa , Regulación de la Expresión Génica
3.
Sci Rep ; 14(1): 15140, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956234

RESUMEN

Rapamycin slows cystogenesis in murine models of polycystic kidney disease (PKD) but failed in clinical trials, potentially due to insufficient drug dosing. To improve drug efficiency without increasing dose, kidney-specific drug delivery may be used. Mesoscale nanoparticles (MNP) selectively target the proximal tubules in rodents. We explored whether MNPs can target cystic kidney tubules and whether rapamycin-encapsulated-MNPs (RapaMNPs) can slow cyst growth in Pkd1 knockout (KO) mice. MNP was intravenously administered in adult Pkd1KO mice. Serum and organs were harvested after 8, 24, 48 or 72 h to measure MNP localization, mTOR levels, and rapamycin concentration. Pkd1KO mice were then injected bi-weekly for 6 weeks with RapaMNP, rapamycin, or vehicle to determine drug efficacy on kidney cyst growth. Single MNP injections lead to kidney-preferential accumulation over other organs, specifically in tubules and cysts. Likewise, one RapaMNP injection resulted in higher drug delivery to the kidney compared to the liver, and displayed sustained mTOR inhibition. Bi-weekly injections with RapaMNP, rapamycin or vehicle for 6 weeks resulted in inconsistent mTOR inhibition and little change in cyst index, however. MNPs serve as an effective short-term, kidney-specific delivery system, but long-term RapaMNP failed to slow cyst progression in Pkd1KO mice.


Asunto(s)
Modelos Animales de Enfermedad , Ratones Noqueados , Nanopartículas , Enfermedades Renales Poliquísticas , Sirolimus , Animales , Sirolimus/administración & dosificación , Sirolimus/farmacología , Ratones , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Nanopartículas/administración & dosificación , Serina-Treonina Quinasas TOR/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón/metabolismo , Riñón/efectos de los fármacos , Riñón/patología , Sistemas de Liberación de Medicamentos , Masculino
4.
Cells ; 13(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38891116

RESUMEN

Polycystic kidney disease (PKD) is characterized by extensive cyst formation and progressive fibrosis. However, the molecular mechanisms whereby the loss/loss-of-function of Polycystin 1 or 2 (PC1/2) provokes fibrosis are largely unknown. The small GTPase RhoA has been recently implicated in cystogenesis, and we identified the RhoA/cytoskeleton/myocardin-related transcription factor (MRTF) pathway as an emerging mediator of epithelium-induced fibrogenesis. Therefore, we hypothesized that MRTF is activated by PC1/2 loss and plays a critical role in the fibrogenic reprogramming of the epithelium. The loss of PC1 or PC2, induced by siRNA in vitro, activated RhoA and caused cytoskeletal remodeling and robust nuclear MRTF translocation and overexpression. These phenomena were also manifested in PKD1 (RC/RC) and PKD2 (WS25/-) mice, with MRTF translocation and overexpression occurring predominantly in dilated tubules and the cyst-lining epithelium, respectively. In epithelial cells, a large cohort of PC1/PC2 downregulation-induced genes was MRTF-dependent, including cytoskeletal, integrin-related, and matricellular/fibrogenic proteins. Epithelial MRTF was necessary for the paracrine priming of the fibroblast-myofibroblast transition. Thus, MRTF acts as a prime inducer of epithelial fibrogenesis in PKD. We propose that RhoA is a common upstream inducer of both histological hallmarks of PKD: cystogenesis and fibrosis.


Asunto(s)
Células Epiteliales , Enfermedades Renales Poliquísticas , Canales Catiónicos TRPP , Proteína de Unión al GTP rhoA , Animales , Humanos , Ratones , Citoesqueleto/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Fibrosis , Ratones Endogámicos C57BL , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/patología , Enfermedades Renales Poliquísticas/genética , Proteína de Unión al GTP rhoA/metabolismo , Transactivadores/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética
5.
EMBO Rep ; 25(7): 3040-3063, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38849673

RESUMEN

Polarized vesicular trafficking directs specific receptors and ion channels to cilia, but the underlying mechanisms are poorly understood. Here we describe a role for DLG1, a core component of the Scribble polarity complex, in regulating ciliary protein trafficking in kidney epithelial cells. Conditional knockout of Dlg1 in mouse kidney causes ciliary elongation and cystogenesis, and cell-based proximity labeling proteomics and fluorescence microscopy show alterations in the ciliary proteome upon loss of DLG1. Specifically, the retromer-associated protein SDCCAG3, IFT20, and polycystin-2 (PC2) are reduced in the cilia of DLG1-deficient cells compared to control cells. This phenotype is recapitulated in vivo and rescuable by re-expression of wild-type DLG1, but not a Congenital Anomalies of the Kidney and Urinary Tract (CAKUT)-associated DLG1 variant, p.T489R. Finally, biochemical approaches and Alpha Fold modelling suggest that SDCCAG3 and IFT20 form a complex that associates, at least indirectly, with DLG1. Our work identifies a key role for DLG1 in regulating ciliary protein composition and suggests that ciliary dysfunction of the p.T489R DLG1 variant may contribute to CAKUT.


Asunto(s)
Proteínas Portadoras , Cilios , Homólogo 1 de la Proteína Discs Large , Canales Catiónicos TRPP , Animales , Cilios/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Ratones , Homólogo 1 de la Proteína Discs Large/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Portadoras/genética , Humanos , Transporte de Proteínas , Ratones Noqueados , Riñón/metabolismo , Células Epiteliales/metabolismo , Unión Proteica , Reflujo Vesicoureteral/metabolismo , Reflujo Vesicoureteral/genética , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Anomalías Urogenitales
6.
Environ Res ; 257: 119336, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838751

RESUMEN

Polycystic kidney disease is the most prevalent hereditary kidney disease globally and is mainly linked to the overexpression of a gene called PKD1. To date, there is no effective treatment available for polycystic kidney disease, and the practicing treatments only provide symptomatic relief. Discovery of the compounds targeting the PKD1 gene by inhibiting its expression under the disease condition could be crucial for effective drug development. In this study, a molecular docking and molecular dynamic simulation, QSAR, and MM/GBSA-based approaches were used to determine the putative inhibitors of the Pkd1 enzyme from a library of 1379 compounds. Initially, fourteen compounds were selected based on their binding affinities with the Pkd1 enzyme using MOE and AutoDock tools. The selected drugs were further investigated to explore their properties as drug candidates and the stability of their complex formation with the Pkd1 enzyme. Based on the physicochemical and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) properties, and toxicity profiling, two compounds including olsalazine and diosmetin were selected for the downstream analysis as they demonstrated the best drug-likeness properties and highest binding affinity with Pkd1 in the docking experiment. Molecular dynamic simulation using Gromacs further confirmed the stability of olsalazine and diosmetin complexes with Pkd1 and establishing interaction through strong bonding with specific residues of protein. High biological activity and binding free energies of two complexes calculated using 3D QSAR and Schrodinger module, respectively further validated our results. Therefore, the molecular docking and dynamics simulation-based in-silico approach used in this study revealed olsalazine and diosmetin as potential drug candidates to combat polycystic kidney disease by targeting Pkd1 enzyme.


Asunto(s)
Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Relación Estructura-Actividad Cuantitativa , Humanos , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Canales Catiónicos TRPP/química , Canales Catiónicos TRPP/genética , Descubrimiento de Drogas
7.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892431

RESUMEN

Orexin-A is a neuropeptide product of the lateral hypothalamus that acts on two receptors, OX1R and OX2R. The orexinergic system is involved in feeding, sleep, and pressure regulation. Recently, orexin-A levels have been found to be negatively correlated with renal function. Here, we analyzed orexin-A levels as well as the incidence of SNPs in the hypocretin neuropeptide precursor (HCRT) and its receptors, HCRTR1 and HCRTR2, in 64 patients affected by autosomal dominant polycystic kidney disease (ADPKD) bearing truncating mutations in the PKD1 or PKD2 genes. Twenty-four healthy volunteers constituted the control group. Serum orexin-A was assessed by ELISA, while the SNPs were investigated through Sanger sequencing. Correlations with the main clinical features of PKD patients were assessed. PKD patients showed impaired renal function (mean eGFR 67.8 ± 34.53) and a statistically higher systolic blood pressure compared with the control group (p < 0.001). Additionally, orexin-A levels in PKD patients were statistically higher than those in healthy controls (477.07 ± 69.42 pg/mL vs. 321.49 ± 78.01 pg/mL; p < 0.001). Furthermore, orexin-A inversely correlated with blood pressure (p = 0.0085), while a direct correlation with eGFR in PKD patients was found. None of the analyzed SNPs showed any association with orexin-A levels in PKD. In conclusion, our data highlights the emerging role of orexin-A in renal physiology and its potential relevance to PKD. Further research is essential to elucidate the intricate mechanisms underlying orexin-A signaling in renal function and its therapeutic implications for PKD and associated cardiovascular complications.


Asunto(s)
Receptores de Orexina , Orexinas , Polimorfismo de Nucleótido Simple , Humanos , Orexinas/metabolismo , Orexinas/genética , Masculino , Femenino , Persona de Mediana Edad , Receptores de Orexina/metabolismo , Receptores de Orexina/genética , Adulto , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/sangre , Estudios de Casos y Controles , Anciano , Presión Sanguínea , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/sangre
8.
Curr Biol ; 34(12): 2756-2763.e2, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38838665

RESUMEN

Extracellular vesicles (EVs) are submicron membranous structures and key mediators of intercellular communication.1,2 Recent research has highlighted roles for cilia-derived EVs in signal transduction, underscoring their importance as bioactive extracellular organelles containing conserved ciliary signaling proteins.3,4 Members of the transient receptor potential (TRP) channel polycystin-2 (PKD-2) family are found in ciliary EVs of the green algae Chlamydomonas and the nematode Caenorhabditis elegans5,6 and in EVs in the mouse embryonic node and isolated from human urine.7,8 In C. elegans, PKD-2 is expressed in male-specific EV-releasing sensory neurons, which extend ciliary tips to ciliary pore and directly release EVs into the environment.6,9 Males release EVs in a mechanically stimulated manner, regulate EV cargo content in response to mating partners, and deposit PKD-2::GFP-labeled EVs on the vulval cuticle of hermaphrodites during mating.9,10 Combined, our findings suggest that ciliary EV release is a dynamic process. Herein, we identify mechanisms controlling dynamic EV shedding using time-lapse imaging. Cilia can sustain the release of PKD-2-labeled EVs for 2 h. This extended release doesn't require neuronal transmission. Instead, ciliary intrinsic mechanisms regulate PKD-2 ciliary membrane replenishment and dynamic EV release. The kinesin-3 motor kinesin-like protein 6 (KLP-6) is necessary for initial and extended EV release, while the transition zone protein NPHP-4 is required only for sustained EV release. The dynamic replenishment of PKD-2 at the ciliary tip is key to sustained EV release. Our study provides a comprehensive portrait of real-time ciliary EV release and mechanisms supporting cilia as proficient EV release platforms.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cilios , Vesículas Extracelulares , Células Receptoras Sensoriales , Canales Catiónicos TRPP , Animales , Cilios/metabolismo , Cilios/fisiología , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/fisiología , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Masculino
9.
JCI Insight ; 9(12)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38912583

RESUMEN

Patients with autosomal dominant polycystic kidney disease (ADPKD), a genetic disease due to mutations of the PKD1 or PKD2 gene, show signs of complement activation in the urine and cystic fluid, but their pathogenic role in cystogenesis is unclear. We tested the causal relationship between complement activation and cyst growth using a Pkd1KO renal tubular cell line and newly generated conditional Pkd1-/- C3-/- mice. Pkd1-deficient tubular cells have increased expression of complement-related genes (C3, C5, CfB, C3ar, and C5ar1), while the gene and protein expression of complement regulators DAF, CD59, and Crry is decreased. Pkd1-/- C3-/- mice are unable to fully activate the complement cascade and are characterized by a significantly slower kidney cystogenesis, preserved renal function, and reduced intrarenal inflammation compared with Pkd1-/- C3+/+ controls. Transgenic expression of the cytoplasmic C-terminal tail of Pkd1 in Pkd1KO cells lowered C5ar1 expression, restored Daf levels, and reduced cell proliferation. Consistently, both DAF overexpression and pharmacological inhibition of C5aR1 (but not C3aR) reduced Pkd1KO cell proliferation. In conclusion, the loss of Pkd1 promotes unleashed activation of locally produced complement by downregulating DAF expression in renal tubular cells. Increased C5a formation and C5aR1 activation in tubular cells promotes cyst growth, offering a new therapeutic target.


Asunto(s)
Antígenos CD55 , Complemento C3 , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante , Animales , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Ratones , Antígenos CD55/genética , Antígenos CD55/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Receptor de Anafilatoxina C5a/genética , Modelos Animales de Enfermedad , Activación de Complemento , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Humanos , Proliferación Celular , Masculino , Línea Celular , Receptores de Complemento 3b/genética , Receptores de Complemento 3b/metabolismo
10.
Int J Mol Sci ; 25(10)2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38791330

RESUMEN

Bone mechanotransduction is a critical process during skeletal development in embryogenesis and organogenesis. At the same time, the type and level of mechanical loading regulates bone remodeling throughout the adult life. The aberrant mechanosensing of bone cells has been implicated in the development and progression of bone loss disorders, but also in the bone-specific aspect of other clinical entities, such as the tumorigenesis of solid organs. Novel treatment options have come into sight that exploit the mechanosensitivity of osteoblasts, osteocytes, and chondrocytes to achieve efficient bone regeneration. In this regard, runt-related transcription factor 2 (Runx2) has emerged as a chief skeletal-specific molecule of differentiation, which is prominent to induction by mechanical stimuli. Polycystins represent a family of mechanosensitive proteins that interact with Runx2 in mechano-induced signaling cascades and foster the regulation of alternative effectors of mechanotransuction. In the present narrative review, we employed a PubMed search to extract the literature concerning Runx2, polycystins, and their association from 2000 to March 2024. The keywords stated below were used for the article search. We discuss recent advances regarding the implication of Runx2 and polycystins in bone remodeling and regeneration and elaborate on the targeting strategies that may potentially be applied for the treatment of patients with bone loss diseases.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Mecanotransducción Celular , Canales Catiónicos TRPP , Humanos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Animales , Huesos/metabolismo , Remodelación Ósea , Regeneración Ósea , Osteocitos/metabolismo
11.
Nat Commun ; 15(1): 3698, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38693102

RESUMEN

Mouse models of autosomal dominant polycystic kidney disease (ADPKD) show that intact primary cilia are required for cyst growth following the inactivation of polycystin-1. The signaling pathways underlying this process, termed cilia-dependent cyst activation (CDCA), remain unknown. Using translating ribosome affinity purification RNASeq on mouse kidneys with polycystin-1 and cilia inactivation before cyst formation, we identify the differential 'CDCA pattern' translatome specifically dysregulated in kidney tubule cells destined to form cysts. From this, Glis2 emerges as a candidate functional effector of polycystin signaling and CDCA. In vitro changes in Glis2 expression mirror the polycystin- and cilia-dependent changes observed in kidney tissue, validating Glis2 as a cell culture-based indicator of polycystin function related to cyst formation. Inactivation of Glis2 suppresses polycystic kidney disease in mouse models of ADPKD, and pharmacological targeting of Glis2 with antisense oligonucleotides slows disease progression. Glis2 transcript and protein is a functional target of CDCA and a potential therapeutic target for treating ADPKD.


Asunto(s)
Cilios , Modelos Animales de Enfermedad , Riñón Poliquístico Autosómico Dominante , Transducción de Señal , Canales Catiónicos TRPP , Animales , Humanos , Masculino , Ratones , Cilios/metabolismo , Riñón/metabolismo , Riñón/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Oligonucleótidos Antisentido/farmacología , Enfermedades Renales Poliquísticas/metabolismo , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética
12.
Sci Bull (Beijing) ; 69(12): 1964-1979, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38760248

RESUMEN

Mechanical loading is required for bone homeostasis, but the underlying mechanism is still unclear. Our previous studies revealed that the mechanical protein polycystin-1 (PC1, encoded by Pkd1) is critical for bone formation. However, the role of PC1 in bone resorption is unknown. Here, we found that PC1 directly regulates osteoclastogenesis and bone resorption. The conditional deletion of Pkd1 in the osteoclast lineage resulted in a reduced number of osteoclasts, decreased bone resorption, and increased bone mass. A cohort study of 32,500 patients further revealed that autosomal dominant polycystic kidney disease, which is mainly caused by loss-of-function mutation of the PKD1 gene, is associated with a lower risk of hip fracture than those with other chronic kidney diseases. Moreover, mice with osteoclast-specific knockout of Pkd1 showed complete resistance to unloading-induced bone loss. A mechanistic study revealed that PC1 facilitated TAZ nuclear translocation via the C-terminal tail-TAZ complex and that conditional deletion of Taz in the osteoclast lineage resulted in reduced osteoclastogenesis and increased bone mass. Pharmacological regulation of the PC1-TAZ axis alleviated unloading- and estrogen deficiency- induced bone loss. Thus, the PC1-TAZ axis may be a potential therapeutic target for osteoclast-related osteoporosis.


Asunto(s)
Resorción Ósea , Ratones Noqueados , Osteoclastos , Osteogénesis , Canales Catiónicos TRPP , Animales , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Resorción Ósea/metabolismo , Resorción Ósea/genética , Resorción Ósea/patología , Osteoclastos/metabolismo , Ratones , Humanos , Osteoporosis/genética , Osteoporosis/metabolismo , Osteoporosis/patología , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Masculino , Femenino , Proteínas Adaptadoras Transductoras de Señales
13.
Genes Cells ; 29(7): 599-607, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782708

RESUMEN

WT 9-12 is one of the cell lines commonly used for autosomal dominant polycystic kidney disease (ADPKD) studies. Previous studies had described the PKD gene mutations and polycystin expression in WT 9-12. Nonetheless, the mutations occurring in other ADPKD-associated genes have not been investigated. This study aims to revisit these mutations and protein profile of WT 9-12. Whole genome sequencing verified the presence of truncation mutation at amino acid 2556 (Q2556X) in PKD1 gene of WT 9-12. Besides, those variations with high impacts included single nucleotide polymorphisms (rs8054182, rs117006360, and rs12925771) and insertions and deletions (InDels) (rs145602984 and rs55980345) in PKD1L2; InDel (rs1296698195) in PKD1L3; and copy number variations in GANAB. Protein profiles generated from the total proteins of WT 9-12 and HK-2 cells were compared using isobaric tags for relative and absolute quantitation (iTRAQ) analysis. Polycystin-1 was absent in WT 9-12. The gene ontology enrichment and reactome pathway analyses revealed that the upregulated and downregulated proteins of WT 9-12 relative to HK-2 cell line leaded to signaling pathways related to immune response and amino acid metabolism, respectively. The ADPKD-related mutations and signaling pathways associated with differentially expressed proteins in WT 9-12 may help researchers in cell line selection for their studies.


Asunto(s)
Mutación , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Humanos , Línea Celular , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Polimorfismo de Nucleótido Simple , Variaciones en el Número de Copia de ADN
14.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167256, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782303

RESUMEN

The primary cilium, hereafter cilium, is an antenna-like organelle that modulates intracellular responses, including autophagy, a lysosomal degradation process essential for cell homeostasis. Dysfunction of the cilium is associated with impairment of autophagy and diseases known as "ciliopathies". The discovery of autophagy-related proteins at the base of the cilium suggests its potential role in coordinating autophagy initiation in response to physiopathological stimuli. One of these proteins, beclin-1 (BECN1), it which is necessary for autophagosome biogenesis. Additionally, polycystin-2 (PKD2), a calcium channel enriched at the cilium, is required and sufficient to induce autophagy in renal and cancer cells. We previously demonstrated that PKD2 and BECN1 form a protein complex at the endoplasmic reticulum in non-ciliated cells, where it initiates autophagy, but whether this protein complex is present at the cilium remains unknown. Anorexigenic pro-opiomelanocortin (POMC) neurons are ciliated cells that require autophagy to maintain intracellular homeostasis. POMC neurons are sensitive to metabolic changes, modulating signaling pathways crucial for controlling food intake. Exposure to the saturated fatty acid palmitic acid (PA) reduces ciliogenesis and inhibits autophagy in these cells. Here, we show that PKD2 and BECN1 form a protein complex in N43/5 cells, an in vitro model of POMC neurons, and that both PKD2 and BECN1 locate at the cilium. In addition, our data show that the cilium is required for PKD2-BECN1 protein complex formation and that PA disrupts the PKD2-BECN1 complex, suppressing autophagy. Our findings provide new insights into the mechanisms by which the cilium controls autophagy in hypothalamic neuronal cells.


Asunto(s)
Autofagia , Beclina-1 , Cilios , Hipotálamo , Neuronas , Canales Catiónicos TRPP , Animales , Ratones , Beclina-1/metabolismo , Cilios/metabolismo , Hipotálamo/metabolismo , Hipotálamo/citología , Neuronas/metabolismo , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética
16.
Kidney Int ; 106(2): 258-272, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38782200

RESUMEN

Alteration of DNA methylation leads to diverse diseases, and the dynamic changes of DNA methylation (DNAm) on sets of CpG dinucleotides in mammalian genomes are termed "DNAm age" and "epigenetic clocks" that can predict chronological age. However, whether and how dysregulation of DNA methylation promotes cyst progression and epigenetic age acceleration in autosomal dominant polycystic kidney disease (ADPKD) remains elusive. Here, we show that DNA methyltransferase 1 (DNMT1) is upregulated in cystic kidney epithelial cells and tissues and that knockout of Dnmt1 and targeting DNMT1 with hydralazine, a safe demethylating agent, delays cyst growth in Pkd1 mutant kidneys and extends life span of Pkd1 conditional knockout mice. With methyl-CpG binding domain (MBD) protein-enriched genome sequencing (MBD-seq), DNMT1 chromatin immunoprecipitation (ChIP)-sequencing and RNA-sequencing analysis, we identified two novel DNMT1 targets, PTPRM and PTPN22 (members of the protein tyrosine phosphatase family). PTPRM and PTPN22 function as mediators of DNMT1 and the phosphorylation and activation of PKD-associated signaling pathways, including ERK, mTOR and STAT3. With whole-genome bisulfide sequencing in kidneys of patients with ADPKD versus normal individuals, we found that the methylation of epigenetic clock-associated genes was dysregulated, supporting that epigenetic age is accelerated in the kidneys of patients with ADPKD. Furthermore, five epigenetic clock-associated genes, including Hsd17b14, Itpkb, Mbnl1, Rassf5 and Plk2, were identified. Thus, the diverse biological roles of these five genes suggest that their methylation status may not only predict epigenetic age acceleration but also contribute to disease progression in ADPKD.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasa 1 , Metilación de ADN , Epigénesis Genética , Ratones Noqueados , Riñón Poliquístico Autosómico Dominante , Canales Catiónicos TRPP , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/enzimología , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , Animales , Humanos , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Ratones , Transducción de Señal , Modelos Animales de Enfermedad , Masculino , Progresión de la Enfermedad , Riñón/patología , Riñón/metabolismo
17.
Physiol Rep ; 12(7): e15956, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38561249

RESUMEN

Mutations in PKD1 and PKD2 cause autosomal dominant polycystic kidney disease (ADPKD), which is characterized by the formation of fluid-filled cysts in the kidney. In a subset of ADPKD patients, reduced blood calcium (Ca2+) and magnesium (Mg2+) concentrations are observed. As cystic fluid contains increased ATP concentrations and purinergic signaling reduces electrolyte reabsorption, we hypothesized that inhibiting ATP release could normalize blood Ca2+ and Mg2+ levels in ADPKD. Inducible kidney-specific Pkd1 knockout mice (iKsp-Pkd1-/-) exhibit hypocalcemia and hypomagnesemia in a precystic stage and show increased expression of the ATP-release channel pannexin-1. Therefore, we administered the pannexin-1 inhibitor brilliant blue-FCF (BB-FCF) every other day from Day 3 to 28 post-induction of Pkd1 gene inactivation. On Day 29, both serum Ca2+ and Mg2+ concentrations were reduced in iKsp-Pkd1-/- mice, while urinary Ca2+ and Mg2+ excretion was similar between the genotypes. However, serum and urinary levels of Ca2+ and Mg2+ were unaltered by BB-FCF treatment, regardless of genotype. BB-FCF did significantly decrease gene expression of the ion channels Trpm6 and Trpv5 in both control and iKsp-Pkd1-/- mice. Finally, no renoprotective effects of BB-FCF treatment were observed in iKsp-Pkd1-/- mice. Thus, administration of BB-FCF failed to normalize serum Ca2+ and Mg2+ levels.


Asunto(s)
Riñón Poliquístico Autosómico Dominante , Animales , Humanos , Ratones , Adenosina Trifosfato/metabolismo , Riñón/metabolismo , Ratones Noqueados , Mutación , Riñón Poliquístico Autosómico Dominante/metabolismo , Canales Catiónicos TRPP/genética , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/farmacología , Equilibrio Hidroelectrolítico
18.
Gene ; 919: 148505, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38670396

RESUMEN

Polycystic kidney disease (PKD) is common genetic renal disorder. In present study, we performed WES to identify pathogenic variant in nine families including 26 patients with PKD and 19 unaffected members. The eight pathogenic variants were identified in known PKD associated genes including PKD1 (n = 6), PKD2 (n = 1), and OFD1 (n = 1) in eight families. There is one missense, one stopgain, two non-frameshifts, two canonical splicing variants, three frameshift variants and one potential non-canonical splicing variant (NCSV) in 8 families. The six variants were novel variants and not reported in ClinVar database. In addition, the compound heterozygous variants in PKHD1 were identified including one frameshift variants (PKHD1: NM_138694.4, c.9841del, p.S3281Lfs*4) and one non-canonical splicing variant (PKHD1: NM_138694.4, c.6332 + 40A > G) which were defined as deleterious variant by four splicing prediction tools (CADD-splice, SpliceAI, Spliceogen, Squirl). We used the minigene method to validate whether the prioritized potential NSCVs disrupt the typical mRNA splicing process and found abnormally larger PCR production of minigene carrying potential NCSV comparing to wild-type minigene. Sanger sequencing confirmed the 39-bp insertion of intron 38 between exon 38 and exon 39, which results in non-frameshift and 13 amino acid insertions. In conclusion, our study expands the variant spectrum and highlight the important role of non-canonical splicing variant in PKD.


Asunto(s)
Linaje , Enfermedades Renales Poliquísticas , Humanos , Femenino , Masculino , Enfermedades Renales Poliquísticas/genética , Adulto , Empalme del ARN , Canales Catiónicos TRPP/genética , Receptores de Superficie Celular/genética , Persona de Mediana Edad , Secuenciación del Exoma/métodos , Mutación , Predisposición Genética a la Enfermedad
19.
Theranostics ; 14(6): 2544-2559, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646641

RESUMEN

Background: Mechanical forces are indispensable for bone healing, disruption of which is recognized as a contributing cause to nonunion or delayed union. However, the underlying mechanism of mechanical regulation of fracture healing is elusive. Methods: We used the lineage-tracing mouse model, conditional knockout depletion mouse model, hindlimb unloading model and single-cell RNA sequencing to analyze the crucial roles of mechanosensitive protein polycystin-1 (PC1, Pkd1) promotes periosteal stem/progenitor cells (PSPCs) osteochondral differentiation in fracture healing. Results: Our results showed that cathepsin (Ctsk)-positive PSPCs are fracture-responsive and mechanosensitive and can differentiate into osteoblasts and chondrocytes during fracture repair. We found that polycystin-1 declines markedly in PSPCs with mechanical unloading while increasing in response to mechanical stimulus. Mice with conditional depletion of Pkd1 in Ctsk+ PSPCs show impaired osteochondrogenesis, reduced cortical bone formation, delayed fracture healing, and diminished responsiveness to mechanical unloading. Mechanistically, PC1 facilitates nuclear translocation of transcriptional coactivator TAZ via PC1 C-terminal tail cleavage, enhancing osteochondral differentiation potential of PSPCs. Pharmacological intervention of the PC1-TAZ axis and promotion of TAZ nuclear translocation using Zinc01442821 enhances fracture healing and alleviates delayed union or nonunion induced by mechanical unloading. Conclusion: Our study reveals that Ctsk+ PSPCs within the callus can sense mechanical forces through the PC1-TAZ axis, targeting which represents great therapeutic potential for delayed fracture union or nonunion.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Diferenciación Celular , Condrocitos , Curación de Fractura , Osteogénesis , Células Madre , Canales Catiónicos TRPP , Animales , Curación de Fractura/fisiología , Ratones , Canales Catiónicos TRPP/metabolismo , Canales Catiónicos TRPP/genética , Condrocitos/metabolismo , Células Madre/metabolismo , Osteogénesis/fisiología , Ratones Noqueados , Condrogénesis/fisiología , Periostio/metabolismo , Osteoblastos/metabolismo , Osteoblastos/fisiología , Modelos Animales de Enfermedad , Masculino
20.
Cells ; 13(7)2024 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-38607049

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) occurs when the proteins Polycystin-1 (PC1, PKD1) and Polycystin-2 (PC2, PKD2) contain mutations. PC1 is a large membrane receptor that can interact and form a complex with the calcium-permeable cation channel PC2. This complex localizes to the plasma membrane, primary cilia and ER. Dysregulated calcium signalling and consequential alterations in downstream signalling pathways in ADPKD are linked to cyst formation and expansion; however, it is not completely understood how PC1 and PC2 regulate calcium signalling. We have studied Polycystin-2 mediated calcium signalling in the model organism Dictyostelium discoideum by overexpressing and knocking down the expression of the endogenous Polycystin-2 homologue, Polycystin-2. Chemoattractant-stimulated cytosolic calcium response magnitudes increased and decreased in overexpression and knockdown strains, respectively, and analysis of the response kinetics indicates that Polycystin-2 is a significant contributor to the control of Ca2+ responses. Furthermore, basal cytosolic calcium levels were reduced in Polycystin-2 knockdown transformants. These alterations in Ca2+ signalling also impacted other downstream Ca2+-sensitive processes including growth rates, endocytosis, stalk cell differentiation and spore viability, indicating that Dictyostelium is a useful model to study Polycystin-2 mediated calcium signalling.


Asunto(s)
Dictyostelium , Riñón Poliquístico Autosómico Dominante , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Dictyostelium/metabolismo , Canales Catiónicos TRPP/genética , Calcio/metabolismo , Señalización del Calcio/fisiología , Canales de Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA