Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 102021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34652272

RESUMEN

Ligand-gated ion channels conduct currents in response to chemical stimuli, mediating electrochemical signaling in neurons and other excitable cells. For many channels, the details of gating remain unclear, partly due to limited structural data and simulation timescales. Here, we used enhanced sampling to simulate the pH-gated channel GLIC, and construct Markov state models (MSMs) of gating. Consistent with new functional recordings, we report in oocytes, our analysis revealed differential effects of protonation and mutation on free-energy wells. Clustering of closed- versus open-like states enabled estimation of open probabilities and transition rates, while higher-order clustering affirmed conformational trends in gating. Furthermore, our models uncovered state- and protonation-dependent symmetrization. This demonstrates the applicability of MSMs to map energetic and conformational transitions between ion-channel functional states, and how they reproduce shifts upon activation or mutation, with implications for modeling neuronal function and developing state-selective drugs.


Asunto(s)
Canales Iónicos Activados por Ligandos/fisiología , Poro Nuclear/fisiología , Protones , Animales , Cadenas de Markov , Xenopus laevis
2.
Phys Chem Chem Phys ; 23(34): 18461-18474, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34612386

RESUMEN

Subcellular and organellar mechanisms have manifested a prominent importance for a broad variety of processes that maintain cellular life at its most basic level. Mammalian two-pore channels (TPCs) appear to be cornerstones of these processes in endo-lysosomes by controlling delicate ion-concentrations in their interiors. With evolutionary remarkable architecture and one-of-a-kind selectivity filter, TPCs are an extremely attractive topic per se. In the light of the current COVID-19 pandemic, hTPC2 emerges to be more than attractive. As a key regulator of the endocytosis pathway, it is potentially essential for diverse viral infections in humans, as demonstrated. Here, by means of multiscale molecular simulations, we propose a model of sodium transport from the lumen to the cytosol where the central cavity works as a reservoir. Since the inhibition of hTPC2 is proven to stop SARS-CoV2 in vitro, shedding light on the hTPC2 function and mechanism is the first step towards the selection of potential inhibiting candidates.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/fisiología , Sodio/metabolismo , COVID-19 , Canales Iónicos Activados por Ligandos/metabolismo , Ligandos , SARS-CoV-2/aislamiento & purificación
3.
Sci Rep ; 10(1): 16569, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33024136

RESUMEN

The glycine receptor (GlyR), a member of the pentameric ligand-gated ion channel family (pLGIC), displays remarkable variations in the affinity and efficacy of the full agonist glycine and the partial agonist taurine depending on the cell system used. Despite detailed insights in the GlyR three-dimensional structure and activation mechanism, little is known about conformational rearrangements induced by these agonists. Here, we characterized the conformational states of the α1 GlyR upon binding of glycine and taurine by microscale thermophoresis expressed in HEK293 cells and Xenopus oocytes after solubilization in amphipathic styrene-maleic acid copolymer nanodiscs. Our results show that glycine and taurine induce different conformational transitions of the GlyR upon ligand binding. In contrast, the variability of agonist affinity is not mediated by an altered conformational change. Thus, our data shed light on specific agonist induced conformational features and mechanisms of pLGIC upon ligand binding determining receptor activation in native environments.


Asunto(s)
Canales Iónicos Activados por Ligandos/fisiología , Nanoestructuras , Polímeros , Receptores de Glicina , Animales , Glicina/metabolismo , Células HEK293 , Humanos , Oocitos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Sinapsis/fisiología , Transmisión Sináptica , Taurina/metabolismo , Xenopus
4.
Ann Anat ; 232: 151582, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32810612

RESUMEN

BACKGROUND: The Chievitz's organ or juxta-oral organ is a mysterious bilateral structure, phylogenetically preserved, which develops from the mouth epithelium as an invagination that loses connection to it in the prenatal period. It is located laterally to the walls of the oral cavity in an imprecise anatomical location and receives abundant innervation from the buccal nerve. Structurally it consists of non-keratinizing squamous-like neuroepithelial cells surrounded by two layers of connective tissue with nerve fibers and different morphotypes of sensory corpuscles. Its function is completely unknown although based on its rich innervation it is assumed that works as a mechanoreceptor. METHODS: We have performed immunohistochemistry for axonal and Schwann cells, and the putative mechanoproteins ASIC2, TRPV4 and Piezo2 in sections of fetal juxta-oral organ. RESULTS: Intraparenchymatous nerve fibers and sensory corpuscles were observed as well as immunoreactivity for Piezo2 in both nerve fibers and epithelial parenchymatous cells. CONCLUSIONS: We add indirect evidence that the juxtaoral organ is a mechanoreceptor because in addition to its dense innervation, the epithelial cells and sensory nerve fibers display immunoreactivity for the mechanogated ion channel Piezo2. Based on current knowledge, the functional and clinical importance of the juxta-oral organ should be further investigated.


Asunto(s)
Mejilla/anatomía & histología , Mejilla/embriología , Mejilla/patología , Mejilla/fisiología , Feto/anatomía & histología , Humanos , Inmunohistoquímica , Canales Iónicos Activados por Ligandos/fisiología , Tejido Parenquimatoso/anatomía & histología , Tejido Parenquimatoso/inervación
5.
ACS Chem Neurosci ; 10(5): 2551-2559, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30893555

RESUMEN

Glycine receptors (GlyRs) are members of the pentameric ligand-gated ionic channel family (pLGICs) and mediate fast inhibitory neurotransmission in the brain stem and spinal cord. The function of GlyRs can be modulated by positive allosteric modulators (PAMs). So far, it is largely accepted that both the extracellular (ECD) and transmembrane (TMD) domains constitute the primary target for many of these PAMs. On the other hand, the contribution of the intracellular domain (ICD) to the PAM effects on GlyRs remains poorly understood. To gain insight about the role of the ICD in the pharmacology of GlyRs, we examined the contribution of each domain using a chimeric receptor. Two chimeras were generated, one consisting of the ECD of the prokaryotic homologue Gloeobacter violaceus ligand-gated ion channel (GLIC) fused to the TMD of the human α1GlyR lacking the ICD (Lily) and a second with the ICD (Lily-ICD). The sensitivity to PAMs of both chimeric receptors was studied using electrophysiological techniques. The Lily receptor showed a significant decrease in the sensitivity to four recognized PAMs. Remarkably, the incorporation of the ICD into the Lily background was sufficient to restore the wild-type α1GlyR sensitivity to these PAMs. Based on these data, we can suggest that the ICD is necessary to form a pLGIC having full sensitivity to positive allosteric modulators.


Asunto(s)
Regulación Alostérica/fisiología , Receptores de Glicina/fisiología , Regulación Alostérica/efectos de los fármacos , Células Cultivadas , Depresores del Sistema Nervioso Central/farmacología , Quimera , Cianobacterias , Etanol/farmacología , Espacio Extracelular/fisiología , Humanos , Concentración de Iones de Hidrógeno , Membranas Intracelulares/fisiología , Isoflurano/farmacología , Canales Iónicos Activados por Ligandos/fisiología , Potenciales de la Membrana/efectos de los fármacos
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1864(2): 128-136, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30471426

RESUMEN

Cholesterol is an essential component of cell membranes, and is required for mammalian pentameric ligand-gated ion channel (pLGIC) function. Computational studies suggest direct interactions between cholesterol and pLGICs but experimental evidence identifying specific binding sites is limited. In this study, we mapped cholesterol binding to Gloeobacter ligand-gated ion channel (GLIC), a model pLGIC chosen for its high level of expression, existing crystal structure, and previous use as a prototypic pLGIC. Using two cholesterol analogue photolabeling reagents with the photoreactive moiety on opposite ends of the sterol, we identified two cholesterol binding sites: an intersubunit site between TM3 and TM1 of adjacent subunits and an intrasubunit site between TM1 and TM4. In both the inter- and intrasubunit sites, cholesterol is oriented such that the 3­OH group points toward the center of the transmembrane domains rather than toward either the cytosolic or extracellular surfaces. We then compared this binding to that of the cholesterol metabolite, allopregnanolone, a neurosteroid that allosterically modulates pLGICs. The same binding pockets were identified for allopregnanolone and cholesterol, but the binding orientation of the two ligands was markedly different, with the 3­OH group of allopregnanolone pointing to the intra- and extracellular termini of the transmembrane domains rather than to their centers. We also found that cholesterol increases, whereas allopregnanolone decreases the thermal stability of GLIC. These data indicate that cholesterol and neurosteroids bind to common hydrophobic pockets in the model pLGIC, GLIC, but that their effects depend on the orientation and specific molecular interactions unique to each sterol.


Asunto(s)
Colesterol/metabolismo , Canales Iónicos Activados por Ligandos/fisiología , Neurotransmisores/metabolismo , Sitios de Unión/fisiología , Membrana Celular/metabolismo , Colesterol/fisiología , Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/metabolismo , Ligandos , Modelos Moleculares , Neurotransmisores/fisiología , Etiquetas de Fotoafinidad/metabolismo , Pregnanolona/metabolismo , Unión Proteica/fisiología , Dominios Proteicos/fisiología
7.
J Physiol ; 596(10): 1873-1902, 2018 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-29484660

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) mediate fast neurotransmission in the nervous system. Their dysfunction is associated with psychiatric, neurological and neurodegenerative disorders such as schizophrenia, epilepsy and Alzheimer's disease. Understanding their biophysical and pharmacological properties, at both the functional and the structural level, thus holds many therapeutic promises. In addition to their agonist-elicited activation, most pLGICs display another key allosteric property, namely desensitization, in which they enter a shut state refractory to activation upon sustained agonist binding. While the activation mechanisms of several pLGICs have been revealed at near-atomic resolution, the structural foundation of desensitization has long remained elusive. Recent structural and functional data now suggest that the activation and desensitization gates are distinct, and are located at both sides of the ion channel. Such a 'dual gate mechanism' accounts for the marked allosteric effects of channel blockers, a feature illustrated herein by theoretical kinetics simulations. Comparison with other classes of ligand- and voltage-gated ion channels shows that this dual gate mechanism emerges as a common theme for the desensitization and inactivation properties of structurally unrelated ion channels.


Asunto(s)
Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/fisiología , Neurotransmisores/farmacología , Animales , Humanos , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/efectos de los fármacos , Ligandos , Modelos Moleculares , Conformación Proteica
8.
Curr Opin Struct Biol ; 48: 74-82, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29136528

RESUMEN

Cells are dependent on transmembrane receptors to communicate and transform chemical and physical signals into intracellular responses. Because receptors transport 'information', conformational changes and protein dynamics play a key mechanistic role. We here review examples where experiment and computation have been used to study receptor dynamics. Recent studies on three distinct classes of receptors (G-protein coupled receptors, ligand-gated ion-channels and single-pass receptors) are highlighted to show that conformational changes across a range of time-scales and length-scales are central to function. Because the receptors function in a heterogeneous environment and need to be able to switch between distinct functional states, they may be particularly sensitive to small perturbations that complicate studies linking dynamics to function.


Asunto(s)
Canales Iónicos Activados por Ligandos/química , Proteínas Tirosina Quinasas Receptoras/química , Receptores de Citocinas/química , Receptores Acoplados a Proteínas G/química , Transducción de Señal/fisiología , Animales , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Humanos , Canales Iónicos Activados por Ligandos/fisiología , Ligandos , Simulación de Dinámica Molecular , Conformación Proteica , Proteínas Tirosina Quinasas Receptoras/fisiología , Receptores de Citocinas/fisiología , Receptores Acoplados a Proteínas G/fisiología , Relación Estructura-Actividad
9.
PLoS Biol ; 15(12): e2004470, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29281623

RESUMEN

The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD.


Asunto(s)
Proteínas Bacterianas/química , Cianobacterias/metabolismo , Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/química , Proteínas Bacterianas/metabolismo , Cianobacterias/genética , Canales Iónicos Activados por Ligandos/fisiología , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Protones , Transducción de Señal
10.
Br J Pharmacol ; 174 Suppl 1: S130-S159, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29055038

RESUMEN

The Concise Guide to PHARMACOLOGY 2017/18 provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13879/full. Ligand-gated ion channels are one of the eight major pharmacological targets into which the Guide is divided, with the others being: G protein-coupled receptors, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.


Asunto(s)
Bases de Datos Farmacéuticas , Canales Iónicos Activados por Ligandos/efectos de los fármacos , Animales , Humanos , Bases del Conocimiento , Canales Iónicos Activados por Ligandos/fisiología , Ligandos
11.
PLoS One ; 11(3): e0151934, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26986966

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) are ubiquitous neurotransmitter receptors in Bilateria, with a small number of known prokaryotic homologues. Here we describe a new inventory and phylogenetic analysis of pLGIC genes across all kingdoms of life. Our main finding is a set of pLGIC genes in unicellular eukaryotes, some of which are metazoan-like Cys-loop receptors, and others devoid of Cys-loop cysteines, like their prokaryotic relatives. A number of such "Cys-less" receptors also appears in invertebrate metazoans. Together, those findings draw a new distribution of pLGICs in eukaryotes. A broader distribution of prokaryotic channels also emerges, including a major new archaeal taxon, Thaumarchaeota. More generally, pLGICs now appear nearly ubiquitous in major taxonomic groups except multicellular plants and fungi. However, pLGICs are sparsely present in unicellular taxa, suggesting a high rate of gene loss and a non-essential character, contrasting with their essential role as synaptic receptors of the bilaterian nervous system. Multiple alignments of these highly divergent sequences reveal a small number of conserved residues clustered at the interface between the extracellular and transmembrane domains. Only the "Cys-loop" proline is absolutely conserved, suggesting the more fitting name "Pro loop" for that motif, and "Pro-loop receptors" for the superfamily. The infered molecular phylogeny shows a Cys-loop and a Cys-less clade in eukaryotes, both containing metazoans and unicellular members. This suggests new hypotheses on the evolutionary history of the superfamily, such as a possible origin of the Cys-loop cysteines in an ancient unicellular eukaryote. Deeper phylogenetic relationships remain uncertain, particularly around the split between bacteria, archaea, and eukaryotes.


Asunto(s)
Canales Iónicos Activados por Ligandos/genética , Receptores de Neurotransmisores/genética , Animales , Archaea/clasificación , Archaea/genética , Archaea/fisiología , Secuencia Conservada/genética , Secuencia Conservada/fisiología , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/genética , Receptores de Canales Iónicos con Asa de Cisteína Activados por Ligando/fisiología , Eucariontes/genética , Eucariontes/fisiología , Evolución Molecular , Hongos/genética , Hongos/fisiología , Invertebrados/genética , Invertebrados/fisiología , Canales Iónicos Activados por Ligandos/fisiología , Filogenia , Plantas/genética , Receptores de Neurotransmisores/fisiología , Alineación de Secuencia
12.
J Exp Biol ; 218(Pt 4): 551-61, 2015 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25696818

RESUMEN

Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses.


Asunto(s)
Hydra/fisiología , Canales Iónicos Activados por Ligandos/fisiología , Neuropéptidos , Animales , Potenciales de la Membrana , Sistema Nervioso/ultraestructura , Sinapsis/fisiología , Transmisión Sináptica
13.
PLoS One ; 9(11): e109535, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25390040

RESUMEN

Marine sediments can contain B vitamins, presumably incorporated from settled, decaying phytoplankton and microorganisms associated with decomposition. Because B vitamins may be advantageous for the energetically intensive processes of metamorphosis, post-metamorphic growth, and reproduction, we tested several B vitamins to determine if they would stimulate larvae of the deposit-feeding polychaete Capitella teleta to settle and metamorphose. Nicotinamide and riboflavin individually stimulated larvae of C. teleta to settle and metamorphose, generally within 1-2 hours at nicotinamide concentrations as low as 3 µM and riboflavin concentrations as low as 50 µM. More than 80% of the larvae metamorphosed within 30 minutes at a nicotinamide concentration of 7 µM. The pyridine channel agonist pyrazinecarboxamide also stimulated metamorphosis at very low concentrations. In contrast, neither lumichrome, thiamine HCl, pyridoxine HCl, nor vitamin B12 stimulated larvae of C. teleta to metamorphose at concentrations as high as 500 µM. Larvae also did not metamorphose in response to either nicotinamide or pyrazinecarboxamide in calcium-free seawater or with the addition of 4-acetylpyridine, a competitive inhibitor of the pyridine receptor. Together, these results suggest that larvae of C. teleta are responding to nicotinamide and riboflavin via a chemosensory pyridine receptor similar to that previously reported to be present on crayfish chela and involved with food recognition. Our data are the first to implicate B vitamins as possible natural chemical settlement cues for marine invertebrate larvae.


Asunto(s)
Canales Iónicos Activados por Ligandos/fisiología , Metamorfosis Biológica/efectos de los fármacos , Niacinamida/química , Poliquetos/efectos de los fármacos , Poliquetos/embriología , Riboflavina/química , Animales , Bioensayo , Calcio/química , Imidazoles/química , Ketanserina/química , Larva , Pirazinas/química , Piridinas/química , Agua de Mar
14.
J Neurosci ; 34(21): 7238-52, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24849357

RESUMEN

It has recently been proposed that post-translational modification of not only the M3-M4 linker but also the M1-M2 linker of pentameric ligand-gated ion channels modulates function in vivo. To estimate the involvement of the M1-M2 linker in gating and desensitization, we engineered a series of mutations to this linker of the human adult-muscle acetylcholine receptor (AChR), the α3ß4 AChR and the homomeric α1 glycine receptor (GlyR). All tested M1-M2 linker mutations had little effect on the kinetics of deactivation or desensitization compared with the effects of mutations to the M2 α-helix or the extracellular M2-M3 linker. However, when the effects of mutations were assessed with 50 Hz trains of ∼1 ms pulses of saturating neurotransmitter, some mutations led to much more, and others to much less, peak-current depression than observed for the wild-type channels, suggesting that these mutations could affect the fidelity of fast synaptic transmission. Nevertheless, no mutation to this linker could mimic the irreversible loss of responsiveness reported to result from the oxidation of the M1-M2 linker cysteines of the α3 AChR subunit. We also replaced the M3-M4 linker of the α1 GlyR with much shorter peptides and found that none of these extensive changes affects channel deactivation strongly or reduces the marked variability in desensitization kinetics that characterizes the wild-type channel. However, we found that these large mutations to the M3-M4 linker can have pronounced effects on desensitization kinetics, supporting the notion that its post-translational modification could indeed modulate α1 GlyR behavior.


Asunto(s)
Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/fisiología , Mutación/genética , Receptores Nicotínicos/genética , Acetilcolina/farmacología , Animales , Relación Dosis-Respuesta a Droga , Glicina/farmacología , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Cloruro de Potasio/farmacología , Estructura Secundaria de Proteína , Receptores de Glicina , Factores de Tiempo
15.
J Dent Res ; 93(2): 117-25, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24076519

RESUMEN

The biological functions of ion channels in tooth development vary according to the nature of their gating, the species of ions passing through those gates, the number of gates, localization of channels, tissue expressing the channel, and interactions between cells and microenvironment. Ion channels feature unique and specific ion flux in ameloblasts, odontoblasts, and other tooth-specific cell lineages. Both enamel and dentin have active chemical systems orchestrating a variety of ion exchanges and demineralization and remineralization processes in a stage-dependent manner. An important role for ion channels is to regulate and maintain the calcium and pH homeostasis that are critical for proper enamel and dentin biomineralization. Specific functions of chloride channels, TRPVs, calcium channels, potassium channels, and solute carrier superfamily members in tooth formation have been gradually clarified in recent years. Mutations in these ion channels or transporters often result in disastrous changes in tooth development. The channelopathies of tooth include altered eruption (CLCN7, KCNJ2, TRPV3), root dysplasia (CLCN7, KCNJ2), amelogenesis imperfecta (KCNJ1, CFTR, AE2, CACNA1C, GJA1), dentin dysplasia (CLCN5), small teeth (CACNA1C, GJA1), tooth agenesis (CLCN7), and other impairments. The mechanisms leading to tooth channelopathies are primarily related to pH regulation, calcium homeostasis, or other alterations of the niche for tooth eruption and development.


Asunto(s)
Canales Iónicos/fisiología , Odontogénesis/fisiología , Señalización del Calcio/fisiología , Linaje de la Célula/fisiología , Microambiente Celular/fisiología , Homeostasis/fisiología , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/fisiología , Anomalías Dentarias/etiología , Calcificación de Dientes/fisiología
16.
PLoS Biol ; 11(11): e1001714, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24260024

RESUMEN

Pentameric ligand-gated ion channels (pLGICs) are neurotransmitter-activated receptors that mediate fast synaptic transmission. In pLGICs, binding of agonist to the extracellular domain triggers a structural rearrangement that leads to the opening of an ion-conducting pore in the transmembrane domain and, in the continued presence of neurotransmitter, the channels desensitize (close). The flexible loops in each subunit that connect the extracellular binding domain (loops 2, 7, and 9) to the transmembrane channel domain (M2-M3 loop) are essential for coupling ligand binding to channel gating. Comparing the crystal structures of two bacterial pLGIC homologues, ELIC and the proton-activated GLIC, suggests channel gating is associated with rearrangements in these loops, but whether these motions accurately predict the motions in functional lipid-embedded pLGICs is unknown. Here, using site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy and functional GLIC channels reconstituted into liposomes, we examined if, and how far, the loops at the ECD/TMD gating interface move during proton-dependent gating transitions from the resting to desensitized state. Loop 9 moves ∼9 Šinward toward the channel lumen in response to proton-induced desensitization. Loop 9 motions were not observed when GLIC was in detergent micelles, suggesting detergent solubilization traps the protein in a nonactivatable state and lipids are required for functional gating transitions. Proton-induced desensitization immobilizes loop 2 with little change in position. Proton-induced motion of the M2-M3 loop was not observed, suggesting its conformation is nearly identical in closed and desensitized states. Our experimentally derived distance measurements of spin-labeled GLIC suggest ELIC is not a good model for the functional resting state of GLIC, and that the crystal structure of GLIC does not correspond to a desensitized state. These findings advance our understanding of the molecular mechanisms underlying pLGIC gating.


Asunto(s)
Proteínas Bacterianas/fisiología , Cianobacterias , Activación del Canal Iónico , Canales Iónicos Activados por Ligandos/fisiología , Sustitución de Aminoácidos , Animales , Proteínas Bacterianas/química , Células Cultivadas , Espectroscopía de Resonancia por Spin del Electrón , Canales Iónicos Activados por Ligandos/química , Liposomas/química , Potenciales de la Membrana , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Técnicas de Placa-Clamp , Estructura Cuaternaria de Proteína , Marcadores de Spin , Xenopus laevis
17.
J Med Chem ; 56(11): 4619-30, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23682762

RESUMEN

Pentameric ligand gated ion channels (pLGICs) mediate signal transduction. The binding of an extracellular ligand is coupled to the transmembrane channel opening. So far, all known agonists bind at the interface between subunits in a topologically conserved "orthosteric site" whose amino acid composition defines the pharmacological specificity of pLGIC subtypes. A striking exception is the bacterial proton-activated GLIC protein, exhibiting an uncommon orthosteric binding site in terms of sequence and local architecture. Among a library of Gloeobacter violaceus metabolites, we identified a series of cinnamic acid derivatives, which antagonize the GLIC proton-elicited response. Structure-activity analysis shows a key contribution of the carboxylate moiety to GLIC inhibition. Molecular docking coupled to site-directed mutagenesis support that the binding pocket is located below the classical orthosteric site. These antagonists provide new tools to modulate conformation of GLIC, currently used as a prototypic pLGIC, and opens new avenues to study the signal transduction mechanism.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Cinamatos/química , Canales Iónicos Activados por Ligandos/antagonistas & inhibidores , Protones , Animales , Proteínas Bacterianas/fisiología , Sitios de Unión , Ácidos Cafeicos/síntesis química , Ácidos Cafeicos/química , Ácidos Cafeicos/farmacología , Cinamatos/síntesis química , Cinamatos/farmacología , Simulación por Computador , Cianobacterias/metabolismo , Bases de Datos Factuales , Femenino , Concentración de Iones de Hidrógeno , Canales Iónicos Activados por Ligandos/fisiología , Modelos Moleculares , Oocitos/efectos de los fármacos , Oocitos/fisiología , Técnicas de Placa-Clamp , Multimerización de Proteína , Estereoisomerismo , Xenopus
18.
PLoS One ; 8(5): e64326, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23667707

RESUMEN

The mechanisms of allosteric action within pentameric ligand-gated ion channels (pLGICs) remain to be determined. Using crystallography, site-directed mutagenesis, and two-electrode voltage clamp measurements, we identified two functionally relevant sites in the extracellular (EC) domain of the bacterial pLGIC from Gloeobacter violaceus (GLIC). One site is at the C-loop region, where the NQN mutation (D91N, E177Q, and D178N) eliminated inter-subunit salt bridges in the open-channel GLIC structure and thereby shifted the channel activation to a higher agonist concentration. The other site is below the C-loop, where binding of the anesthetic ketamine inhibited GLIC currents in a concentration dependent manner. To understand how a perturbation signal in the EC domain, either resulting from the NQN mutation or ketamine binding, is transduced to the channel gate, we have used the Perturbation-based Markovian Transmission (PMT) model to determine dynamic responses of the GLIC channel and signaling pathways upon initial perturbations in the EC domain of GLIC. Despite the existence of many possible routes for the initial perturbation signal to reach the channel gate, the PMT model in combination with Yen's algorithm revealed that perturbation signals with the highest probability flow travel either via the ß1-ß2 loop or through pre-TM1. The ß1-ß2 loop occurs in either intra- or inter-subunit pathways, while pre-TM1 occurs exclusively in inter-subunit pathways. Residues involved in both types of pathways are well supported by previous experimental data on nAChR. The direct coupling between pre-TM1 and TM2 of the adjacent subunit adds new insight into the allosteric signaling mechanism in pLGICs.


Asunto(s)
Cianobacterias/metabolismo , Canales Iónicos Activados por Ligandos/fisiología , Modelos Biológicos , Modelos Moleculares , Conformación Proteica , Transducción de Señal/fisiología , Regulación Alostérica/fisiología , Secuencia de Bases , Cristalografía , Cianobacterias/genética , Canales Iónicos Activados por Ligandos/genética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense/genética , Técnicas de Placa-Clamp , Análisis de Secuencia de ADN
19.
Cell Mol Life Sci ; 70(7): 1241-53, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22936353

RESUMEN

Pentameric ligand-gated ion channel (pLGIC) receptors exhibit desensitization, the progressive reduction in ionic flux in the prolonged presence of agonist. Despite its pathophysiological importance and the fact that it was first described over half a century ago, surprisingly little is known about the structural basis of desensitization in this receptor family. Here, we explain how desensitization is defined using functional criteria. We then review recent progress into reconciling the structural and functional basis of this phenomenon. The extracellular-transmembrane domain interface is a key locus. Activation is well known to involve conformational changes at this interface, and several lines of evidence suggest that desensitization involves a distinct conformational change here that is incompatible with activation. However, major questions remain unresolved, including the structural basis of the desensitization-induced agonist affinity increase and the mechanism of pore closure during desensitization.


Asunto(s)
Resistencia a Medicamentos , Activación del Canal Iónico/fisiología , Canales Iónicos Activados por Ligandos/metabolismo , Canales Iónicos Activados por Ligandos/fisiología , Animales , Resistencia a Medicamentos/genética , Resistencia a Medicamentos/fisiología , Humanos , Activación del Canal Iónico/genética , Canales Iónicos Activados por Ligandos/química , Canales Iónicos Activados por Ligandos/genética , Modelos Biológicos , Modelos Moleculares , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
20.
Curr Protoc Pharmacol ; Chapter 11: Unit 11.4, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23258597

RESUMEN

Detailed in this unit are protocols for studying the effects of externally and internally applied agents on the behavior of ligand-gated ion channels (LGICs), specifically the GABA(A) receptor. These assays include a number of electrophysiological techniques applied to whole-cell and excised patch recordings of recombinant and native GABA(A) receptor subtypes used in the generation and analysis of a pharmacological data. Although applied to GABA(A) receptors, these techniques are equally applicable to other LGICs. The analysis is extended to incorporate consideration of post-synaptic inhibitory events. In addition, complementary descriptions of how tissues for such studies are prepared for studying recombinant and native receptors are included.


Asunto(s)
Canales Iónicos Activados por Ligandos/fisiología , Neuronas/fisiología , Receptores de Superficie Celular/fisiología , Fosfatos de Calcio/farmacología , Difusión , Relación Dosis-Respuesta a Droga , Agonistas del GABA/farmacología , Antagonistas del GABA/farmacología , Células HEK293 , Hipocampo/fisiología , Humanos , Indicadores y Reactivos , Concentración 50 Inhibidora , Ligandos , Potenciales de la Membrana/fisiología , Técnicas de Placa-Clamp/métodos , Receptores de GABA/fisiología , Proteínas Recombinantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...