Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.055
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731963

RESUMEN

Venom peptides have evolved to target a wide range of membrane proteins through diverse mechanisms of action and structures, providing promising therapeutic leads for diseases, including pain, epilepsy, and cancer, as well as unique probes of ion channel structure-function. In this work, a high-throughput FLIPR window current screening assay on T-type CaV3.2 guided the isolation of a novel peptide named ω-Buthitoxin-Hf1a from scorpion Hottentotta franzwerneri crude venom. At only 10 amino acid residues with one disulfide bond, it is not only the smallest venom peptide known to target T-type CaVs but also the smallest structured scorpion venom peptide yet discovered. Synthetic Hf1a peptides were prepared with C-terminal amidation (Hf1a-NH2) or a free C-terminus (Hf1a-OH). Electrophysiological characterization revealed Hf1a-NH2 to be a concentration-dependent partial inhibitor of CaV3.2 (IC50 = 1.18 µM) and CaV3.3 (IC50 = 0.49 µM) depolarized currents but was ineffective at CaV3.1. Hf1a-OH did not show activity against any of the three T-type subtypes. Additionally, neither form showed activity against N-type CaV2.2 or L-type calcium channels. The three-dimensional structure of Hf1a-NH2 was determined using NMR spectroscopy and used in docking studies to predict its binding site at CaV3.2 and CaV3.3. As both CaV3.2 and CaV3.3 have been implicated in peripheral pain signaling, the analgesic potential of Hf1a-NH2 was explored in vivo in a mouse model of incision-induced acute post-surgical pain. Consistent with this role, Hf1a-NH2 produced antiallodynia in both mechanical and thermal pain.


Asunto(s)
Canales de Calcio Tipo T , Modelos Animales de Enfermedad , Hiperalgesia , Dolor Postoperatorio , Venenos de Escorpión , Animales , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/química , Ratones , Venenos de Escorpión/química , Venenos de Escorpión/farmacología , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/metabolismo , Calcio/metabolismo , Masculino , Humanos , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/química
2.
Int Immunopharmacol ; 133: 112031, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38631219

RESUMEN

BACKGROUND: Neuromedin B (Nmb) plays a pivotal role in the transmission of neuroinflammation, particularly during spinal cord ischemia-reperfusion injury (SCII). However, the detailed molecular mechanisms underlying this process remain elusive. METHODS: The SCII model was established by clamping the abdominal aorta of male Sprague-Dawley (SD) rats for 60 min. The protein expression levels of Nmb, Cav3.2, and IL-1ß were detected by Western blotting, while miR-214-3p expression was quantified by qRT-PCR. The targeted regulation between miR-214-3p and Nmb was investigated using a dual-luciferase reporter gene assay. The cellular localization of Nmb and Cav3.2 with cell-specific markers was visualized by immunofluorescence staining. The specific roles of miR-214-3p on the Nmb/Cav3.2 interactions in SCII-injured rats were explored by intrathecal injection of Cav3.2-siRNA, PD168368 (a specific NmbR inhibitor) and synthetic miR-214-3p agomir and antagomir in separate experiments. Additionally, hind-limb motor function was evaluated using the modified Tarlov scores. RESULTS: Compared to the Sham group, the protein expression levels of Nmb, Cav3.2, and the proinflammatory factor Interleukin(IL)-1ß were significantly elevated at 24 h post-SCII. Intrathecal injection of PD168368 and Cav3.2-siRNA significantly suppressed the expression of Cav3.2 and IL-1ß compared to the SCII group. The miRDB database and dual-luciferase reporter gene assay identified Nmb as a direct target of miR-214-3p. As expected, in vivo overexpression of miR-214-3p by agomir-214-3p pretreatment significantly inhibited the increases in Nmb, Cav3.2 and IL-1ß expression and improved lower limb motor function in SCII-injured rats, while antagomiR-214-3p pretreatment reversed these effects. CONCLUSIONS: Nmb protein levels positively correlated with Cav3.2 expression in SCII rats. Upregulating miR-214-3p ameliorated hind-limb motor function and protected against neuroinflammation via inhibiting the aberrant Nmb/Cav3.2 interactions and downstream IL-1ß release. These findings provide novel therapeutic targets for clinical prevention and treatment of SCII.


Asunto(s)
MicroARNs , Ratas Sprague-Dawley , Daño por Reperfusión , Transducción de Señal , Animales , MicroARNs/genética , MicroARNs/metabolismo , Daño por Reperfusión/metabolismo , Masculino , Ratas , Isquemia de la Médula Espinal/metabolismo , Isquemia de la Médula Espinal/genética , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Interleucina-1beta/metabolismo , Médula Espinal/metabolismo , Modelos Animales de Enfermedad
3.
Exp Physiol ; 109(5): 779-790, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445814

RESUMEN

Endothelial dysfunction develops with age and may precede cardiovascular disease. Animal data suggest that T-type calcium channels play an important role in endothelial function, but data from humans are lacking. This study included 15 healthy, sedentary, elderly males for a double blinded, randomized controlled trial. For 8 weeks, they were given 40 mg/day of either efonidipine (L- and T-type calcium channel blocker (CCB)) or nifedipine (L-type CCB). Vascular function was evaluated by graded femoral arterial infusions of acetylcholine (ACh; endothelium-dependent vasodilator) and sodium nitroprusside (endothelium-independent vasodilator) both with and without co-infusion of N-acetylcysteine (NAC; antioxidant). We measured leg blood flow and mean arterial pressure and calculated leg vascular conductance to evaluate the leg vascular responses. Despite no significant change in blood pressure in either group, we observed higher leg blood flow responses (Δ 0.43 ± 0.45 l/min, P = 0.006) and leg vascular conductance (Δ 5.38 ± 5.67 ml/min/mmHg, P = 0.005) to intra-arterial ACh after efonidipine, whereas there was no change in the nifedipine group, and no differences between groups. We found no upregulation of endothelial nitric oxide synthase in vastus lateralis muscle biopsies within or between groups. Smooth muscle cell responsiveness was unaltered by efonidipine or nifedipine. Intravenous co-infusion of NAC did not affect endothelium-dependent vasodilatation in either of the CCB groups. These results suggest that 8 weeks' inhibition of T- and L-type calcium channels augments endothelium-dependent vasodilatory function in healthy elderly males. Further studies are required to elucidate if T-type calcium channel inhibition can counteract endothelial dysfunction.


Asunto(s)
Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T , Endotelio Vascular , Nifedipino , Nitrofenoles , Humanos , Masculino , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/efectos de los fármacos , Anciano , Bloqueadores de los Canales de Calcio/farmacología , Nifedipino/farmacología , Proyectos Piloto , Método Doble Ciego , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiología , Dihidropiridinas/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología , Presión Sanguínea/efectos de los fármacos , Presión Sanguínea/fisiología , Flujo Sanguíneo Regional/efectos de los fármacos , Flujo Sanguíneo Regional/fisiología , Compuestos Organofosforados/farmacología , Acetilcolina/farmacología , Pierna/irrigación sanguínea , Nitroprusiato/farmacología , Persona de Mediana Edad
4.
Pflugers Arch ; 476(2): 163-177, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38036777

RESUMEN

T-type calcium channels perform crucial physiological roles across a wide spectrum of tissues, spanning both neuronal and non-neuronal system. For instance, they serve as pivotal regulators of neuronal excitability, contribute to cardiac pacemaking, and mediate the secretion of hormones. These functions significantly hinge upon the intricate interplay of T-type channels with interacting proteins that modulate their expression and function at the plasma membrane. In this review, we offer a panoramic exploration of the current knowledge surrounding these T-type channel interactors, and spotlight certain aspects of their potential for drug-based therapeutic intervention.


Asunto(s)
Canales de Calcio Tipo T , Calcio , Calcio/metabolismo , Bloqueadores de los Canales de Calcio , Canales de Calcio Tipo T/metabolismo , Neuronas/metabolismo
5.
J Invest Dermatol ; 144(3): 612-620.e6, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37863387

RESUMEN

Voltage-gated calcium channels regulate neuronal excitability. The Cav3.2 isoform of the T-type voltage-activated calcium channel is expressed in sensory neurons and is implicated in pain transmission. However, its role in itch remains unclear. In this study, we demonstrated that Cav3.2 is expressed by mechanosensory and peptidergic subsets of mouse dorsal root ganglion neurons and colocalized with TRPV1 and receptors for type 2 cytokines. Cav3.2-positive neurons innervate human skin. A deficiency of Cav3.2 reduces histamine, IL-4/IL-13, and TSLP-induced itch in mice. Cav3.2 channels were upregulated in the dorsal root ganglia of an atopic dermatitis (AD)-like mouse model and mediated neuronal excitability. Genetic knockout of Cav3.2 or T-type calcium channel blocker mibefradil treatment reduced spontaneous and mechanically induced scratching behaviors and skin inflammation in an AD-like mouse model. Substance P and vasoactive intestinal polypeptide levels were increased in the trigeminal ganglia from AD-like mouse model, and genetic ablation or pharmacological inhibition of Cav3.2 reduced their gene expression. Cav3.2 knockout also attenuated the pathologic changes in ex vivo skin explants cocultured with trigeminal ganglia neurons from AD-induced mice. Our study identifies the role of Cav3.2 in both histaminergic and nonhistaminergic acute itch. Cav3.2 channel also contributes to AD-related chronic itch and neuroinflammation.


Asunto(s)
Canales de Calcio Tipo T , Dermatitis Atópica , Ratones , Humanos , Animales , Dermatitis Atópica/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Prurito/metabolismo , Inflamación/metabolismo , Células Receptoras Sensoriales/metabolismo , Interleucina-13/metabolismo , Ganglios Espinales/metabolismo
6.
Sci Rep ; 13(1): 20407, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37989780

RESUMEN

The arterial myogenic response to intraluminal pressure elicits constriction to maintain tissue perfusion. Smooth muscle [Ca2+] is a key determinant of constriction, tied to L-type (CaV1.2) Ca2+ channels. While important, other Ca2+ channels, particularly T-type could contribute to pressure regulation within defined voltage ranges. This study examined the role of one T-type Ca2+ channel (CaV3.1) using C57BL/6 wild type and CaV3.1-/- mice. Patch-clamp electrophysiology, pressure myography, blood pressure and Ca2+ imaging defined the CaV3.1-/- phenotype relative to C57BL/6. CaV3.1-/- mice had absent CaV3.1 expression and whole-cell current, coinciding with lower blood pressure and reduced mesenteric artery myogenic tone, particularly at lower pressures (20-60 mmHg) where membrane potential is hyperpolarized. This reduction coincided with diminished Ca2+ wave generation, asynchronous events of Ca2+ release from the sarcoplasmic reticulum, insensitive to L-type Ca2+ channel blockade (Nifedipine, 0.3 µM). Proximity ligation assay (PLA) confirmed IP3R1/CaV3.1 close physical association. IP3R blockade (2-APB, 50 µM or xestospongin C, 3 µM) in nifedipine-treated C57BL/6 arteries rendered a CaV3.1-/- contractile phenotype. Findings indicate that Ca2+ influx through CaV3.1 contributes to myogenic tone at hyperpolarized voltages through Ca2+-induced Ca2+ release tied to the sarcoplasmic reticulum. This study helps establish CaV3.1 as a potential therapeutic target to control blood pressure.


Asunto(s)
Canales de Calcio Tipo T , Nifedipino , Ratones , Animales , Nifedipino/farmacología , Nifedipino/metabolismo , Señalización del Calcio , Vasoconstricción , Ratones Endogámicos C57BL , Arterias Mesentéricas/metabolismo , Niacinamida/metabolismo , Músculo Liso Vascular/metabolismo , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo
7.
Mol Pharmacol ; 104(4): 144-153, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37399325

RESUMEN

Englerin A (EA) is a potent agonist of tetrameric transient receptor potential canonical (TRPC) ion channels containing TRPC4 and TRPC5 subunits. TRPC proteins form cation channels that are activated by plasma membrane receptors. They convert extracellular signals such as angiotensin II into cellular responses, whereupon Na+ and Ca2+ influx and depolarization of the plasma membrane occur. Via depolarization, voltage-gated Ca2+ (CaV) channels can be activated, further increasing Ca2+ influx. We investigated the extent to which EA also affects the functions of CaV channels using the high-voltage-activated L-type Ca2+ channel CaV1.2 and the low-voltage-activated T-type Ca2+ channels CaV3.1, CaV3.2, and CaV3.3. After expression of cDNAs in human embryonic kidney (HEK293) cells, EA inhibited currents through all T-type channels at half-maximal inhibitory concentrations (IC50) of 7.5 to 10.3 µM. In zona glomerulosa cells of the adrenal gland, angiotensin II-induced elevation of cytoplasmic Ca2+ concentration leads to aldosterone release. We identified transcripts of low- and high-voltage-activated CaV channels and of TRPC1 and TRPC5 in the human adrenocortical (HAC15) zona glomerulosa cell line. Although no EA-induced TRPC activity was measurable, Ca2+ channel blockers distinguished T- and L-type Ca2+ currents. EA blocked 60% of the CaV current in HAC15 cells and T- and L-type channels analyzed at -30 mV and 10 mV were inhibited with IC50 values of 2.3 and 2.6 µM, respectively. Although the T-type blocker Z944 reduced basal and angiotensin II-induced 24-hour aldosterone release, EA was not effective. In summary, we show here that EA blocks CaV1.2 and T-type CaV channels at low-micromolar concentrations. SIGNIFICANCE STATEMENT: In this study we showed that englerin A (EA), a potent agonist of tetrameric transient receptor potential canonical (TRPC)4- or TRPC5-containing channels and currently under investigation to treat certain types of cancer, also inhibits the L-type voltage-gated Ca2+ (CaV) channel CaV1.2 and the T-type CaV channels CaV3.1, CaV3.2, and CaV3.3 channels at low micromolar concentrations.


Asunto(s)
Canales de Calcio Tipo T , Canales de Potencial de Receptor Transitorio , Humanos , Canales de Calcio Tipo T/metabolismo , Angiotensina II/farmacología , Angiotensina II/metabolismo , Aldosterona/farmacología , Células HEK293 , Canales Catiónicos TRPC/metabolismo , Calcio/metabolismo
8.
Mol Brain ; 16(1): 60, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37464359

RESUMEN

The present study was undertaken to explore the relative contributions of Cav3.2 T-type channels to mediating the antihyperalgesic activity of joint manipulation (JM) therapy. We used the chronic constriction injury model (CCI) to induce peripheral neuropathy and chronic pain in male mice, followed by JM. We demonstrate that JM produces long-lasting mechanical anti-hyperalgesia that is abolished in Cav3.2 null mice. Moreover, we found that JM displays a similar analgesic profile as the fatty acid amide hydrolase inhibitor URB597, suggesting a possible converging mechanism of action involving endocannabinoids. Overall, our findings advance our understanding of the mechanisms through which JM produces analgesia.


Asunto(s)
Analgesia , Canales de Calcio Tipo T , Ratones , Masculino , Animales , Dolor , Hiperalgesia/complicaciones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Canales de Calcio Tipo T/metabolismo
9.
Neurobiol Dis ; 184: 106217, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391087

RESUMEN

RATIONALE: Low-voltage-activated or T-type Ca2+ channels play a key role in the generation of seizures in absence epilepsy. We have described a homozygous, gain of function substitution mutation (R1584P) in the CaV3.2 T-type Ca2+ channel gene (Cacna1h) in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). The non-epileptic control (NEC) rats, derived from the same original Wistar strains as GAERS but selectively in-breed not to express seizures, are null for the R1584P mutation. To study the effects of this mutation in rats who otherwise have a GAERS or NEC genetic background, we bred congenic GAERS-Cacna1hNEC (GAERS null for R1584P mutation) and congenic NEC-Cacna1hGAERS (NEC homozygous for R1584P mutation) and evaluated the seizure and behavioral phenotype of these strains in comparison to the original GAERS and NEC strains. METHODS: To evaluate seizure expression in the congenic strains, EEG electrodes were implanted in NEC, GAERS, GAERS-Cacna1hNEC without the R1584P mutation, and NEC-Cacna1hGAERS with the R1584P mutation rats. In the first study, continuous EEG recordings were acquired from week 4 (when seizures begin to develop in GAERS) to week 14 of age (when GAERS display hundreds of seizures per day). In the second study, the seizure and behavioral phenotype of GAERS and NEC-Cacna1hGAERS strains were evaluated during young age (6 weeks of age) and adulthood (16 weeks of age) of GAERS, NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The Open field test (OFT) and sucrose preference test (SPT) were performed to evaluate anxiety-like and depressive-like behavior, respectively. This was followed by EEG recordings at 18 weeks of age to quantify the seizures, and spike-wave discharge (SWD) cycle frequency. At the end of the study, the whole thalamus was collected for T-type calcium channel mRNA expression analysis. RESULTS: GAERS had a significantly shorter latency to first seizures and an increased number of seizures per day compared to GAERS-Cacna1hNEC. On the other hand, the presence of the R1584P mutation in the NEC-Cacna1hGAERS was not enough to generate spontaneous seizures in their seizure-resistant background. 6 and 16-week-old GAERS and GAERS-Cacna1hNEC rats showed anxiety-like behavior in the OFT, in contrast to NEC and NEC-Cacna1hGAERS. Results from the SPT showed that the GAERS developed depressive-like in the SPT compared to GAERS-Cacna1hNEC, NEC, and NEC-Cacna1hGAERS. Analysis of the EEG at 18 weeks of age showed that the GAERS had an increased number of seizures per day, increased total seizure duration and a higher cycle frequency of SWD relative to GAERS-Cacna1hNEC. However, the average seizure duration was not significantly different between strains. Quantitative real-time PCR showed that the T-type Ca2+ channel isoform CaV3.2 channel expression was significantly increased in GAERS compared to NEC, GAERS-Cacna1hNEC and NEC-Cacna1hGAERS. The presence of the R1584P mutation increased the total ratio of CaV3.2 + 25/-25 splice variants in GAERS and NEC-Cacna1hGAERS compared to NEC and GAERS-Cacna1hNEC. DISCUSSION: The data from this study demonstrate that the R1584P mutation in isolation on a seizure-resistant NEC genetic background was insufficient to generate absence seizures, and that a GAERS genetic background can cause seizures even without the mutation. However, the study provides evidence that the R1584P mutation acts as a modulator of seizures development and expression, and depressive-like behavior in the SPT, but not the anxiety phenotype of the GAERS model of absence epilepsy.


Asunto(s)
Canales de Calcio Tipo T , Epilepsia Tipo Ausencia , Animales , Ratas , Canales de Calcio Tipo T/metabolismo , Modelos Animales de Enfermedad , Electroencefalografía/métodos , Epilepsia Tipo Ausencia/genética , Mutación/genética , Ratas Wistar , Convulsiones/genética
10.
Handb Exp Pharmacol ; 279: 249-262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37311830

RESUMEN

Aldosterone is a steroid hormone produced in the zona glomerulosa (ZG) of the adrenal cortex. The most prominent function of aldosterone is the control of electrolyte homeostasis and blood pressure via the kidneys. The primary factors regulating aldosterone synthesis are the serum concentrations of angiotensin II and potassium. The T-type voltage-gated calcium channel CaV3.2 (encoded by CACNA1H) is an important component of electrical as well as intracellular calcium oscillations, which govern aldosterone production in the ZG. Excessive aldosterone production that is (partially) uncoupled from physiological stimuli leads to primary aldosteronism, the most common cause of secondary hypertension. Germline gain-of-function mutations in CACNA1H were identified in familial hyperaldosteronism, whereas somatic mutations are a rare cause of aldosterone-producing adenomas. In this review, we summarize these findings, put them in perspective, and highlight missing knowledge.


Asunto(s)
Canales de Calcio Tipo T , Hiperaldosteronismo , Hipertensión , Humanos , Aldosterona , Hiperaldosteronismo/genética , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Hipertensión/genética , Señalización del Calcio , Mutación
11.
Metallomics ; 15(6)2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37193665

RESUMEN

ZnT1 is a major zinc transporter that regulates cellular zinc homeostasis. We have previously shown that ZnT1 has additional functions that are independent of its activity as a Zn2+ extruder. These include inhibition of the L-type calcium channel (LTCC) through interaction with the auxiliary ß-subunit of the LTCC and activation of the Raf-ERK signaling leading to augmented activity of the T-type calcium channel (TTCC). Our findings indicate that ZnT1 increases TTCC activity by enhancing the trafficking of the channel to the plasma membrane. LTCC and TTCC are co-expressed in many tissues and have different functions in a variety of tissues. In the current work, we investigated the effect of the voltage-gated calcium channel (VGCC) ß-subunit and ZnT1 on the crosstalk between LTCC and TTCC and their functions. Our results indicate that the ß-subunit inhibits the ZnT1-induced augmentation of TTCC function. This inhibition correlates with the VGCC ß-subunit-dependent reduction in ZnT1-induced activation of Ras-ERK signaling. The effect of ZnT1 is specific, as the presence of the ß-subunit did not change the effect of endothelin-1 (ET-1) on TTCC surface expression. These findings document a novel regulatory function of ZnT1 serving as a mediator in the crosstalk between TTCC and LTCC. Overall, we demonstrate that ZnT1 binds and regulates the activity of the ß-subunit of VGCC and Raf-1 kinase and modulates surface expression of the LTCC and TTCC catalytic subunits, consequently modulating the activity of these channels.


Asunto(s)
Canales de Calcio Tipo L , Canales de Calcio Tipo T , Calcio/metabolismo , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Proteínas Proto-Oncogénicas c-raf/metabolismo , Animales , Xenopus
12.
ACS Chem Neurosci ; 14(10): 1859-1869, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37116219

RESUMEN

Cav3.2 channels play an important role in the afferent nociceptive pathway, which is responsible for both physiological and pathological pain transmission. Cav3.2 channels are upregulated during neuropathic pain or peripheral inflammation in part due to an increased association with the deubiquitinase USP5. In this study, we investigated nine naturally occurring flavonoid derivatives which we tested for their abilities to inhibit transiently expressed Cav3.2 channels and their interactions with USP5. Icariside II (ICA-II), one of the flavonols studied, inhibited the biochemical interactions between USP5 and Cav3.2 and concomitantly and effectively blocked Cav3.2 channels. Molecular docking analysis predicts that ICA-II binds to the cUBP domain and the Cav3.2 interaction region. In addition, ICA-II was predicted to interact with residues in close proximity to the Cav3.2 channel's fenestrations, thus accounting for the observed blocking activity. In mice with inflammatory and neuropathic pain, ICA-II inhibited both phases of the formalin-induced nocifensive responses and abolished thermal hyperalgesia induced by injection of complete Freund's adjuvant (CFA) into the hind paw. Furthermore, ICA-II produced significant and long-lasting thermal anti-hyperalgesia in female mice, whereas Cav3.2 null mice were resistant to the action of ICA-II. Altogether, our data show that ICA-II has analgesic activity via an action on Cav3.2 channels.


Asunto(s)
Canales de Calcio Tipo T , Neuralgia , Femenino , Ratones , Animales , Canales de Calcio Tipo T/metabolismo , Simulación del Acoplamiento Molecular , Neuralgia/tratamiento farmacológico , Neuralgia/metabolismo , Hiperalgesia/metabolismo , Flavonoides , Flavonoles , Ratones Noqueados , Proteasas Ubiquitina-Específicas/metabolismo
13.
Mol Biol (Mosk) ; 57(2): 373-383, 2023.
Artículo en Ruso | MEDLINE | ID: mdl-37000665

RESUMEN

Whole-transcriptome data were used to study the changes in expression of genes coding proteins involved in the calcium regulation processes in the hippocampus of male mice with symptoms of depression caused by chronic social defeat stress. Cacna1g, Cacnb3, Camk1g, Camk2d, Camk2n2, Caly, Caln1, S100a16, and Slc24a4 genes were upregulated in the hippocampus of depressed mice compared to a control, while Cacna2d1, Cacng5, Grin2a, and Calm2 were downregulated. The greatest number of significant correlations was observed between the expression level of Calm2, which showed the highest transcriptional activity, and other differentially expressed genes. Calcium signaling in the hippocampus was assumed to be disrupted in mice exposed to chronic social defeat stress. The involvement of Calm2, Camk1g, Camk2d, and Camk2n2 genes in the process is discussed.


Asunto(s)
Canales de Calcio Tipo T , Calcio , Ratones , Masculino , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Transcriptoma , Estrés Psicológico/genética , Estrés Psicológico/complicaciones , Estrés Psicológico/metabolismo , Ratones Endogámicos C57BL , Depresión/genética , Depresión/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo
14.
Cells ; 12(3)2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36766802

RESUMEN

Calcium (Ca2+) can regulate a wide variety of cellular fates, such as proliferation, apoptosis, and autophagy. More importantly, changes in the intracellular Ca2+ level can modulate signaling pathways that control a broad range of physiological as well as pathological cellular events, including those important to cellular excitability, cell cycle, gene-transcription, contraction, cancer progression, etc. Not only intracellular Ca2+ level but the distribution of Ca2+ in the intracellular compartments is also a highly regulated process. For this Ca2+ homeostasis, numerous Ca2+ chelating, storage, and transport mechanisms are required. There are also specialized proteins that are responsible for buffering and transport of Ca2+. T-type Ca2+ channels (TTCCs) are one of those specialized proteins which play a key role in the signal transduction of many excitable and non-excitable cell types. TTCCs are low-voltage activated channels that belong to the family of voltage-gated Ca2+ channels. Over decades, multiple kinases and phosphatases have been shown to modulate the activity of TTCCs, thus playing an indirect role in maintaining cellular physiology. In this review, we provide information on the kinase and phosphatase modulation of TTCC isoforms Cav3.1, Cav3.2, and Cav3.3, which are mostly described for roles unrelated to cellular excitability. We also describe possible potential modulations that are yet to be explored. For example, both mitogen-activated protein kinase and citron kinase show affinity for different TTCC isoforms; however, the effect of such interaction on TTCC current/kinetics has not been studied yet.


Asunto(s)
Canales de Calcio Tipo T , Canales de Calcio Tipo T/metabolismo , Transducción de Señal , Apoptosis
15.
Braz J Med Biol Res ; 56: e11879, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36790286

RESUMEN

The expression of T-type voltage-dependent Ca2+ channels (Cav3) has been previously observed in breast cancer, but their expression and subcellular localization were not evaluated in pre-neoplastic lesions. Therefore, this work aimed to evaluate protein expression and subcellular localization of T-type channel isoforms in human breast tissue samples. Protein expressions of CaV3.1, CaV3.2, and CaV3.3 were evaluated by immunohistochemistry in breast without alteration, in proliferative non-neoplastic lesions, and in neoplastic ductal epithelial lesions of the human breast. CaV3.1, CaV3.2, and CaV3.3 nuclear expressions were decreased in advanced stages of neoplastic transformation, whereas CaV3.1 and CaV3.2 cytoplasmic expression increased. Also, the decrease in nuclear expression was correlated with an increase in cytoplasmic expression for CaV3.1 isoform. The change in CaV3 protein expression and subcellular localization are consistent with the neoplastic transformation stages of mammary epithelial cells, evident in early neoplastic lesions, such as ductal carcinomas in situ. These results suggest a possible involvement of CaV3 in the carcinogenic processes and could be considered as a potential pharmacological target in new therapies for breast cancer treatment.


Asunto(s)
Neoplasias de la Mama , Canales de Calcio Tipo T , Humanos , Femenino , Calcio/metabolismo , Canales de Calcio Tipo T/metabolismo
16.
J Reprod Dev ; 69(2): 87-94, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36754390

RESUMEN

Uterine peristalsis is essential for gamete transport and embryo implantation. It shares the characteristics of spontaneity, rhythmicity, and directivity with gastrointestinal peristalsis. Telocytes, the "interstitial Cajal-like cells" outside the digestive canal, are also located in the uterus and may act as pacemakers. To investigate the possible origin and regulatory mechanism of periodic uterine peristalsis in the human menstrual cycle, telocytes in the myometrium were studied to determine the effect of estradiol on T-type calcium channel regulation. In this study, biopsies of the human myometrium were obtained for cell culture, and double-labeling immunofluorescence screening was used to identify telocytes and T-type calcium channel expression. Intracellular calcium signal measurements and patch-clamp recordings were used to investigate the role of T-type calcium channels in regulating calcium currents with or without estradiol. Our study demonstrates that telocytes exist in the human uterus and express T-type calcium channels. The intracellular Ca2+ fluorescence intensity marked by Fluo-4AM was dramatically decreased by NNC 55-0396, a highly selective T-type calcium channel blocker, but enhanced by estradiol. T-type calcium current amplitude increased in telocytes incubated with estradiol in a dose-dependent manner compared to the control group. In conclusion, our study demonstrated that telocytes exist in the human myometrium, expressing T-type calcium channels and estradiol-enhanced T-type calcium currents, which may be a reasonable explanation for the origin of uterine peristalsis. The role of telocytes in the human uterus as pacemakers and message transfer stations in uterine peristalsis may be worth further investigation.


Asunto(s)
Canales de Calcio Tipo T , Telocitos , Femenino , Humanos , Miometrio/metabolismo , Miometrio/patología , Canales de Calcio Tipo T/metabolismo , Canales de Calcio Tipo T/farmacología , Estradiol/farmacología , Estradiol/metabolismo , Calcio/metabolismo , Telocitos/metabolismo , Telocitos/patología
17.
Handb Exp Pharmacol ; 279: 263-288, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592228

RESUMEN

CaV3.3 is the third member of the low-voltage-activated calcium channel family and the last to be recognized as disease gene. Previously, CACNA1I, the gene encoding CaV3.3, had been described as schizophrenia risk gene. More recently, de novo missense mutations in CACNA1I were identified in patients with variable degrees of neurodevelopmental disease with and without epilepsy. Their functional characterization indicated gain-of-function effects resulting in increased calcium load and hyperexcitability of neurons expressing CaV3.3. The amino acids mutated in the CaV3.3 disease variants are located in the vicinity of the channel's activation gate and thus are classified as gate-modifying channelopathy mutations. A persistent calcium leak during rest and prolonged calcium spikes due to increased voltage sensitivity of activation and slowed kinetics of channel inactivation, respectively, may be causal for the neurodevelopmental defects. The prominent expression of CaV3.3 in thalamic reticular nucleus neurons and its essential role in generating the rhythmic thalamocortical network activity are consistent with a role of the mutated channels in the etiology of epileptic seizures and thus suggest T-type channel blockers as a viable treatment option.


Asunto(s)
Canales de Calcio Tipo T , Canalopatías , Humanos , Canalopatías/genética , Calcio/metabolismo , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/química , Canales de Calcio Tipo T/metabolismo , Mutación
18.
Neuropharmacology ; 226: 109400, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36586474

RESUMEN

The dorsal subiculum (dSub) is one of the key structures responsible for the formation of hippocampal memory traces but the contribution of individual ionic currents to its cognitive function is not well studied. Although we recently reported that low-voltage-activated T-type calcium channels (T-channels) are crucial for the burst firing pattern regulation in the dSub pyramidal neurons, their potential role in learning and memory remains unclear. Here we used in vivo local field potential recordings and miniscope calcium imaging in freely behaving mice coupled with pharmacological and genetic tools to address this gap in knowledge. We show that the CaV3.1 isoform of T-channels is critically involved in controlling neuronal activity in the dSub in vivo. Altering neuronal excitability by inhibiting T-channel activity markedly affects calcium dynamics, synaptic plasticity, neuronal oscillations and phase-amplitude coupling in the dSub, thereby disrupting spatial learning. These results provide an important causative link between the CaV3.1 channels, burst firing of dSub neurons and memory formation, thus further supporting the notion that changes in neuronal excitability regulate memory processing. We posit that subicular CaV3.1 T-channels could be a promising novel drug target for cognitive disorders.


Asunto(s)
Canales de Calcio Tipo T , Ratones , Animales , Canales de Calcio Tipo T/metabolismo , Memoria Espacial , Calcio , Hipocampo/metabolismo , Plasticidad Neuronal , Potenciales de Acción/fisiología
19.
Pain ; 164(5): 1012-1026, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36279179

RESUMEN

ABSTRACT: The bladder wall is innervated by a complex network of afferent nerves that detect bladder stretch during filling. Sensory signals, generated in response to distension, are relayed to the spinal cord and brain to evoke physiological and painful sensations and regulate urine storage and voiding. Hyperexcitability of these sensory pathways is a key component in the development of chronic bladder hypersensitivity disorders including interstitial cystitis/bladder pain syndrome and overactive bladder syndrome. Despite this, the full array of ion channels that regulate bladder afferent responses to mechanical stimuli have yet to be determined. Here, we investigated the role of low-voltage-activated T-type calcium (Ca V 3) channels in regulating bladder afferent responses to distension. Using single-cell reverse-transcription polymerase chain reaction and immunofluorescence, we revealed ubiquitous expression of Ca V 3.2, but not Ca V 3.1 or Ca V 3.3, in individual bladder-innervating dorsal root ganglia neurons. Pharmacological inhibition of Ca V 3.2 with TTA-A2 and ABT-639, selective blockers of T-type calcium channels, dose-dependently attenuated ex-vivo bladder afferent responses to distension in the absence of changes to muscle compliance. Further evaluation revealed that Ca V 3.2 blockers significantly inhibited both low- and high-threshold afferents, decreasing peak responses to distension, and delayed activation thresholds, thereby attenuating bladder afferent responses to both physiological and noxious distension. Nocifensive visceromotor responses to noxious bladder distension in vivo were also significantly reduced by inhibition of Ca V 3 with TTA-A2. Together, these data provide evidence of a major role for Ca V 3.2 in regulating bladder afferent responses to bladder distension and nociceptive signalling to the spinal cord.


Asunto(s)
Canales de Calcio Tipo T , Cistitis Intersticial , Humanos , Vejiga Urinaria/inervación , Neuronas Aferentes/fisiología , Canales de Calcio Tipo T/metabolismo , Vías Aferentes/fisiología , Cistitis Intersticial/metabolismo , Ganglios Espinales/metabolismo
20.
Br J Pharmacol ; 180(9): 1267-1285, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36245395

RESUMEN

BACKGROUND AND PURPOSE: Postoperative pain occurs in as many as 70% of surgeries performed worldwide. Postoperative pain management still relies on opioids despite their negative consequences, resulting in a public health crisis. Therefore, it is important to develop alternative therapies to treat chronic pain. Natural products derived from medicinal plants are potential sources of novel biologically active compounds for development of safe analgesics. In this study, we screened a library of natural products to identify small molecules that target the activity of voltage-gated sodium and calcium channels that have important roles in nociceptive sensory processing. EXPERIMENTAL APPROACH: Fractions derived from the Native American medicinal plant, Parthenium incanum, were assessed using depolarization-evoked calcium influx in rat dorsal root ganglion (DRG) neurons. Further separation of these fractions yielded a cycloartane-type triterpene identified as argentatin C, which was additionally evaluated using whole-cell voltage and current-clamp electrophysiology, and behavioural analysis in a mouse model of postsurgical pain. KEY RESULTS: Argentatin C blocked the activity of both voltage-gated sodium and low-voltage-activated (LVA) calcium channels in calcium imaging assays. Docking analysis predicted that argentatin C may bind to NaV 1.7-1.9 and CaV 3.1-3.3 channels. Furthermore, argentatin C decreased Na+ and T-type Ca2+ currents as well as excitability in rat and macaque DRG neurons, and reversed mechanical allodynia in a mouse model of postsurgical pain. CONCLUSION AND IMPLICATIONS: These results suggest that the dual effect of argentatin C on voltage-gated sodium and calcium channels supports its potential as a novel treatment for painful conditions.


Asunto(s)
Canales de Calcio Tipo T , Canales de Sodio Activados por Voltaje , Ratones , Ratas , Animales , Canales de Calcio Tipo T/metabolismo , Ratas Sprague-Dawley , Sodio/metabolismo , Calcio/metabolismo , Ganglios Espinales/metabolismo , Dolor Postoperatorio/tratamiento farmacológico , Canales de Sodio Activados por Voltaje/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...