Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
1.
Molecules ; 27(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35011530

RESUMEN

Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/agonistas , Canales de Potasio/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Calcio/metabolismo , Humanos , Potasio/metabolismo , Canales de Potasio/clasificación
2.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003637

RESUMEN

Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.


Asunto(s)
Mimiviridae/fisiología , Canales de Potasio/fisiología , Potasio/metabolismo , Virus no Clasificados/fisiología , Secuencia de Aminoácidos , Evolución Molecular , Genoma Viral , Canales Iónicos , Membrana Dobles de Lípidos , Mimiviridae/genética , Phycodnaviridae/genética , Filogenia , Canales de Potasio/clasificación , Canales de Potasio/genética , Alineación de Secuencia , Análisis de Secuencia , Sodio/metabolismo , Canales de Sodio , Virus no Clasificados/genética
3.
Int J Biol Macromol ; 140: 556-567, 2019 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-31419561

RESUMEN

CRISPs represent a family of cysteine-rich secretory proteins with molecular mass between 20 and 30 kDa and a highly conserved specific pattern of 16 cysteine residues. In this work, we isolated and characterized a novel CRISP from Bothrops alternatus venom, named BaltCRP, also evaluating its effects on different isoforms of potassium channels (Kv1.1; Kv1.2; Kv1.3; Kv1.4; Kv1.5; Kv2.1; Kv10.1 and Shaker) and on inflammatory processes in vivo. This toxin has a molecular mass of 24.4 kDa and pI around 7.8. Electrophysiological experiments using voltage clamp techniques showed that BaltCRP can affect the currents of Kv1.1; Kv1.3; Kv2.1 and Shaker channels. In addition, BaltCRP induced inflammatory responses characterized by an increase of leukocytes in the peritoneal cavity of mice, also stimulating the production of mediators such IL-6, IL-1ß, IL-10, PGE2, PGD2, LTB4 and CysLTs. Altogether, these results demonstrated that BaltCRP can help understand the biological effects evoked by snake venom CRISPs, which could eventually lead to the development of new molecules with therapeutic potential.


Asunto(s)
Bothrops , Venenos de Crotálidos/química , Cisteína/química , Canales de Potasio/química , Secuencia de Aminoácidos/genética , Animales , Transporte Biológico/efectos de los fármacos , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/farmacología , Humanos , Inflamación/genética , Inflamación/patología , Leucocitos/efectos de los fármacos , Leucocitos/patología , Ratones , Peso Molecular , Técnicas de Placa-Clamp , Canales de Potasio/clasificación , Canales de Potasio/genética , Venenos de Víboras/química
4.
Biol Aujourdhui ; 213(1-2): 51-57, 2019.
Artículo en Francés | MEDLINE | ID: mdl-31274103

RESUMEN

Migraine is a common, disabling neurological disorder with genetic, environmental and hormonal components and a prevalence estimated at ∼15%. Migraine episodes are notably related, among several factors, to electric hyperexcitability in sensory neurons. Their electrical activity is controlled by ion channels that generate current, specifically by the two-pore-domain potassium, K2P, channels, which inhibit electrical activity. Mutation in the gene encoding TRESK, a K2P channel, causes the formation of TRESK-MT1, the expected non-functional C-terminal truncated TRESK channel, and an additional unexpected protein, TRESK-MT2, which corresponds to a non-functional N-terminal truncated TRESK channel, through a mechanism called frameshift mutation-induced Alternative Translation Initiation (fsATI). TRESK-MT1 is inactive but TRESK-M2 targets two other ion channels, TREK1 and TREK2, inducing a great stimulation of the neuronal electrical activity that may cause migraines. These findings identify TREK1 and TREK2 as potential molecular targets for migraine treatment and suggest that fsATI should be considered as a distinct class of mutations.


Asunto(s)
Trastornos Migrañosos/genética , Canales de Potasio/genética , Animales , Humanos , Trastornos Migrañosos/metabolismo , Canales de Potasio/química , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Multimerización de Proteína/fisiología , Transducción de Señal/genética
5.
Pacing Clin Electrophysiol ; 42(2): 275-282, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30578647

RESUMEN

The HCN4 gene encodes a subunit of the hyperpolarization-activated cyclic nucleotide-gated channel, type 4 that is essential for the proper generation of pacemaker potentials in the sinoatrial node. The HCN4 gene is often present in targeted genetic testing panels for various cardiac conduction system disorders and there are several reports of HCN4 variants associated with conduction disorders. Here, we report the in vitro functional characterization of four rare variants of uncertain significance (VUS) in HCN4, identified through testing a cohort of 296 sudden unexpected natural deaths. The variants are all missense alterations, leading to single amino acid changes: p.E66Q in the N-terminus, p.D546N in the C-linker domain, and both p.S935Y and p.R1044Q in the C-terminus distal to the CNBD. We also identified a likely benign variant, p. P1063T, which has a high minor allele frequency in the gnomAD, which is utilized here as a negative control. Three of the HCN4 VUS (p.E66Q, p.S935Y, and p.R1044Q) had electrophysiological characteristics similar to the wild-type channel, suggesting that these variants are benign. In contrast, the p.D546N variant in the C-linker domain exhibited a larger current density, slower activation, and was unresponsive to cyclic adenosine monophosphate (cAMP) compared to wild-type. With functional assays, we reclassified three rare HCN4 VUS to likely benign variants, eliminating the necessity for costly and time-consuming further study. Our studies also provide a new lead to investigate how a VUS located in the C-linker connecting the pore to the cAMP binding domain may affect the channel open state probability and cAMP response.


Asunto(s)
Muerte Súbita Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/clasificación , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Proteínas Musculares/clasificación , Proteínas Musculares/genética , Canales de Potasio/clasificación , Canales de Potasio/genética , Células Cultivadas , Fenómenos Electrofisiológicos , Variación Genética , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/fisiología , Proteínas Musculares/fisiología , Canales de Potasio/fisiología
6.
Biochem Biophys Res Commun ; 500(1): 51-58, 2018 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-28642134

RESUMEN

Mitochondria are intracellular organelles involved in several processes from bioenergetics to cell death. In the latest years, ion channels are arising as new possible targets in controlling several cellular functions. The discovery that several plasma membrane located ion channels have intracellular counterparts, has now implemented this consideration and the number of studies enforcing the understanding of their role in different metabolic pathways. In this review, we will discuss the recent updates in the field, focusing our attention on the involvement of potassium channels during mitochondrial mediated apoptotic cell death. Since mitochondria are one of the key organelles involved in this process, it is not surprising that potassium channels located in their inner membrane could be involved in modulating mitochondrial membrane potential, ROS production, and respiratory chain complexes functions. Eventually, these events lead to changes in the mitochondrial fitness that prelude to the cytochrome c release and apoptosis. In this scenario, both the inhibition and the activation of mitochondrial potassium channels could cause cell death, and their targeting could be a novel pharmacological way to treat different human diseases.


Asunto(s)
Apoptosis/genética , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Neoplasias/metabolismo , Canales de Potasio/metabolismo , Animales , Citocromos c/metabolismo , Metabolismo Energético/genética , Regulación de la Expresión Génica , Humanos , Transporte Iónico , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/ultraestructura , Membranas Mitocondriales/ultraestructura , Neoplasias/genética , Neoplasias/patología , Canales de Potasio/clasificación , Canales de Potasio/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
7.
Pharmacol Rev ; 69(1): 1-11, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28267675

RESUMEN

A subset of potassium channels is regulated primarily by changes in the cytoplasmic concentration of ions, including calcium, sodium, chloride, and protons. The eight members of this subfamily were originally all designated as calcium-activated channels. More recent studies have clarified the gating mechanisms for these channels and have documented that not all members are sensitive to calcium. This article describes the molecular relationships between these channels and provides an introduction to their functional properties. It also introduces a new nomenclature that differentiates between calcium- and sodium-activated potassium channels.


Asunto(s)
Calcio/metabolismo , Cloruros/metabolismo , Activación del Canal Iónico , Canales de Potasio Calcio-Activados/clasificación , Canales de Potasio Calcio-Activados/metabolismo , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Sodio/metabolismo , Terminología como Asunto , Animales , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/clasificación , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/clasificación , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Espermatozoides/metabolismo
8.
Cell Mol Life Sci ; 72(19): 3677-93, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26070303

RESUMEN

Potassium channels ubiquitously exist in nearly all kingdoms of life and perform diverse but important functions. Since the first atomic structure of a prokaryotic potassium channel (KcsA, a channel from Streptomyces lividans) was determined, tremendous progress has been made in understanding the mechanism of potassium channels and channels conducting other ions. In this review, we discuss the structure of various kinds of potassium channels, including the potassium channel with the pore-forming domain only (KcsA), voltage-gated, inwardly rectifying, tandem pore domain, and ligand-gated ones. The general properties shared by all potassium channels are introduced first, followed by specific features in each class. Our purpose is to help readers to grasp the basic concepts, to be familiar with the property of the different domains, and to understand the structure and function of the potassium channels better.


Asunto(s)
Activación del Canal Iónico/fisiología , Modelos Moleculares , Canales de Potasio/química , Canales de Potasio/metabolismo , Dimerización , Canales de Potasio/clasificación , Estructura Terciaria de Proteína , Especificidad de la Especie
9.
Biochem Biophys Res Commun ; 453(4): 754-60, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25305496

RESUMEN

Two pore domain potassium (K2P) channels are mostly present in the central nervous system (CNS) where they play important roles in modulating neuronal excitability. K2P channels give rise to background K(+) currents (IKSO) a key component in setting and maintaining the resting membrane potential in excitable cells. Here, we studied the expression and relative abundances of K2P channels in cerebellar granule neurons (CGNs), combining molecular biology, electrophysiology and immunologic techniques. The CGN IKSO was very sensitive to external pH, as previously reported. Quantitative determination of mRNA expression level demonstrated the existence of an accumulation pattern of transcripts in CGN that encode K2P9>K2P1>K2P3>K2P18>K2P2=K2P10>K2P4>K2P5 subunits. The presence of the major K2P subunits expressed was then confirmed by Western blot and immunofluorescence analysis, demonstrating robust expression of K2P1 (TWIK-1), K2P3 (TASK-1), K2P9 (TASK-3) and K2P18 (TRESK) channel protein. Based, on these results, it is concluded that K2P1, -3, -9 and -18 subunits represent the majority component of IKSO current in CGN.


Asunto(s)
Cerebelo/citología , Cerebelo/metabolismo , Neuronas/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio/química , Canales de Potasio/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica/fisiología , Activación del Canal Iónico/fisiología , Porosidad , Canales de Potasio/clasificación , Estructura Terciaria de Proteína , Ratas , Ratas Sprague-Dawley
10.
Chem Biol Drug Des ; 83(1): 1-26, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24119115

RESUMEN

Potassium channels participate in many critical biological functions and play important roles in a variety of diseases. In recent years, many significant discoveries have been made which motivate us to review these achievements. The focus of our review is mainly on three aspects. Firstly, we try to summarize the latest developments in structure determinants and regulation mechanism of all types of potassium channels. Secondly, we review some diseases induced by or related to these channels. Thirdly, both qualitative and quantitative approaches are utilized to analyze structural features of modulators of potassium channels. Our analyses further prove that modulators possess some certain natural-product scaffolds. And pharmacokinetic parameters are important properties for organic molecules. Besides, with in silico methods, some features that can be used to differentiate modulators are derived. There is no doubt that all these studies on potassium channels as possible pharmaceutical targets will facilitate future translational research. All the strategies developed in this review could be extended to studies on other ion channels and proteins as well.


Asunto(s)
Canales de Potasio/metabolismo , Productos Biológicos/química , Productos Biológicos/farmacocinética , Semivida , Cardiopatías/metabolismo , Cardiopatías/patología , Humanos , Simulación de Dinámica Molecular , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Bloqueadores de los Canales de Potasio/química , Bloqueadores de los Canales de Potasio/farmacocinética , Canales de Potasio/química , Canales de Potasio/clasificación , Estructura Terciaria de Proteína
11.
Respir Physiol Neurobiol ; 188(3): 277-88, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23872455

RESUMEN

Rapid eye movement (REM) sleep is accompanied by periods of upper airway motor suppression that cause hypoventilation and obstructive apneas in susceptible individuals. A common idea has been that upper airway motor suppression in REM sleep is caused by the neurotransmitters glycine and γ-amino butyric acid (GABA) acting at pharyngeal motor pools to inhibit motoneuron activity. Data refute this as a workable explanation because blockade of this putative glycine/GABAergic mechanism releases pharyngeal motor activity in all states, and least of all in REM sleep. Here we summarize a novel motor-inhibitory mechanism that suppresses hypoglossal motor activity largely in REM sleep, this being a muscarinic receptor mechanism linked to G-protein-coupled inwardly rectifying potassium (GIRK) channels. We then outline how this discovery informs efforts to pursue therapeutic targets to reactivate hypoglossal motor activity throughout sleep via potassium channel modulation. One such target is the inwardly rectifying potassium channel Kir2.4 whose expression in the brain is almost exclusive to cranial motor nuclei.


Asunto(s)
Canales de Potasio/fisiología , Músculos Respiratorios/fisiología , Sueño REM/fisiología , Animales , Humanos , Nervio Hipogloso/fisiología , Canales de Potasio/clasificación , Canales de Potasio/efectos de los fármacos , Receptores Muscarínicos/fisiología , Músculos Respiratorios/efectos de los fármacos , Síndromes de la Apnea del Sueño/tratamiento farmacológico , Síndromes de la Apnea del Sueño/fisiopatología , Sueño REM/efectos de los fármacos
12.
J Smooth Muscle Res ; 49: 15-25, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23832615

RESUMEN

Ent-7α-hydroxytrachyloban-18-oic acid, a trachylobane diterpene from Xylopia langsdorfiana, has previously been shown to relax the guinea-pig trachea in a concentration-dependent manner. In this study we aimed to elucidate the mechanisms underlying this action and so contribute to the discovery of natural products with therapeutic potential. A possible interaction between diterpene and the Ca(2+)-calmodulin complex was eliminated as chlorpromazine (10(-6) M), a calmodulin inhibitor, did not significantly alter the diterpene-induced relaxation (pD2 = 4.38 ± 0.07 and 4.25 ± 0.07; mean ± S.E.M., n=5). Trachylobane-318 showed a higher relaxant potency when the trachea was contracted by 18 mM KCl than it did with 60 mM KCl (pD2 = 4.90 ± 0.25 and 3.88 ± 0.01, n=5), suggesting the possible activation of K(+) channels. This was confirmed, as in the presence of 10 mM TEA(+) (a non-selective K(+) channel blocker), diterpene relaxation potency was significantly reduced (pD2 = 4.38 ± 0.07 to 4.01 ± 0.06, n=5). Furthermore, K(+) channel subtypes KATP, KV, SKCa and BKCa seem to be modulated positively by trachylobane-318 (pD2 = 3.91 ± 0.003, 4.00 ± 0.06, 3.45 ± 0.14 and 3.80 ± 0.05, n=5) but not the Kir subtype channel (pD2 = 4.15 ± 0.10, n=5). Cyclic nucleotides were not involved as the relaxation due to aminophylline (pD2 = 4.27 ± 0.09, n=5) was not altered in the presence of 3 × 10(-5) M trachylobane-318 (pD2 = 4.46 ± 0.08, n=5). Thus, at a functional level, trachylobane-318 seems to relax the guinea-pig trachea by positive modulation of K(+) channels, particularly the KATP, KV, SKCa and BKCa subtypes.


Asunto(s)
Diterpenos/farmacología , Relajación Muscular/efectos de los fármacos , Músculo Liso/efectos de los fármacos , Tráquea/efectos de los fármacos , Xylopia/química , Animales , Diterpenos/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Femenino , Cobayas , Técnicas In Vitro , Masculino , Canales de Potasio/clasificación , Canales de Potasio/metabolismo
13.
Mol Med Rep ; 8(2): 311-9, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23732984

RESUMEN

Retinal ganglion cells (RGCs) consolidate visual processing and constitute the last step prior to the transmission of signals to higher brain centers. RGC death is a major cause of visual impairment in optic neuropathies, including glaucoma, age­related macular degeneration, diabetic retinopathy, uveoretinitis and vitreoretinopathy. Discharge patterns of RGCs are primarily determined by the presence of ion channels. As the most diverse group of ion channels, potassium (K+) channels play key roles in modulating the electrical properties of RGCs. Biochemical, molecular and pharmacological studies have identified a number of K+ channels in RGCs, including inwardly rectifying K+ (Kir), ATP­sensitive K+ (KATP), tandem­pore domain K+ (TASK), voltage­gated K+ (Kv), ether­à­go­go (Eag) and Ca2+­activated K+ (KCa) channels. Kir channels are important in the maintenance of the resting membrane potential and controlling RGC excitability. KATP channels are involved in RGC survival and neuroprotection. TASK channels are hypothesized to contribute to the regulation of resting membrane potentials and firing patterns of RGCs. Kv channels are important regulators of cellular excitability, functioning to modulate the amplitude, duration and frequency of action potentials and subthreshold depolarizations, and are also important in RGC development and protection. Eag channels may contribute to dendritic repolarization during excitatory postsynaptic potentials and to the attenuation of the back propagation of action potentials. KCa channels have been observed to contribute to repetitive firing in RGCs. Considering these important roles of K+ channels in RGCs, the study of K+ channels may be beneficial in elucidating the pathophysiology of RGCs and exploring novel RGC protection strategies.


Asunto(s)
Canales de Potasio/fisiología , Células Ganglionares de la Retina/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Canales de Potasio/clasificación
14.
PLoS One ; 7(6): e38826, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685610

RESUMEN

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and eukaryotes. Among the viral gene products are the smallest proteins known to form functional K(+) channels. To determine if these viral K(+) channels are the product of molecular piracy from their hosts, we compared the sequences of the K(+) channel pore modules from seven phycodnaviruses to the K(+) channels from Chlorella variabilis and Ectocarpus siliculosus, whose genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K(+) channels are not related to any lineage of the host channel homologs and that they are more closely related to each other than to their host homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium. However, the bacterial protein lacks the consensus motif of all K(+) channels and it does not form a functional channel in yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the viruses did not acquire their K(+) channel-encoding genes from their current algal hosts by gene transfer; thus alternative explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K(+) channels in algae and perhaps even all cellular organisms.


Asunto(s)
Evolución Molecular , Phycodnaviridae/genética , Canales de Potasio/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Secuencia de Bases , Chlorella/genética , Chlorella/virología , Secuencia de Consenso/genética , Prueba de Complementación Genética , Datos de Secuencia Molecular , Mutación , Phaeophyceae/genética , Phaeophyceae/virología , Phycodnaviridae/clasificación , Filogenia , Canales de Potasio/clasificación , Rhodobacteraceae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido , Homología de Secuencia de Ácido Nucleico
15.
Compr Physiol ; 2(3): 2087-149, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23723034

RESUMEN

Potassium channels are particularly important in determining the shape and duration of the action potential, controlling the membrane potential, modulating hormone secretion, epithelial function and, in the case of those K(+) channels activated by Ca(2+), damping excitatory signals. The multiplicity of roles played by K(+) channels is only possible to their mammoth diversity that includes at present 70 K(+) channels encoding genes in mammals. Today, thanks to the use of cloning, mutagenesis, and the more recent structural studies using x-ray crystallography, we are in a unique position to understand the origins of the enormous diversity of this superfamily of ion channels, the roles they play in different cell types, and the relations that exist between structure and function. With the exception of two-pore K(+) channels that are dimers, voltage-dependent K(+) channels are tetrameric assemblies and share an extremely well conserved pore region, in which the ion-selectivity filter resides. In the present overview, we discuss in the function, localization, and the relations between function and structure of the five different subfamilies of K(+) channels: (a) inward rectifiers, Kir; (b) four transmembrane segments-2 pores, K2P; (c) voltage-gated, Kv; (d) the Slo family; and (e) Ca(2+)-activated SK family, SKCa.


Asunto(s)
Canales de Potasio/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Activación del Canal Iónico , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Canales de Potasio/química , Canales de Potasio/clasificación , Canales de Potasio/genética , Estructura Terciaria de Proteína
16.
Usp Fiziol Nauk ; 42(4): 20-38, 2011.
Artículo en Ruso | MEDLINE | ID: mdl-22145309

RESUMEN

The paper reviews the information about the role of fast and slow potassium currents in electrical activity of amphibian myelinated nerve fibres. It demonstrates the importance of discovering of fast and slow potassium currents and their following pharmacological separation (by potassium channels blockers 4-aminopyridine and tetraethylammonium) in investigation of mechanisms of biological potentials generation. The information about the existence of fast and slow potassium channels in the nerve membrane and about the properties of 4-aminopyridine and tetraethylammonium action served as a base for determination the nature of biological potentials and discovering the mechanism of potential-dependent action of 4-aminopyridine that for tens of years suffered from the lack of adequate explanation.


Asunto(s)
Potenciales de Acción/fisiología , Anfibios/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Potasio/metabolismo , Potenciales Sinápticos/fisiología , 4-Aminopiridina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Decapodiformes/fisiología , Fenómenos Electrofisiológicos , Microelectrodos , Fibras Nerviosas Mielínicas/efectos de los fármacos , Fibras Nerviosas Mielínicas/fisiología , Canales de Potasio/clasificación , Canales de Potasio/efectos de los fármacos , Potenciales Sinápticos/efectos de los fármacos , Compuestos de Tetraetilamonio/farmacología
17.
Neuroscience ; 175: 85-92, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21081151

RESUMEN

Despite the presence of Zn(2+) in high levels in Parkinson brain, it is not yet clearly answered whether and how Zn(2+) alters the electrical activity of neurons in substantia nigra (SN). Here we show that Zn(2+) alters the intrinsic activity of nigral dopamine neurons in dual ways, that is, excitation or inhibition, by modulating the gating properties of a transient A-type K(+) (K(A)) channel. Depending on the holding potential, Zn(2+) could reduce or enhance a transient outward K(+) current (I(A)) in nigral dopamine neurons. Zn(2+) slowed the kinetics of both I(A) activation and inactivation with the rate of activation much more reduced than that of inactivation. Zn(2+) also increased the rate of release from I(A) inactivation. Both activation and inactivation I(A) curves were shifted by Zn(2+) towards positive potentials, but the positive shift of the inactivation curve was much greater than that of the activation curve. We propose that all these effects of Zn(2+) on K(A) channel gating properties underlie the dual mode of Zn(2+) action on I(A), that is, attenuation or potentiation depending on membrane potential. As a result, Zn(2+) increased a bursting activity of a nigral dopamine neuron elicited by anodal break excitation presumably through I(A) reduction at a hyperpolarizing state, whereas Zn(2+) decreased its tonic activity at either resting or depolarizing states where I(A) was increased. This was further supported by the observations that 4-aminopyridine (4-AP), a well-known K(A) channel blocker, strengthened or counteracted the effect of Zn(2+) on the intrinsic excitability of nigral dopamine neurons.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Dopaminérgicas/fisiología , Canales de Potasio/fisiología , Sustancia Negra/citología , Sustancia Negra/fisiología , Zinc/fisiología , Animales , Cationes Bivalentes/farmacología , Células Cultivadas , Neuronas Dopaminérgicas/metabolismo , Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Inhibición Neural/fisiología , Técnicas de Cultivo de Órganos , Canales de Potasio/clasificación , Canales de Potasio/metabolismo , Ratas , Ratas Sprague-Dawley , Sustancia Negra/metabolismo
18.
Urology ; 76(6): 1518.e7-12, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20932556

RESUMEN

OBJECTIVES: The present study was designed to evaluate the role of K(+) channels in the adrenergic responses of human vas deferens as well as the intervention of dihydropyridine-sensitive Ca(2+) channels on modulation of adrenergic responses by K(+) channel inhibitors. METHODS: Ring segments of the epididymal part of the vas deferens were taken from 32 elective vasectomies and mounted in organ baths for isometric recording of tension. We then studied the effects of K(+) channel blockers on neurogenic and norepinephrine-induced contractile responses. RESULTS: Addition of tetraethylammonium (TEA, 10(-3) M), a nonspecific K(+) channel blocker, or charybdotoxin (10(-7) M), a nonselective inhibitor of large- and intermediate-conductance Ca(2+)-activated K(+) channel, increased the contractile responses to norepinephrine and electrical field stimulation-induced contractions (P < .01), whereas iberiotoxin (10(-7) M), a selective blocker of large-conductance Ca(2+)-activated K(+) channels, apamin (10(-6) M), a blocker of small-conductance Ca(2+)-activated K(+) channels, or glibenclamide (10(-5) M), an inhibitor of ATP-sensitive K(+) channels, were without effect. TEA- and charybdotoxin-induced potentiation of contractions elicited by electrical field stimulation and norepinephrine was blocked by L-type Ca(2+) channel blocker nifedipine (10(-6) M). CONCLUSIONS: The results suggest that charybdotoxin-sensitive, but iberiotoxin-insensitive, K(+) channels are activated by stimulation with norepinephrine and electrical field stimulation to counteract the adrenergic-induced contractions of human vas deferens. Thus, inhibition of these channels increases significantly the contraction, an effect that appears to be mediated by an increase in Ca(2+) entry through L-type voltage-dependent Ca(2+) channels.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/fisiología , Receptores Adrenérgicos alfa 1/fisiología , Conducto Deferente/efectos de los fármacos , Adulto , Apamina/farmacología , Calcio/metabolismo , Canales de Calcio Tipo L/efectos de los fármacos , Canales de Calcio Tipo L/fisiología , Caribdotoxina/farmacología , Estimulación Eléctrica , Gliburida/farmacología , Humanos , Transporte Iónico/efectos de los fármacos , Masculino , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso/efectos de los fármacos , Nifedipino/farmacología , Norepinefrina/farmacología , Péptidos/farmacología , Potasio/metabolismo , Canales de Potasio/clasificación , Canales de Potasio/efectos de los fármacos , Tetraetilamonio/farmacología
19.
J Neurol Sci ; 295(1-2): 92-6, 2010 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-20483431

RESUMEN

Severe hypoxia induces the constriction of internal carotid arteries (ICA), which worsens ischemic stroke in the brain. A few metabolites are presumably involved in hypoxic vasoconstriction, however, less is known about how such molecules provoke this vasoconstriction. We have investigated the influence of 15-hydroxyeicosatetrienoic acid (15-HETE) produced by 15-lipoxygenase (15-LOX) on vasoconstriction during hypoxia. As showed in our results, 15-LOX level increases in ICA endothelia and smooth muscles. 15-HETE enhances the tension of ICA ring in a dose-dependent manner, as well as attenuates the activities and expression of voltage-gated potassium channels (Kv 1.5 and Kv 2.1). Therefore, the down-regulation of Kv channels by 15-HETE during hypoxia may weaken the repolarization of action potentials and causes a dominant influx of calcium ions to enhance smooth muscle tension and ICA constriction.


Asunto(s)
Arterias Carótidas/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Ácidos Hidroxieicosatetraenoicos/farmacología , Hipoxia/fisiopatología , Canales de Potasio/metabolismo , Vasoconstricción/efectos de los fármacos , Análisis de Varianza , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Arterias Carótidas/citología , Arterias Carótidas/fisiopatología , Células Cultivadas , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/genética , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Músculo Liso/citología , Técnicas de Placa-Clamp/métodos , Canales de Potasio/clasificación , Canales de Potasio/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar
20.
Exp Biol Med (Maywood) ; 235(1): 10-22, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20404014

RESUMEN

K(+) channels in coronary arterial smooth muscle cells (CASMC) determine the resting membrane potential (E(m)) and serve as targets of endogenous and therapeutic vasodilators. E(m) in CASMC is in the voltage range for activation of L-type Ca(2+) channels; therefore, when K(+) channel activity changes, Ca(2+) influx and arterial tone change. This is why both Ca(2+) channel blockers and K(+) channel openers have such profound effects on coronary blood flow; the former directly inhibits Ca(2+) influx through L-type Ca(2+) channels, while the latter indirectly inhibits Ca(2+) influx by hyperpolarizing E(m) and reducing Ca(2+) channel activity. K(+) channels in CASMC play important roles in vasodilation to endothelial, ischemic and metabolic stimuli. The purpose of this article is to review the types of K(+) channels expressed in CASMC, discuss the regulation of their activity by physiological mechanisms and examine impairments related to cardiovascular disease.


Asunto(s)
Vasos Coronarios/fisiología , Canales de Potasio/fisiología , Vasodilatación/fisiología , Envejecimiento/fisiología , Animales , Cardiomegalia/fisiopatología , Cardiomiopatías/fisiopatología , Enfermedad de la Arteria Coronaria/fisiopatología , Circulación Coronaria/fisiología , Vasos Coronarios/fisiopatología , Diabetes Mellitus/fisiopatología , Endotelio Vascular/fisiología , Humanos , Hiperglucemia/fisiopatología , Hipertensión/fisiopatología , Isquemia/fisiopatología , Canales KATP/fisiología , Síndrome Metabólico/fisiopatología , Modelos Cardiovasculares , Miocitos del Músculo Liso/fisiología , Canales de Potasio/química , Canales de Potasio/clasificación , Canales de Potasio Calcio-Activados/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA