Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Exp Neurol ; 291: 98-105, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28163158

RESUMEN

Individuals with a history of epilepsy are at higher risk for bone fractures compared to the general population. Although clinical studies support an association between low bone mineral density (BMD) and anti-seizure medications, little is known on whether a history of seizures is linked to altered bone health. Therefore, in this study we tested the hypothesis that bone mass, morphology, and bone mineralization are altered by seizures in genetically epileptic animals and in animals subjected to an episode of status epilepticus. In this study, we used NS-Pten conditional knockout mice (a well-studied genetic model of epilepsy). We used microCT analysis to measure BMD, morphology, and mineralization in NS-Pten+/+ (wildtype) and NS-Pten-/- (knockout) mice at 4 and 8weeks, as well as adult Kv4.2+/+ and Kv4.2-/- mice. We measured BMD, bone morphology, and mineralization in adult NS-Pten+/+ mice that received status epilepticus through kainic acid (20mg/kg intraperitoneal). Further, we measured locomotion for NS-Pten+/+ and NS-Pten-/- mice at 4 and 6weeks. We found that NS-Pten-/- mice exhibited low BMD in the tibial metaphysis and midshaft compared to non-epileptic mice. Morphologically, NS-Pten-/- mice exhibited decreased trabecular volume fraction, and endocortical expansion in both the metaphyeal and diaphyseal compartments. In the midshaft, NS-Pten-/- mice exhibited reduced tissue mineral density, indicating impaired mineralization in addition to morphological deficits. NS-Pten-/- mice exhibited hyperactivity in open field testing, suggesting low bone mass in NS-Pten-/- mice was not attributable to hypoactivity. Differences in BMD were not observed following kainate-induced seizures or in the Kv4.2-/- model of seizure susceptibility. Our findings suggest that deletion of Pten in the brain results in impaired bone mass and mineralization, which may contribute to weaker bones and thereby a higher fracture risk.


Asunto(s)
Enfermedades Óseas/genética , Enfermedades Óseas/patología , Encéfalo/metabolismo , Fosfohidrolasa PTEN/deficiencia , Factores de Edad , Animales , Densidad Ósea/efectos de los fármacos , Densidad Ósea/genética , Enfermedades Óseas/fisiopatología , Modelos Animales de Enfermedad , Agonistas de Aminoácidos Excitadores/toxicidad , Conducta Exploratoria/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Ácido Kaínico/toxicidad , Deformidades Congénitas de las Extremidades/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Osteocondrodisplasias/genética , Fosfohidrolasa PTEN/genética , Convulsiones/inducido químicamente , Canales de Potasio Shal/deficiencia , Canales de Potasio Shal/genética
2.
J Neurosci ; 35(15): 6221-30, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25878292

RESUMEN

Neuronal hyperexcitability occurs early in the pathogenesis of Alzheimer's disease (AD) and contributes to network dysfunction in AD patients. In other disorders with neuronal hyperexcitability, dysfunction in the dendrites often contributes, but dendritic excitability has not been directly examined in AD models. We used dendritic patch-clamp recordings to measure dendritic excitability in the CA1 region of the hippocampus. We found that dendrites, more so than somata, of hippocampal neurons were hyperexcitable in mice overexpressing Aß. This dendritic hyperexcitability was associated with depletion of Kv4.2, a dendritic potassium channel important for regulating dendritic excitability and synaptic plasticity. The antiepileptic drug, levetiracetam, blocked Kv4.2 depletion. Tau was required, as crossing with tau knock-out mice also prevented both Kv4.2 depletion and dendritic hyperexcitability. Dendritic hyperexcitability induced by Kv4.2 deficiency exacerbated behavioral deficits and increased epileptiform activity in hAPP mice. We conclude that increased dendritic excitability, associated with changes in dendritic ion channels including Kv4.2, may contribute to neuronal dysfunction in early stages AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Región CA1 Hipocampal/patología , Dendritas/fisiología , Neuronas/patología , Canales de Potasio Shal/deficiencia , Proteínas tau/deficiencia , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/farmacología , Precursor de Proteína beta-Amiloide/genética , Animales , Ondas Encefálicas/efectos de los fármacos , Ondas Encefálicas/genética , Región CA1 Hipocampal/efectos de los fármacos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Humanos , Técnicas In Vitro , Levetiracetam , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Neuronas/efectos de los fármacos , Nootrópicos/farmacología , Piracetam/análogos & derivados , Piracetam/farmacología , Canales de Potasio Shal/genética , Proteínas tau/genética
3.
J Neurosci ; 32(41): 14427-32, 2012 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-23055512

RESUMEN

Neuronal activity is critical for the formation and modification of neural circuits during brain development. In hippocampal CA1 pyramidal dendrites, A-type voltage-gated K(+) currents, formed primarily by Kv4.2 subunits, control excitability. Here we used Kv4.2 knock-out (Kv4.2-KO) mice along with acute in vivo expression of Kv4.2 or its dominant-negative pore mutant to examine the role of Kv4.2 in the development of CA1 synapses. We found that Kv4.2 expression induces synaptic maturation in juvenile WT mice and rescues developmentally delayed synapses in adult Kv4.2-KO mice. In addition, we show that NMDAR subunit composition can be reverted back to the juvenile form in WT adult synapses by functionally downregulating Kv4.2 levels. These results suggest that Kv4.2 regulation of excitability determines synaptic maturation state, which can be bidirectionally adjusted into adulthood.


Asunto(s)
Región CA1 Hipocampal/fisiología , Neurogénesis/fisiología , Canales de Potasio Shal/fisiología , Sinapsis/fisiología , Animales , Región CA1 Hipocampal/citología , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Simulación de Dinámica Molecular , Neurogénesis/genética , Canales de Potasio Shal/deficiencia , Canales de Potasio Shal/genética , Sinapsis/genética
4.
J Neurosci ; 32(17): 5716-27, 2012 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-22539834

RESUMEN

The channel pore-forming α subunit Kv4.2 is a major constituent of A-type (I(A)) potassium currents and a key regulator of neuronal membrane excitability. Multiple mechanisms regulate the properties, subcellular targeting, and cell-surface expression of Kv4.2-encoded channels. In the present study, shotgun proteomic analyses of immunoprecipitated mouse brain Kv4.2 channel complexes unexpectedly identified the voltage-gated Na⁺ channel accessory subunit Navß1. Voltage-clamp and current-clamp recordings revealed that knockdown of Navß1 decreases I(A) densities in isolated cortical neurons and that action potential waveforms are prolonged and repetitive firing is increased in Scn1b-null cortical pyramidal neurons lacking Navß1. Biochemical and voltage-clamp experiments further demonstrated that Navß1 interacts with and increases the stability of the heterologously expressed Kv4.2 protein, resulting in greater total and cell-surface Kv4.2 protein expression and in larger Kv4.2-encoded current densities. Together, the results presented here identify Navß1 as a component of native neuronal Kv4.2-encoded I(A) channel complexes and a novel regulator of I(A) channel densities and neuronal excitability.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Neuronas/fisiología , Canales de Potasio Shal/metabolismo , Canales de Sodio/metabolismo , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biofisica , Biotinilación , Línea Celular Transformada , Corteza Cerebral/citología , Cicloheximida/farmacología , Estimulación Eléctrica , Endocitosis/efectos de los fármacos , Endocitosis/genética , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Inhibidores de la Síntesis de la Proteína/farmacología , Proteómica , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores de Transferrina/metabolismo , Canales de Potasio Shal/deficiencia , Canales de Sodio/deficiencia , Transfección , Subunidad beta-1 de Canal de Sodio Activado por Voltaje
5.
Learn Mem ; 19(5): 182-9, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22505720

RESUMEN

Kv4.2 channels contribute to the transient, outward K(+) current (A-type current) in hippocampal dendrites, and modulation of this current substantially alters dendritic excitability. Using Kv4.2 knockout (KO) mice, we examined the role of Kv4.2 in hippocampal-dependent learning and memory. We found that Kv4.2 KO mice showed a deficit in the learning phase of the Morris water maze (MWM) and significant impairment in the probe trial compared with wild type (WT). Kv4.2 KO mice also demonstrated a specific deficit in contextual learning in the fear-conditioning test, without impairment in the conditioned stimulus or new context condition. Kv4.2 KO mice had normal activity, anxiety levels, and prepulse inhibition compared with WT mice. A compensatory increase in tonic inhibition has been previously described in hippocampal slice recordings from Kv4.2 KO mice. In an attempt to decipher whether increased tonic inhibition contributed to the learning and memory deficits in Kv4.2 KO mice, we administered picrotoxin to block GABA(A) receptors (GABA(A)R), and thereby tonic inhibition. This manipulation had no effect on behavior in the WT or KO mice. Furthermore, total protein levels of the α5 or δ GABA(A)R subunits, which contribute to tonic inhibition, were unchanged in hippocampus. Overall, our findings add to the growing body of evidence, suggesting an important role for Kv4.2 channels in hippocampal-dependent learning and memory.


Asunto(s)
Hipocampo/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Canales de Potasio Shal/metabolismo , Animales , Western Blotting , Condicionamiento Clásico/fisiología , Trastornos de la Memoria/etiología , Trastornos de la Memoria/metabolismo , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Canales de Potasio Shal/deficiencia
6.
J Neurotrauma ; 29(2): 235-45, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-21895522

RESUMEN

Traumatic brain injury (TBI) is associated with cognitive deficits, memory impairment, and epilepsy. Previous studies have reported neuronal loss and neuronal hyperexcitability in the post-traumatic hippocampus. A-type K+ currents (I(A)) play a critical role in modulating the intrinsic membrane excitability of hippocampal neurons. The disruption of I(A) is reportedly linked to hippocampal dysfunction. The present study investigates the changes of I(A) in the hippocampus after TBI. TBI in rats was induced by controlled cortical impact. The impact induced a reproducible lesion in the cortex and an obvious neuronal death in the ipsilateral hippocampus CA3 region. At one week after TBI, immunohistochemical staining and Western blotting showed that the expression of I(A) channel subunit Kv4.2 was markedly decreased in the ipsilateral hippocampus, but remained unchanged in the contralateral hippocampus. Meanwhile, electrophysiological recording showed that I(A) currents in ipsilateral CA1 pyramidal neurons were significantly reduced, which was associated with an increased neuronal excitability. Furthermore, there was an increased sensitivity to bicuculline-induced seizures in TBI rats. At 8 weeks after TBI, immunohistochemical staining and electrophysiological recording indicated that I(A) returned to control levels. These findings suggest that TBI causes a transient downregulation of I(A) in hippocampal CA1 neurons, which might be associated with the hyperexcitability in the post-traumatic hippocampus, and in turn leads to seizures and epilepsy.


Asunto(s)
Lesiones Encefálicas/metabolismo , Hipocampo/metabolismo , Neuronas/metabolismo , Canales de Potasio Shal/antagonistas & inhibidores , Animales , Lesiones Encefálicas/patología , Lesiones Encefálicas/fisiopatología , Modelos Animales de Enfermedad , Epilepsia/inducido químicamente , Epilepsia/metabolismo , Epilepsia/patología , Epilepsia/fisiopatología , Hipocampo/patología , Hipocampo/fisiopatología , Masculino , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Degeneración Nerviosa/fisiopatología , Neuronas/patología , Ratas , Ratas Sprague-Dawley , Canales de Potasio Shal/deficiencia , Canales de Potasio Shal/genética
7.
PLoS One ; 6(12): e29134, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22220205

RESUMEN

Histamine regulates arousal, circadian rhythms, and thermoregulation. Activation of H3 histamine receptors expressed by preoptic GABAergic neurons results in a decrease of their firing rate and hyperthermia. Here we report that an increase in the A-type K⁺ current in preoptic GABAergic neurons in response to activation of H3 histamine receptors results in decreased firing rate and hyperthermia in mice. The Kv4.2 subunit is required for these actions in spite of the fact that Kv4.2⁻/⁻ preoptic GABAergic neurons display A-type currents and firing characteristics similar to those of wild-type neurons. This electrical remodeling is achieved by robust upregulation of the expression of the Kv4.1 subunit and of a delayed rectifier current. Dynamic clamp experiments indicate that enhancement of the A-type current by a similar amount to that induced by histamine is sufficient to mimic its robust effect on firing rates. These data indicate a central role played by the Kv4.2 subunit in histamine regulation of body temperature and its interaction with pERK1/2 downstream of the H3 receptor. We also reveal that this pathway provides a mechanism for selective modulation of body temperature at the beginning of the active phase of the circadian cycle.


Asunto(s)
Temperatura Corporal/fisiología , Histamina/metabolismo , Área Preóptica/fisiología , Canales de Potasio Shal/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Temperatura Corporal/efectos de los fármacos , Ritmo Circadiano/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/metabolismo , Agonistas de los Receptores Histamínicos/farmacología , Inyecciones , Activación del Canal Iónico/efectos de los fármacos , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Actividad Motora/efectos de los fármacos , Neuronas , Técnicas de Placa-Clamp , Área Preóptica/citología , Área Preóptica/efectos de los fármacos , Área Preóptica/metabolismo , Subunidades de Proteína/metabolismo , Receptores Histamínicos H3/metabolismo , Canales de Potasio Shal/deficiencia , Venenos de Araña/administración & dosificación , Venenos de Araña/farmacología , Regulación hacia Arriba/efectos de los fármacos
8.
J Neurosci ; 30(14): 5092-101, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20371829

RESUMEN

The rapidly activating and inactivating voltage-gated K(+) (Kv) current, I(A), is broadly expressed in neurons and is a key regulator of action potential repolarization, repetitive firing, backpropagation (into dendrites) of action potentials, and responses to synaptic inputs. Interestingly, results from previous studies on a number of neuronal cell types, including hippocampal, cortical, and spinal neurons, suggest that macroscopic I(A) is composed of multiple components and that each component is likely encoded by distinct Kv channel alpha-subunits. The goals of the experiments presented here were to test this hypothesis and to determine the molecular identities of the Kv channel alpha-subunits that generate I(A) in cortical pyramidal neurons. Combining genetic disruption of individual Kv alpha-subunit genes with pharmacological approaches to block Kv currents selectively, the experiments here revealed that Kv1.4, Kv4.2, and Kv4.3 alpha-subunits encode distinct components of I(A) that together underlie the macroscopic I(A) in mouse (male and female) cortical pyramidal neurons. Recordings from neurons lacking both Kv4.2 and Kv4.3 (Kv4.2(-/-)/Kv4.3(-/-)) revealed that, although Kv1.4 encodes a minor component of I(A), the Kv1.4-encoded current was found in all the Kv4.2(-/-)/Kv4.3(-/-) cortical pyramidal neurons examined. Of the cortical pyramidal neurons lacking both Kv4.2 and Kv1.4, 90% expressed a Kv4.3-encoded I(A) larger in amplitude than the Kv1.4-encoded component. The experimental findings also demonstrate that the targeted deletion of the individual Kv alpha-subunits encoding components of I(A) results in electrical remodeling that is Kv alpha-subunit specific.


Asunto(s)
Corteza Cerebral/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Activación del Canal Iónico/genética , Canal de Potasio Kv1.4/genética , Subunidades de Proteína/genética , Células Piramidales/fisiología , Canales de Potasio Shal/genética , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Corteza Cerebral/efectos de los fármacos , Femenino , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/deficiencia , Marcación de Gen , Canal de Potasio Kv1.4/antagonistas & inhibidores , Canal de Potasio Kv1.4/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/efectos de los fármacos , Neuronas/fisiología , Bloqueadores de los Canales de Potasio/farmacología , Subunidades de Proteína/antagonistas & inhibidores , Subunidades de Proteína/deficiencia , Células Piramidales/efectos de los fármacos , Canales de Potasio Shal/antagonistas & inhibidores , Canales de Potasio Shal/deficiencia
9.
Channels (Austin) ; 3(4): 284-94, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19713751

RESUMEN

Somatodendritic A-type (I(A)) voltage-gated K(+) (K(V)) channels are key regulators of neuronal excitability, functioning to control action potential waveforms, repetitive firing and the responses to synaptic inputs. Rapidly activating and inactivating somatodendritic I(A) channels are encoded by K(V)4 alpha subunits and accumulating evidence suggests that these channels function as components of macromolecular protein complexes. Mass spectrometry (MS)-based proteomic approaches were developed and exploited here to identify potential components and regulators of native brain K(V)4.2-encoded I(A) channel complexes. Using anti-K(V)4.2 specific antibodies, K(V)4.2 channel complexes were immunoprecipitated from adult wild type mouse brain. Parallel control experiments were performed on brain samples isolated from (K(V)4.2(-/-)) mice harboring a targeted disruption of the KCND2 (K(V)4.2) locus. Three proteomic strategies were employed: an in-gel approach, coupled to one-dimensional liquid chromatography-tandem MS (1D-LC-MS/MS), and two in-solution approaches, followed by 1D- or 2D-LC-MS/MS. The targeted in-gel 1D-LC-MS/MS analyses demonstrated the presence of the K(V)4 alpha subunits (K(V)4.2, K(V)4.3 and K(V)4.1) and the K(V)4 accessory, KChIP (KChIP1-4) and DPP (DPP6 and 10), proteins in native brain K(V)4.2 channel complexes. The more comprehensive, in-solution approach, coupled to 2D-LC-MS/MS, also called Multidimensional Protein Identification Technology (MudPIT), revealed that additional regulatory proteins, including the K(V) channel accessory subunit K(V)beta1, are also components of native brain K(V)4.2 channel complexes. Additional biochemical and functional approaches will be required to elucidate the physiological roles of these newly identified K(V)4 interacting proteins.


Asunto(s)
Proteínas de Interacción con los Canales Kv/aislamiento & purificación , Proteómica/métodos , Canales de Potasio Shal/metabolismo , Animales , Química Encefálica , Cromatografía Liquida , Proteínas de Interacción con los Canales Kv/análisis , Ratones , Ratones Mutantes , Canales de Potasio Shal/deficiencia , Espectrometría de Masas en Tándem
10.
J Neurosci ; 29(10): 3242-51, 2009 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-19279261

RESUMEN

The neuronal subthreshold-operating A-type K(+) current regulates electrical excitability, spike timing, and synaptic integration and plasticity. The Kv4 channels underlying this current have been implicated in epilepsy, regulation of dopamine release, and pain plasticity. However, the unitary conductance (gamma) of neuronal somatodendritic A-type K(+) channels composed of Kv4 pore-forming subunits is larger (approximately 7.5 pS) than that of Kv4 channels expressed singly in heterologous cells (approximately 4 pS). Here, we examined the putative novel contribution of the dipeptidyl-peptidase-like protein-6 DPP6-S to the gamma of native [cerebellar granule neuron (CGN)] and reconstituted Kv4.2 channels. Coexpression of Kv4.2 proteins with DPP6-S was sufficient to match the gamma of native CGN channels; and CGN Kv4 channels from dpp6 knock-out mice yielded a gamma indistinguishable from that of Kv4.2 channels expressed singly. Moreover, suggesting electrostatic interactions, charge neutralization mutations of two N-terminal acidic residues in DPP6-S eliminated the increase in gamma. Therefore, DPP6-S, as a membrane protein extrinsic to the pore domain, is necessary and sufficient to explain a fundamental difference between native and recombinant Kv4 channels. These observations may help to understand the molecular basis of neurological disorders correlated with recently identified human mutations in the dpp6 gene.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Neuronas/fisiología , Péptido Hidrolasas/fisiología , Canales de Potasio/fisiología , Canales de Potasio Shal/fisiología , Animales , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/deficiencia , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/fisiología , Femenino , Potenciales de la Membrana/fisiología , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Neuronas/enzimología , Péptido Hidrolasas/deficiencia , Canales de Potasio/deficiencia , Ratas , Canales de Potasio Shal/deficiencia , Xenopus laevis
11.
Nature ; 452(7186): 436-41, 2008 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-18368112

RESUMEN

Although information storage in the central nervous system is thought to be primarily mediated by various forms of synaptic plasticity, other mechanisms, such as modifications in membrane excitability, are available. Local dendritic spikes are nonlinear voltage events that are initiated within dendritic branches by spatially clustered and temporally synchronous synaptic input. That local spikes selectively respond only to appropriately correlated input allows them to function as input feature detectors and potentially as powerful information storage mechanisms. However, it is currently unknown whether any effective form of local dendritic spike plasticity exists. Here we show that the coupling between local dendritic spikes and the soma of rat hippocampal CA1 pyramidal neurons can be modified in a branch-specific manner through an N-methyl-d-aspartate receptor (NMDAR)-dependent regulation of dendritic Kv4.2 potassium channels. These data suggest that compartmentalized changes in branch excitability could store multiple complex features of synaptic input, such as their spatio-temporal correlation. We propose that this 'branch strength potentiation' represents a previously unknown form of information storage that is distinct from that produced by changes in synaptic efficacy both at the mechanistic level and in the type of information stored.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/citología , Células Piramidales/metabolismo , Potenciales de Acción/fisiología , Animales , Forma de la Célula , Activación del Canal Iónico , Masculino , Ratones , Modelos Neurológicos , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Canales de Potasio Shal/deficiencia , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo
12.
J Neurosci ; 27(48): 13181-91, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18045912

RESUMEN

Metabotropic glutamate receptors (mGluRs) play important roles in the modulation of nociception. The group I mGluRs (mGlu1 and mGlu5) modulate nociceptive plasticity via activation of extracellular signal-regulated kinase (ERK) signaling. We reported recently that the K+ channel Kv4.2 subunit underlies A-type K+ currents in the spinal cord dorsal horn and is modulated by the ERK signaling pathway. Kv4.2-mediated A-type currents are important determinants of dorsal horn neuronal excitability and central sensitization that underlies hypersensitivity after tissue injury. In the present study, we demonstrate that ERK-mediated phosphorylation of Kv4.2 is downstream of mGlu5 activation in spinal cord dorsal horn neurons. Activation of group I mGluRs inhibited Kv4.2-mediated A-type K+ currents and increased neuronal excitability in dorsal horn neurons. These effects were mediated by activation of mGlu5, but not mGlu1, and were dependent on ERK activation. Analysis of Kv4.2 phosphorylation site mutants clearly identified S616 as the residue responsible for mGlu5-ERK-dependent modulation of A-type currents and excitability. Furthermore, nociceptive behavior induced by activation of spinal group I mGluRs was impaired in Kv4.2 knock-out mice, demonstrating that, in vivo, modulation of Kv4.2 is downstream of mGlu5 activation. Altogether, our results indicate that activation of mGlu5 leads to ERK-mediated phosphorylation and modulation of Kv4.2-containing potassium channels in dorsal horn neurons. This modulation may contribute to nociceptive plasticity and central sensitization associated with chronic inflammatory pain conditions.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Plasticidad Neuronal/fisiología , Nociceptores/fisiología , Células del Asta Posterior/fisiología , Receptores de Glutamato Metabotrópico/fisiología , Canales de Potasio Shal/metabolismo , Médula Espinal/citología , Animales , Animales Recién Nacidos , Células Cultivadas , Relación Dosis-Respuesta en la Radiación , Estimulación Eléctrica , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Técnicas In Vitro , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Células del Asta Posterior/efectos de los fármacos , Receptor del Glutamato Metabotropico 5 , Canales de Potasio Shal/deficiencia
13.
J Neurosci ; 26(47): 12137-42, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17122038

RESUMEN

Kv4 family voltage-gated potassium channel alpha subunits and Kv channel-interacting protein (KChIP) and dipeptidyl aminopeptidase-like protein subunits comprise somatodendritic A-type channels in mammalian neurons. Recently, a mouse was generated with a targeted deletion of Kv4.2, a Kv4 alpha subunit expressed in many but not all mammalian brain neurons. Kv4.2-/- mice are grossly indistinguishable from wild-type (WT) littermates. Here we used immunohistochemistry to analyze expression of component Kv4 and KChIP subunits of A-type channels in WT and Kv4.2-/- brains. We found that the expression level, and cellular and subcellular distribution of the other prominent brain Kv4 family member Kv4.3, was indistinguishable between WT and Kv4.2-/- samples. However, we found unanticipated regional and cell-specific decreases in expression of KChIPs. The degree of altered expression of individual KChIP isoforms in different regions and neurons precisely follows the level of Kv4.2 normally found at those sites and presumably their extent of association of these KChIPs with Kv4.2. The dramatic effects of Kv4.2 deletion on KChIP expression suggest that, in addition to previously characterized effects of KChIPs on the functional properties, trafficking, and turnover rate of Kv4 channels, Kv4:KChIP association may confer reciprocal Kv4.2-dependent effects on KChIPs. The impact of Kv4.2 deletion on KChIP expression also supports the major role of KChIPs as auxiliary subunits of Kv4 channels.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/metabolismo , Regulación hacia Abajo/fisiología , Proteínas de Interacción con los Canales Kv/metabolismo , Canales de Potasio Shal/metabolismo , Animales , Química Encefálica , Femenino , Técnica del Anticuerpo Fluorescente/métodos , Masculino , Ratones , Ratones Noqueados , Subunidades de Proteína/metabolismo , Canales de Potasio Shal/deficiencia
14.
J Neurosci ; 26(47): 12143-51, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17122039

RESUMEN

Dendritic, backpropagating action potentials (bAPs) facilitate the induction of Hebbian long-term potentiation (LTP). Although bAPs in distal dendrites of hippocampal CA1 pyramidal neurons are attenuated when propagating from the soma, their amplitude can be increased greatly via downregulation of dendritic A-type K+ currents. The channels that underlie these currents thus may represent a key regulatory component of the signaling pathways that lead to synaptic plasticity. We directly tested this hypothesis by using Kv4.2 knock-out mice. Deletion of the Kv4.2 gene and a loss of Kv4.2 protein resulted in a specific and near-complete elimination of A-type K+ currents from the apical dendrites of CA1 pyramidal neurons. The absence of dendritic Kv4.2-encoded A-type K+ currents led to an increase of bAP amplitude and an increase of concurrent Ca2+ influx. Furthermore, CA1 pyramidal neurons lacking dendritic A-type K+ currents from Kv4.2 knock-out mice exhibited a lower threshold than those of wild-type littermates for LTP induction with the use of a theta burst pairing protocol. LTP triggered with the use of a saturating protocol, on the other hand, remained indistinguishable between Kv4.2 knock-out and wild-type neurons. Our results support the hypothesis that dendritic A-type K+ channels, composed of Kv4.2 subunits, regulate action potential backpropagation and the induction of specific forms of synaptic plasticity.


Asunto(s)
Dendritas/fisiología , Hipocampo/citología , Potenciación a Largo Plazo/fisiología , Células Piramidales/fisiología , Canales de Potasio Shal/fisiología , Potenciales de Acción/fisiología , Animales , Western Blotting/métodos , Calcio/metabolismo , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Ratones Noqueados , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp/métodos , Células Piramidales/citología , Canales de Potasio Shal/deficiencia , Médula Espinal/metabolismo
15.
J Neurosci ; 26(47): 12274-82, 2006 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-17122053

RESUMEN

In cortical neurons, pore-forming alpha-subunits of the Kv4 subfamily underlie the fast transient outward K+ current (I(A)). Considerable evidence has accumulated demonstrating specific roles for I(A) channels in the generation of individual action potentials and in the regulation of repetitive firing. Although I(A) channels are thought to play a role in synaptic processing, little is known about the cell type- and synapse-specific distribution of these channels in cortical circuits. Here, we used immunolabeling with specific antibodies against Kv4.2 and Kv4.3, in combination with GABA immunogold staining, to determine the cellular, subcellular, and synaptic localization of Kv4 channels in the primary visual cortex of mice, in which subsets of pyramidal cells express yellow fluorescent protein. The results show that both Kv4.2 and Kv4.3 are concentrated in layer 1, the bottom of layer 2/3, and in layers 4 and 5/6. In all layers, clusters of Kv4.2 and Kv4.3 immunoreactivity are evident in the membranes of the somata, dendrites, and spines of pyramidal cells and GABAergic interneurons. Electron microscopic analyses revealed that Kv4.2 and Kv4.3 clusters in pyramidal cells and interneurons are excluded from putative excitatory synapses, whereas postsynaptic membranes at GABAergic synapses often contain Kv4.2 and Kv4.3. The presence of Kv4 channels at GABAergic synapses would be expected to weaken inhibition during dendritic depolarization by backpropagating action potentials. The extrasynaptic localization of Kv4 channels near excitatory synapses, in contrast, should stabilize synaptic excitation during dendritic depolarization. Thus, the synapse-specific distribution of Kv4 channels functions to optimize dendritic excitation and the association between presynaptic and postsynaptic activity.


Asunto(s)
Expresión Génica/fisiología , Neuronas/metabolismo , Canales de Potasio Shal/metabolismo , Sinapsis/metabolismo , Corteza Visual/citología , Animales , Proteínas Bacterianas/genética , Inmunohistoquímica/métodos , Proteínas Luminiscentes/genética , Ratones , Ratones Transgénicos , Microscopía Inmunoelectrónica/métodos , Neuronas/ultraestructura , Canales de Potasio Shal/deficiencia , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/metabolismo
16.
Neuron ; 50(1): 89-100, 2006 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-16600858

RESUMEN

A-type potassium currents are important determinants of neuronal excitability. In spinal cord dorsal horn neurons, A-type currents are modulated by extracellular signal-regulated kinases (ERKs), which mediate central sensitization during inflammatory pain. Here, we report that Kv4.2 mediates the majority of A-type current in dorsal horn neurons and is a critical site for modulation of neuronal excitability and nociceptive behaviors. Genetic elimination of Kv4.2 reduces A-type currents and increases excitability of dorsal horn neurons, resulting in enhanced sensitivity to tactile and thermal stimuli. Furthermore, ERK-mediated modulation of excitability in dorsal horn neurons and ERK-dependent forms of pain hypersensitivity are absent in Kv4.2(-/-) mice compared to wild-type littermates. Finally, mutational analysis of Kv4.2 indicates that S616 is the functionally relevant ERK phosphorylation site for modulation of Kv4.2-mediated currents in neurons. These results show that Kv4.2 is a downstream target of ERK in spinal cord and plays a crucial role in pain plasticity.


Asunto(s)
Plasticidad Neuronal/fisiología , Dolor/genética , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Canales de Potasio Shal/fisiología , Médula Espinal/citología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Potenciales de Acción/efectos de la radiación , Análisis de Varianza , Animales , Animales Recién Nacidos , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Western Blotting/métodos , Carragenina , Células Cultivadas , Constricción , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Inhibidores Enzimáticos/farmacología , Flavonoides/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica/métodos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Noqueados , Actividad Motora/fisiología , Mutagénesis/fisiología , Dolor/etiología , Dimensión del Dolor/métodos , Técnicas de Placa-Clamp/métodos , Ésteres del Forbol/farmacología , Subunidades de Proteína/fisiología , Tiempo de Reacción/fisiología , Tiempo de Reacción/efectos de la radiación , Prueba de Desempeño de Rotación con Aceleración Constante/métodos , Canales de Potasio Shal/deficiencia , Transfección/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA