Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202296

RESUMEN

TASK channels belong to the two-pore-domain potassium (K2P) channels subfamily. These channels modulate cellular excitability, input resistance, and response to synaptic stimulation. TASK-channel inhibition led to membrane depolarization. TASK-3 is expressed in different cancer cell types and neurons. Thus, the discovery of novel TASK-3 inhibitors makes these bioactive compounds very appealing to explore new cancer and neurological therapies. TASK-3 channel blockers are very limited to date, and only a few heterofused compounds have been reported in the literature. In this article, we combined a pharmacophore hypothesis with molecular docking to address for the first time the rational design, synthesis, and evaluation of 5-(indol-2-yl)pyrazolo[3,4-b]pyridines as a novel family of human TASK-3 channel blockers. Representative compounds of the synthesized library were assessed against TASK-3 using Fluorometric imaging plate reader-Membrane Potential assay (FMP). Inhibitory properties were validated using two-electrode voltage-clamp (TEVC) methods. We identified one active hit compound (MM-3b) with our systematic pipeline, exhibiting an IC50 ≈ 30 µM. Molecular docking models suggest that compound MM-3b binds to TASK-3 at the bottom of the selectivity filter in the central cavity, similar to other described TASK-3 blockers such as A1899 and PK-THPP. Our in silico and experimental studies provide a new tool to predict and design novel TASK-3 channel blockers.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio , Canales de Potasio de Dominio Poro en Tándem , Piridinas , Humanos , Bloqueadores de los Canales de Potasio/síntesis química , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/química , Piridinas/síntesis química , Piridinas/química
2.
J Neurochem ; 157(6): 2039-2054, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33006141

RESUMEN

PKC and PKA phosphorylation inhibit TREK-1 channels downstream of Gs protein-coupled receptor activation in vitro. However, the role of phosphorylation of TREK-1 in neuropathic pain is unknown. The purpose of this study was to investigate whether altered TREK-1 channel function by PKA and PKC modulators contributes to antiallodynia in neuropathic rats. Furthermore, we investigated if the in vitro described sites for PKC and PKA phosphorylation (S300 and S333, respectively) participate in the modulation of TREK-1 in naïve and neuropathic rats. L5/L6 spinal nerve ligation (SNL) induced tactile allodynia. Intrathecal injection of BL-1249 (TREK-1 activator) reversed nerve injury-induced tactile allodynia, whereas spadin (TREK-1 blocker) produced tactile allodynia in naïve rats and reversed the antiallodynic effect induced by BL-1249 in neuropathic rats. Intrathecal administration of rottlerin or Rp-cAMPs (PKC and PKA inhibitors, respectively) enhanced the antiallodynia observed with BL-1249 in neuropathic rats. In contrast, pretreatment with PdBu or forskolin (PKC and PKA activators, respectively) reduced the BL-1249-induced antiallodynia. Intrathecal injection of two high-activity TREK-1 recombinant channels, using a in vivo transfection method with lipofectamine, with mutations at PKC/PKA phosphosites (S300A and S333A) reversed tactile allodynia in neuropathic rats, with no effect in naïve rats. In contrast, transfection of two low-activity TREK-1 recombinant channels with phosphomimetic mutations at those sites (S300D and S333D) produced tactile allodynia in naïve rats and interfered with antiallodynic effects of rottlerin/BL-1249 or Rp-cAMPs/BL-1249. Data suggest that TREK-1 channel activity can be dynamically tuned in vivo by PKC/PKA to provoke allodynia and modulate its antiallodynic role in neuropathic pain.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Neuralgia/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteína Quinasa C/metabolismo , Animales , Femenino , Inyecciones Espinales , Ratones , Neuralgia/tratamiento farmacológico , Dimensión del Dolor/métodos , Péptidos/administración & dosificación , Fosforilación/efectos de los fármacos , Fosforilación/fisiología , Canales de Potasio de Dominio Poro en Tándem/agonistas , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Ratas , Ratas Wistar , Tetrahidronaftalenos/administración & dosificación , Tetrazoles/administración & dosificación
3.
Biomed Pharmacother ; 129: 110383, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32563149

RESUMEN

Withaferin A (WFA), a C5,C6-epoxy steroidal lactone isolated from the medicinal plant Withania somnifera (L.) Dunal, inhibits growth of tumor cells in different cancer types. However, the mechanisms underlying the effect of WFA on tumor cells are not fully understood. In the present study, we evaluated the blockade of TASK-3 channels by WFA in TASK-3-expressing HEK-293 cells. Explore if the WFA-mediated TASK-3 blockade can be used as a pharmacological tool to decrease the cell viability in cancer cells. A combination of functional experiments (patch-clamp, gene downregulation, overexpression and pharmacological inhibition) and molecular docking analysis were used to get insights into the mechanism by which the inhibition of TASK-3 by WFA affects the growth and viability of cancer cells. Withaferin A was found to inhibit the activity of TASK-3 channels. The inhibitory effect of Withaferin A on TASK-3 potassium currents was dose-dependent and independent of voltage. Molecular modeling studies identified putative WFA-binding sites in TASK-3 channel involved the channel blockade. In agreements with the molecular modeling predictions, mutation of residues F125 to A (F125A), L197 to V (L197 V) and the double mutant F125A-L197 V markedly decreased the WFA-induced inhibition of TASK-3. Finally, the cytotoxic effect of WFA was tested in MDA-MB-231 human breast cancer cells transfected with TASK-3 or shRNA that decreases TASK-3 expression. Together, our results show that the cytotoxic effect of WFA on fully transformed MDA-MB-231 cells depends on the expression of TASK-3. Herein, we also provide insights into the mechanism of TASK-3 inhibition by WFA.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Witanólidos/farmacología , Antineoplásicos Fitogénicos/metabolismo , Sitios de Unión , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Humanos , Potenciales de la Membrana , Bloqueadores de los Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Unión Proteica , Transducción de Señal , Witanólidos/metabolismo
4.
Eur J Pharmacol ; 862: 172631, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31472119

RESUMEN

This study assessed the participation of spinal TWIK-related acid-sensitive K+ channels 1 and 3 (TASK-1 and TASK-3) in inflammatory (formalin test) and neuropathic (spinal nerve ligation, SNL) pain in rats. Intrathecal pre-treatment (-10 min) with the TASK-1 blocker ML365 or TASK-3 blocker PK-THPP, but not vehicle, enhanced in a dose-dependent manner 1% formalin-induced acute and long-lasting secondary mechanical allodynia and mechanical hyperalgesia in rats. In contrast, intrathecal pre-treatment with terbinafine, an activator of TASK-3, reduced formalin-induced flinching and allodynia/hyperalgesia. Both blockers and terbinafine had similar effects on female and male rats. In addition, intrathecal injection of ML365 or PK-THPP blocked the terbinafine-induced antiallodynic effect in neuropathic rats, but they did not modify baseline withdrawal threshold in naïve or sham-operated rats. TASK-1 and TASK-3 mRNA and protein were expressed in L4 and L5 dorsal root ganglia (DRG) and dorsal and ventral spinal cord of naïve animals. Interestingly, formalin injection increased TASK-1 expression in ipsilateral L5 DRG, but not in the spinal cord. Moreover, formalin injection transiently enhanced TASK-3 expression in ipsilateral L5 DRG and dorsal spinal cord. In contrast, SNL down-regulated TASK-3 expression in the ipsilateral L4 and L5 DRG but not in dorsal or ventral spinal cord, while SNL did not modify TASK-1 expression at any tissue. The pharmacological and molecular results suggest that TASK-1 and TASK-3 have a relevant antinociceptive role in inflammatory and neuropathic pain.


Asunto(s)
Hiperalgesia/patología , Inflamación/patología , Neuralgia/patología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Animales , Modelos Animales de Enfermedad , Regulación hacia Abajo , Femenino , Formaldehído/administración & dosificación , Ganglios Espinales/patología , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/etiología , Inflamación/inducido químicamente , Inflamación/complicaciones , Inyecciones Espinales , Ligadura/efectos adversos , Masculino , Proteínas del Tejido Nervioso , Neuralgia/diagnóstico , Neuralgia/etiología , Dimensión del Dolor , Canales de Potasio de Dominio Poro en Tándem/agonistas , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Médula Espinal/cirugía , Terbinafina/administración & dosificación
5.
Int J Mol Sci ; 20(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426491

RESUMEN

TASK-3 is a two-pore domain potassium (K2P) channel highly expressed in the hippocampus, cerebellum, and cortex. TASK-3 has been identified as an oncogenic potassium channel and it is overexpressed in different cancer types. For this reason, the development of new TASK-3 blockers could influence the pharmacological treatment of cancer and several neurological conditions. In the present work, we searched for novel TASK-3 blockers by using a virtual screening protocol that includes pharmacophore modeling, molecular docking, and free energy calculations. With this protocol, 19 potential TASK-3 blockers were identified. These molecules were tested in TASK-3 using patch clamp, and one blocker (DR16) was identified with an IC50 = 56.8 ± 3.9 µM. Using DR16 as a scaffold, we designed DR16.1, a novel TASK-3 inhibitor, with an IC50 = 14.2 ± 3.4 µM. Our finding takes on greater relevance considering that not many inhibitory TASK-3 modulators have been reported in the scientific literature until today. These two novel TASK-3 channel inhibitors (DR16 and DR16.1) are the first compounds found using a pharmacophore-based virtual screening and rational drug design protocol.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Diseño de Fármacos , Células HEK293 , Humanos , Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacocinética
6.
J Med Chem ; 62(22): 10044-10058, 2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31260312

RESUMEN

Rational drug design targeting ion channels is an exciting and always evolving research field. New medicinal chemistry strategies are being implemented to explore the wild chemical space and unravel the molecular basis of the ion channels modulators binding mechanisms. TASK channels belong to the two-pore domain potassium channel family and are modulated by extracellular acidosis. They are extensively distributed along the cardiovascular and central nervous systems, and their expression is up- and downregulated in different cancer types, which makes them an attractive therapeutic target. However, TASK channels remain unexplored, and drugs designed to target these channels are poorly selective. Here, we review TASK channels properties and their known blockers and activators, considering the new challenges in ion channels drug design and focusing on the implementation of computational methodologies in the drug discovery process.


Asunto(s)
Diseño de Fármacos , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio/química , Canales de Potasio/metabolismo , Animales , Descubrimiento de Drogas , Humanos , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/metabolismo
7.
FEMS Yeast Res ; 19(5)2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31247642

RESUMEN

Finding new potential antagonists of potassium channels is a continuing task. TASK potassium channels operate over a large physiological range of membrane voltages, why they are thought to contribute to the excitability and resting potential of mammalian membrane potentials. Additionally, they are regulated by extracellular stimuli like changes in pH and K+ concentrations. TASK malfunctions are associated with diseases, which makes them popular targets for the search of new antagonists. Identification of channel inhibitors can be a time-consuming and expensive project. Here, we present an easy-to-use and inexpensive yeast system for the expression of the two-pore domain K+ channel TASK-3, and for the characterization of TASK-3 antagonists. The Saccharomyces cerevisiae strain BYT45 was used to express guinea pig TASK-3. The system allowed the expression and characterization of TASK-3 at variable pH values and K+ concentrations. Three known TASK-3 antagonists have been tested in the BYT45 yeast system: PK-THPP, ZnCl2 and Bupivacaine. Their inhibitory effect on TASK-3 was tested in solid and liquid media assays, and half maximal inhibitory concentrations were estimated. Although the system is less sensitive than more refined systems, the antagonistic activity could be confirmed for all three inhibitors.


Asunto(s)
Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Animales , Bupivacaína/farmacología , Cationes , Cloruros/farmacología , Cobayas , Concentración de Iones de Hidrógeno , Concentración 50 Inhibidora , Canales de Potasio de Dominio Poro en Tándem/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Compuestos de Zinc/farmacología
8.
Int J Mol Sci ; 20(9)2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-31067753

RESUMEN

TASK-3 potassium (K+) channels are highly expressed in the central nervous system, regulating the membrane potential of excitable cells. TASK-3 is involved in neurotransmitter action and has been identified as an oncogenic K+ channel. For this reason, the understanding of the action mechanism of pharmacological modulators of these channels is essential to obtain new therapeutic strategies. In this study we describe the binding mode of the potent antagonist PK-THPP into the TASK-3 channel. PK-THPP blocks TASK-1, the closest relative channel of TASK-3, with almost nine-times less potency. Our results confirm that the binding is influenced by the fenestrations state of TASK-3 channels and occurs when they are open. The binding is mainly governed by hydrophobic contacts between the blocker and the residues of the binding site. These interactions occur not only for PK-THPP, but also for the antagonist series based on 5,6,7,8 tetrahydropyrido[4,3-d]pyrimidine scaffold (THPP series). However, the marked difference in the potency of THPP series compounds such as 20b, 21, 22 and 23 (PK-THPP) respect to compounds such as 17b, inhibiting TASK-3 channels in the micromolar range is due to the presence of a hydrogen bond acceptor group that can establish interactions with the threonines of the selectivity filter.


Asunto(s)
Simulación del Acoplamiento Molecular , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/química , Piridinas/farmacología , Pirimidinas/farmacología , Animales , Sitios de Unión , Humanos , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Unión Proteica , Piridinas/química , Pirimidinas/química , Xenopus
9.
Int J Mol Sci ; 19(8)2018 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-30126179

RESUMEN

Two-pore domain K⁺ channels (K2P) display a characteristic extracellular cap structure formed by two M1-P1 linkers, the functional role of which is poorly understood. It has been proposed that the presence of the cap explains the insensitivity of K2P channels to several K⁺ channel blockers including tetraethylammonium (TEA). We have explored this hypothesis using mutagenesis and functional analysis, followed by molecular simulations. Our results show that the deletion of the cap structure of TASK-3 (TWIK-related acid-sensitive K⁺ channel) generates a TEA-sensitive channel with an IC50 of 11.8 ± 0.4 mM. The enhanced sensitivity to TEA displayed by the cap-less channel is also explained by the presence of an extra tyrosine residue at position 99. These results were corroborated by molecular simulation analysis, which shows an increased stability in the binding of TEA to the cap-less channel when a ring of four tyrosine is present at the external entrance of the permeation pathway. Consistently, Y99A or Y205A single-residue mutants generated in a cap-less channel backbone resulted in TASK-3 channels with low affinity to external TEA.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio Shab/antagonistas & inhibidores , Tetraetilamonio/farmacología , Secuencia de Aminoácidos , Animales , Cobayas , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Mutación Puntual , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Canales de Potasio Shab/química , Canales de Potasio Shab/genética , Canales de Potasio Shab/metabolismo
10.
Mol Pharm ; 14(7): 2197-2208, 2017 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-28494157

RESUMEN

A1899 is a potent and selective inhibitor of the two-pore domain potassium (K2P) channel TASK-1. It was previously reported that A1899 acts as an open-channel blocker and binds to residues of the P1 and P2 regions, the M2 and M4 segments, and the halothane response element. The recently described crystal structures of K2P channels together with the newly identified side fenestrations indicate that residues relevant for TASK-1 inhibition are not purely facing the central cavity as initially proposed. Accordingly, the TASK-1 binding site and the mechanism of inhibition might need a re-evaluation. We have used TASK-1 homology models based on recently crystallized K2P channels and molecular dynamics simulation to demonstrate that the highly potent TASK-1 blocker A1899 requires binding to residues located in the side fenestrations. Unexpectedly, most of the previously described residues that interfere with TASK-1 blockade by A1899 project their side chains toward the fenestration lumina, underlining the relevance of these structures for drug binding in K2P channels. Despite its hydrophobicity, A1899 does not seem to use the fenestrations to gain access to the central cavity from the lipid bilayer. In contrast, binding of A1899 to residues of the side fenestrations might provide a physical "anchor", reflecting an energetically favorable binding mode that after pore occlusion stabilizes the closed state of the channels.


Asunto(s)
Benzamidas/farmacología , Bencenoacetamidas/farmacología , Simulación de Dinámica Molecular , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Animales , Benzamidas/química , Bencenoacetamidas/química , Sitios de Unión , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/química , Canales de Potasio de Dominio Poro en Tándem/metabolismo
11.
Sci Rep ; 7: 45407, 2017 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-28358046

RESUMEN

Two-pore domain K2P K+ channels responsible for the background K+ conductance and the resting membrane potential, are also finely regulated by a variety of chemical, physical and physiological stimuli. Hormones and transmitters acting through Gq protein-coupled receptors (GqPCRs) modulate the activity of various K2P channels but the signalling involved has remained elusive, in particular whether dynamic regulation by membrane PI(4,5)P2, common among other classes of K+ channels, affects K2P channels is controversial. Here we show that K2P K+ channel TASK-2 requires PI(4,5)P2 for activity, a dependence that accounts for its run down in the absence of intracellular ATP and its full recovery by addition of exogenous PI(4,5)P2, its inhibition by low concentrations of polycation PI scavengers, and inhibition by PI(4,5)P2 depletion from the membrane. Comprehensive mutagenesis suggests that PI(4,5)P2 interaction with TASK-2 takes place at C-terminus where three basic aminoacids are identified as being part of a putative binding site.


Asunto(s)
Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Diglicéridos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Células HEK293 , Humanos , Potenciales de la Membrana/efectos de los fármacos , Ratones , Mutagénesis Sitio-Dirigida , Neomicina/farmacología , Técnicas de Placa-Clamp , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/genética , Subunidades de Proteína/metabolismo
12.
Neuropharmacology ; 79: 28-36, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24212057

RESUMEN

TASK channels belong to the family of K(+) channels with 4 transmembrane segments and 2 pore domains (4TM/2P) per subunit. These channels have been related to apoptosis in cerebellar granule neurons (CGN), as well as cancer in other tissues. TASK current is regulated by hormones, neurotransmitters, anesthetics and divalent cations, which are not selective. Recently, there has been found some organic compounds that inhibit TASK current selectively. In order to find other modulators, we report here a group of five dihydropyrrolo[2,1-a]isoquinolines (DPIs), four of them with putative anticancer activity, that were evaluated on TASK-1 and TASK-3 channels. The compounds 1, 2 and 3 showed IC50 < 320 µM on TASK-1 and TASK-3, intermediate activity on TASK-1/TASK-3 heterodimer, moderate effect over hslo and TREK-1 (500 µM), and practically not inhibition on Shaker-IR, herg and IRK2.1 potassium channels, when they were expressed heterologously in Xenopus laevis oocytes. In rat CGN, 500 µM of these three compounds induced a decrement by >39% of the TASK-carried leak current. Finally, only compound 1 showed significant protection (∼36%) against apoptotic death of CGN induced by K(+) deprivation. These results suggest that DPI compounds could be potential candidates for designing new selective inhibitors of TASK channels.


Asunto(s)
Isoquinolinas/farmacología , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Pirroles/farmacología , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Células Cultivadas , Cerebelo/efectos de los fármacos , Cerebelo/fisiología , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/metabolismo , Isoquinolinas/química , Ratones , Estructura Molecular , Proteínas del Tejido Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuronas/fisiología , Potasio/metabolismo , Bloqueadores de los Canales de Potasio/química , Canales de Potasio de Rectificación Interna/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Pirroles/química , Ratas , Ratas Wistar , Canales de Potasio de la Superfamilia Shaker/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA