Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Biomed Pharmacother ; 144: 112372, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34794237

RESUMEN

Small- and intermediate-conductance Ca2+-activated K+ channels, KCa2.3 and KCa3.1, are involved in cellular signaling processes associated with inflammation and fibrosis. KCa2.3 and KCa3.1 are upregulated by proinflammatory cytokines and profibrotic growth factors. Cyclic AMP, which downregulates KCa2.3 and KCa3.1, is elevated by modafinil in cells; accordingly, we investigated whether modafinil exerts anti-inflammatory and anti-fibrotic responses via KCa2.3- and KCa3.1-mediated pathways in high-fat diet (HFD)- or thioacetamide-induced liver disease models in mice. Modafinil was administered orally in the form of a racemate, (R)-isomer, or (S)-isomer. We also determined whether the treatment targeted the profibrotic activity of hepatic stellate cells using immortalized human hepatic stellate cells (LX-2 cells). Modafinil improved HFD- or thioacetamide-induced changes compared to the control, leading to a reduced inflammatory response, collagen deposition, and α-smooth muscle actin expression both in vivo and in vitro. However, modafinil did not relieve HFD-induced steatosis. There were no significant differences in the effects of the (R)- and (S)-isomers of modafinil. KCa2.3 and KCa3.1 were upregulated and catalase was downregulated in liver tissues from thioacetamide- or HFD-induced liver disease models or in TGF-ß-treated LX-2 cells. TGF-ß-induced upregulation of KCa2.3, KCa3.1, collagen, and α-smooth muscle actin and downregulation of catalase were reversed by modafinil, polyethylene glycol catalase, N-acetylcysteine, siRNA against KCa2.3 or KCa3.1, and Epac inhibitors. Our investigation revealed that modafinil attenuated inflammatory and fibrotic progression via KCa2.3- and KCa3.1-mediated pathways in nonalcoholic hepatitis, suggesting that inhibiting KCa2.3- and KCa3.1-mediated signaling may serve as a novel therapeutic approach for inflammatory and fibrotic liver diseases.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Modafinilo/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Actinas/biosíntesis , Animales , Antiinflamatorios no Esteroideos/farmacología , Línea Celular , Colágeno/metabolismo , Dieta Alta en Grasa , Hígado Graso/tratamiento farmacológico , Células Estrelladas Hepáticas , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Estereoisomerismo , Tioacetamida/toxicidad
2.
J Neurosci ; 41(1): 47-60, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33203744

RESUMEN

The lateral line (LL) is a sensory system that allows fish and amphibians to detect water currents. LL responsiveness is modulated by efferent neurons that aid in distinguishing between external and self-generated stimuli, maintaining sensitivity to relevant cues. One component of the efferent system is cholinergic, the activation of which inhibits afferent activity. LL hair cells (HCs) share structural, functional, and molecular similarities with those of the cochlea, making them a popular model for studying human hearing and balance disorders. Because of these commonalities, one could propose that the receptor at the LL efferent synapse is a α9α10 nicotinic acetylcholine receptor (nAChR). However, the identities of the molecular players underlying ACh-mediated inhibition in the LL remain unknown. Surprisingly, through the analysis of single-cell expression studies and in situ hybridization, we describe that α9, but not the α10, subunits are enriched in zebrafish HCs. Moreover, the heterologous expression of zebrafish α9 subunits indicates that homomeric receptors are functional and exhibit robust ACh-gated currents blocked by α-bungarotoxin and strychnine. In addition, in vivo Ca2+ imaging on mechanically stimulated zebrafish LL HCs show that ACh elicits a decrease in evoked Ca2+ signals, regardless of HC polarity. This effect is blocked by both α-bungarotoxin and apamin, indicating coupling of ACh-mediated effects to small-conductance Ca2+-activated potassium (SKs) channels. Our results indicate that an α9-containing (α9*) nAChR operates at the zebrafish LL efferent synapse. Moreover, the activation of α9* nAChRs most likely leads to LL HC hyperpolarization served by SK channels.SIGNIFICANCE STATEMENT The fish lateral line (LL) mechanosensory system shares structural, functional, and molecular similarities with those of the mammalian cochlea. Thus, it has become an accessible model for studying human hearing and balance disorders. However, the molecular players serving efferent control of LL hair cell (HC) activity have not been identified. Here we demonstrate that, different from the hearing organ of vertebrate species, a nicotinic acetylcholine receptor composed only of α9 subunits operates at the LL efferent synapse. Activation of α9-containing receptors leads to LL HC hyperpolarization because of the opening of small-conductance Ca2+-activated potassium channels. These results will further aid in the interpretation of data obtained from LL HCs as a model for cochlear HCs.


Asunto(s)
Vías Eferentes/fisiología , Sistema de la Línea Lateral/fisiología , Sistema Nervioso Parasimpático/fisiología , Sinapsis/fisiología , Animales , Bungarotoxinas/farmacología , Señalización del Calcio/efectos de los fármacos , Regulación de la Expresión Génica , Células Ciliadas Auditivas/fisiología , Antagonistas Nicotínicos/farmacología , Oocitos , Estimulación Física , Receptores Nicotínicos/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Estricnina/farmacología , Xenopus , Pez Cebra
3.
Med Sci Monit ; 26: e924215, 2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32470968

RESUMEN

BACKGROUND Dysfunction of small conductance calcium activated potassium (SK) channels plays a vital role in atrial arrhythmogenesis. Amiodarone and dronedarone are the most effective class III antiarrhythmic drugs. It is unclear whether the antiarrhythmic effect of amiodarone and dronedarone is related to SK channel inhibition. MATERIAL AND METHODS Tissue samples were obtained from the right atria of 46 patients with normal sinus rhythm and 39 patients with chronic atrial fibrillation. Isolated atrial myocytes were obtained by enzymatic dissociation. KCNN2 (SK2) channels were transiently expressed in human embryonic kidney (HEK)-293 cells. SK currents were recorded using whole-cell conventional patch clamp techniques. RESULTS Amiodarone and dronedarone showed a concentration-dependent inhibitory effect on SK currents (IKAS) in atrial myocytes from normal sinus rhythm patients and chronic atrial fibrillation patients. The suppressed efficacy of dronedarone and amiodarone on IKAS was greater in atrial myocytes from chronic atrial fibrillation patients than that from normal sinus rhythm patients. Furthermore, in patients with chronic atrial fibrillation, the IC50 value was 2.42 µM with dronedarone and 8.03 µM with amiodarone. In HEK-293 cells with transiently transfected SK2 channels, both dronedarone and amiodarone had a dose-dependent inhibitory effect on IKAS. The IC50 value was 1.7 µM with dronedarone and 7.2 µM with amiodarone in cells from patients with chronic atrial fibrillation. Compared to amiodarone, dronedarone is more efficacy to inhibit IKAS and could be a potential intervention for patients with chronic atrial fibrillation. CONCLUSIONS Dronedarone provides a great degree of IKAS inhibition in atrial myocytes from chronic atrial fibrillation than amiodarone. IKAS might be a potential target of amiodarone and dronedarone for the management of chronic atrial fibrillation.


Asunto(s)
Fibrilación Atrial/tratamiento farmacológico , Dronedarona/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Adulto , Amiodarona/metabolismo , Amiodarona/farmacología , Antiarrítmicos/uso terapéutico , Fibrilación Atrial/metabolismo , Calcio/metabolismo , Dronedarona/metabolismo , Femenino , Células HEK293 , Atrios Cardíacos/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
4.
J Thorac Cardiovasc Surg ; 160(6): e263-e280, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32199659

RESUMEN

OBJECTIVE: To investigate coronary endothelial protection of a small-conductance calcium-activated potassium (SK) channel activator against a period of cardioplegic-hypoxia and reoxygenation (CP-H/R) injury in mice and patients with diabetes (DM) and those without diabetes (nondiabetic [ND]). METHODS: Mouse small coronary arteries/heart endothelial cells (MHECs) and human coronary arterial endothelial cells (HCAECs) were dissected from the harvested hearts of mice (n = 16/group) and from discarded right atrial tissue samples of patients with DM and without DM (n = 8/group). The SK current density of MHECs was measured. The in vitro small arteries/arterioles, MHECs, and HCAECs were subjected to 60 minutes of CP hypoxia, followed by 60 minutes of oxygenation. Vessels were treated with or without the selective SK activator NS309 for 5 minutes before and during CP hypoxia. RESULTS: DM and/or CP-H/R significantly inhibited the total SK currents of MHECs and HCAECs and significantly diminished the mouse coronary relaxation response to NS309. Administration of NS309 immediately before and during CP hypoxia significantly improved the recovery of coronary endothelial function, as demonstrated by increased relaxation responses to adenosine 5'-diphosphate and substance P compared with those seen in controls (P < .05). This protective effect was more pronounced in vessels from ND mice and patients compared with DM mice and patients (P < .05). Cell surface membrane SK3 expression was significantly reduced after hypoxia, whereas cytosolic SK3 expression was greater than that of the sham control group (P < .05). CONCLUSIONS: Application of NS309 immediately before and during CP hypoxia protects mouse and human coronary microvasculature against CP-H/R injury, but this effect is diminished in the diabetic coronary microvasculature. SK inhibition/inactivation and/or internalization/redistribution may contribute to CP-H/R-induced coronary endothelial and vascular relaxation dysfunction.


Asunto(s)
Enfermedad de la Arteria Coronaria/etiología , Vasos Coronarios/patología , Diabetes Mellitus Tipo 2/complicaciones , Endotelio Vascular/metabolismo , Indoles/farmacología , Oximas/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Vasodilatación/efectos de los fármacos , Anciano , Animales , Células Cultivadas , Enfermedad de la Arteria Coronaria/diagnóstico , Enfermedad de la Arteria Coronaria/metabolismo , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/metabolismo , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Femenino , Humanos , Masculino , Ratones , Transducción de Señal , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos
5.
Annu Rev Pharmacol Toxicol ; 60: 219-240, 2020 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-31337271

RESUMEN

The three small-conductance calcium-activated potassium (KCa2) channels and the related intermediate-conductance KCa3.1 channel are voltage-independent K+ channels that mediate calcium-induced membrane hyperpolarization. When intracellular calcium increases in the channel vicinity, it calcifies the flexible N lobe of the channel-bound calmodulin, which then swings over to the S4-S5 linker and opens the channel. KCa2 and KCa3.1 channels are highly druggable and offer multiple binding sites for venom peptides and small-molecule blockers as well as for positive- and negative-gating modulators. In this review, we briefly summarize the physiological role of KCa channels and then discuss the pharmacophores and the mechanism of action of the most commonly used peptidic and small-molecule KCa2 and KCa3.1 modulators. Finally, we describe the progress that has been made in advancing KCa3.1 blockers and KCa2.2 negative- and positive-gating modulators toward the clinic for neurological and cardiovascular diseases and discuss the remaining challenges.


Asunto(s)
Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Animales , Sitios de Unión , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/fisiopatología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/fisiopatología , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
6.
Cereb Cortex ; 30(3): 1559-1572, 2020 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-31504265

RESUMEN

The muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor-SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.


Asunto(s)
Antidepresivos/farmacología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Estrés Fisiológico/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Ketamina/farmacología , Masculino , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Ratas Endogámicas F344 , Escopolamina/farmacología , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/metabolismo , Serotonina/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Estrés Fisiológico/fisiología
7.
Heart Rhythm ; 16(4): 615-623, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30445170

RESUMEN

BACKGROUND: The apamin-sensitive small-conductance calcium-activated K (SK) current IKAS modulates automaticity of the sinus node. IKAS blockade by apamin causes sinus bradycardia. OBJECTIVE: The purpose of this study was to test the hypothesis that IKAS modulates ventricular automaticity. METHODS: We tested the effects of apamin (100 nM) on ventricular escape rhythms in Langendorff-perfused rabbit ventricles with atrioventricular block (protocol 1) and on recorded transmembrane action potential of pseudotendons of superfused right ventricular endocardial preparations (protocol 2). RESULTS: All preparations exhibited spontaneous ventricular escape rhythms. In protocol 1, apamin decreased the atrial rate from 186.2 ± 18.0 bpm to 163.8 ± 18.7 bpm (N = 6; P = .006) but accelerated the ventricular escape rate from 51.5 ± 10.7 bpm to 98.2 ± 25.4 bpm (P = .031). Three preparations exhibited bursts of nonsustained ventricular tachycardia and pauses, resulting in repeated burst termination pattern. In protocol 2, apamin increased the ventricular escape rate from 70.2 ± 13.1 bpm to 110.1 ± 2.2 bpm (P = .035). Spontaneous phase 4 depolarization was recorded from the pseudotendons in 6 of 10 preparations at baseline and in 3 in the presence of apamin. There were no changes of phase 4 slope (18.37 ± 3.55 mV/s vs 18.93 ± 3.26 mV/s, N = 3; P = .231, ), but the threshold of phase 0 activation (mV) reduced from -67.97 ± 1.53 to -75.26 ± 0.28 (P = .034). Addition of JTV-519, a ryanodine receptor 2 stabilizer, in 5 preparations reduced escape rate back to baseline. CONCLUSION: Contrary to its bradycardic effect in the sinus node, IKAS blockade by apamin accelerates ventricular automaticity and causes repeated nonsustained ventricular tachycardia in normal ventricles. ryanodine receptor 2 blockade reversed the apamin effects on ventricular automaticity.


Asunto(s)
Apamina/farmacología , Bloqueo Atrioventricular/tratamiento farmacológico , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Taquicardia Ventricular/fisiopatología , Potenciales de Acción/fisiología , Animales , Bloqueo Atrioventricular/fisiopatología , Ramos Subendocárdicos/fisiología , Conejos , Canal Liberador de Calcio Receptor de Rianodina/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología
8.
BMC Cardiovasc Disord ; 18(1): 63, 2018 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-29636010

RESUMEN

BACKGROUND: Small conductance calcium-activated potassium channels (SK channels) play a critical role in action potential repolarization in cardiomyocytes. Recently, the potential anti-arrhythmic effect of metformin in diabetic patients has been recognized, yet the underlying mechanism remains elusive. METHODS: Diabetic Goto-Kakizaki (GK) rats were untreated or treated with metformin (300 mg/kg/day) for 12 weeks, and age-matched Wistar rats were used as control (n = 6 per group). Electrocardiography, Hematoxylin-eosin staining and Masson's trichome staining were performed to assess cardiac function, histology and fibrosis. The expression levels of the SK channels in the myocardium were determined by real-time PCR and Western blotting. The electrophysiology of the SK channels in the cardiomyocytes isolated from the three groups of rats was examined by patch clamp assay, with specific blockade of the SK channels with apamin. RESULTS: Metformin treatment significantly reduced cardiac fibrosis and alleviated arrhythmia in the diabetic rats. In the atrial myocytes from control, GK and metformin-treated GK rats, the expression of KCa2.2 (SK2 channel) was down-regulated and the expression of KCa2.3 (SK3 channel) was up-regulated in the atrium of GK rats as compared with that of control rats, and metformin reversed diabetes-induced alterations in atrial SK channel expression. Moreover, patch clamp assay revealed that the SK current was markedly reduced and the action potential duration was prolonged in GK atrial myocytes, and the SK channel function was partially restored in the atrial myocytes from metformin-treated GK rats. CONCLUSIONS: Our data suggests an involvement of the SK channels in the development of arrhythmia under diabetic conditions, and supports a potential beneficial effect of metformin on atrial electrophysiology.


Asunto(s)
Antiarrítmicos/farmacología , Arritmias Cardíacas/prevención & control , Diabetes Mellitus/tratamiento farmacológico , Atrios Cardíacos/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Hipoglucemiantes/farmacología , Metformina/farmacología , Miocitos Cardíacos/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Arritmias Cardíacas/etiología , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/fisiopatología , Diabetes Mellitus/metabolismo , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Masculino , Miocitos Cardíacos/metabolismo , Ratas Wistar , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/genética , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
9.
J Am Heart Assoc ; 6(6)2017 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-28550095

RESUMEN

BACKGROUND: Purkinje cells (PCs) are important in cardiac arrhythmogenesis. Whether small-conductance calcium-activated potassium (SK) channels are present in PCs remains unclear. We tested the hypotheses that subtype 2 SK (SK2) channel proteins and apamin-sensitive SK currents are abundantly present in PCs. METHODS AND RESULTS: We studied 25 normal rabbit ventricles, including 13 patch-clamp studies, 4 for Western blotting, and 8 for immunohistochemical staining. Transmembrane action potentials were recorded in current-clamp mode using the perforated-patch technique. For PCs, the apamin (100 nmol/L) significantly prolonged action potential duration measured to 80% repolarization by an average of 10.4 ms (95% CI, 0.11-20.72) (n=9, P=0.047). Voltage-clamp study showed that apamin-sensitive SK current density was significantly larger in PCs compared with ventricular myocytes at potentials ≥0 mV. Western blotting of SK2 expression showed that the SK2 protein expression in the midmyocardium was 58% (P=0.028) and the epicardium was 50% (P=0.018) of that in the pseudotendons. Immunostaining of SK2 protein showed that PCs stained stronger than ventricular myocytes. Confocal microscope study showed SK2 protein was distributed to the periphery of the PCs. CONCLUSIONS: SK2 proteins are more abundantly present in the PCs than in the ventricular myocytes of normal rabbit ventricles. Apamin-sensitive SK current is important in ventricular repolarization of normal PCs.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Potasio/metabolismo , Ramos Subendocárdicos/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Potenciales de Acción , Animales , Apamina/farmacología , Western Blotting , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Inmunohistoquímica , Microscopía Confocal , Miocitos Cardíacos/metabolismo , Técnicas de Placa-Clamp , Ramos Subendocárdicos/efectos de los fármacos , Conejos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Factores de Tiempo
10.
Circ Arrhythm Electrophysiol ; 10(2): e004434, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28213506

RESUMEN

BACKGROUND: Ventricular fibrillation (VF) during heart failure is characterized by stable reentrant spiral waves (rotors). Apamin-sensitive small-conductance calcium-activated potassium currents (IKAS) are heterogeneously upregulated in failing hearts. We hypothesized that IKAS influences the location and stability of rotors during VF. METHODS AND RESULTS: Optical mapping was performed on 9 rabbit hearts with pacing-induced heart failure. The epicardial right ventricular and left ventricular surfaces were simultaneously mapped in a Langendorff preparation. At baseline and after apamin (100 nmol/L) infusion, the action potential duration (APD80) was determined, and VF was induced. Areas with a >50% increase in the maximum action potential duration (ΔAPD) after apamin infusion were considered to have a high IKAS distribution. At baseline, the distribution density of phase singularities during VF in high IKAS distribution areas was higher than in other areas (0.0035±0.0011 versus 0.0014±0.0010 phase singularities/pixel; P=0.004). In addition, high dominant frequencies also colocalized to high IKAS distribution areas (26.0 versus 17.9 Hz; P=0.003). These correlations were eliminated during VF after apamin infusion, as the number of phase singularities (17.2 versus 11.0; P=0.009) and dominant frequencies (22.1 versus 16.2 Hz; P=0.022) were all significantly decreased. In addition, reentrant spiral waves became unstable after apamin infusion, and the duration of VF decreased. CONCLUSIONS: The IKAS current influences the mechanism of VF in failing hearts as phase singularities, high dominant frequencies, and reentrant spiral waves all correlated to areas of high IKAS. Apamin eliminated this relationship and reduced VF vulnerability.


Asunto(s)
Apamina/farmacología , Insuficiencia Cardíaca/fisiopatología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Fibrilación Ventricular/prevención & control , Fibrilación Ventricular/fisiopatología , Potenciales de Acción/fisiología , Animales , Estimulación Cardíaca Artificial , Modelos Animales de Enfermedad , Femenino , Conejos , Regulación hacia Arriba
11.
Expert Opin Ther Targets ; 20(8): 947-58, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26918581

RESUMEN

INTRODUCTION: Atrial fibrillation (AF) is the most common arrhythmia in humans. It is progressive and the development of electrical and structural remodeling makes early intervention desirable. Existing antiarrhythmic pharmacological approaches are not always effective and can produce unwanted side effects. Additional atrial-selective antiarrhythmic strategies are therefore desirable. AREAS COVERED: Evidence for three novel ion channel atrial-selective therapeutic targets is evaluated: atrial-selective fast sodium channel current (INa) inhibition; small conductance calcium-activated potassium (SK) channels; and two-pore (K2P) potassium channels. EXPERT OPINION: Data from animal models support atrial-ventricular differences in INa kinetics and also suggest atrial-ventricular differences in sodium channel ß subunit expression. Further work is required to determine whether intrinsic atrial-ventricular differences in human INa exist or whether functional differences occur due to distinct atrial and ventricular action and resting potentials. SK and K2P channels (particularly K2P 3.1) offer potentially attractive atrial-selective targets. Work is needed to identify the underlying basis of SK current that contributes to (patho)physiological atrial repolarization and settings in which SK inhibition is anti- versus pro-arrhythmic. Although K2P3.1 appears to be a promising target with comparatively selective drugs for experimental use, a lack of selective pharmacology hinders evaluation of other K2P channels as potential atrial-selective targets.


Asunto(s)
Antiarrítmicos/farmacología , Fibrilación Atrial/tratamiento farmacológico , Terapia Molecular Dirigida , Animales , Antiarrítmicos/efectos adversos , Fibrilación Atrial/patología , Modelos Animales de Enfermedad , Diseño de Fármacos , Humanos , Canales de Potasio de Dominio Poro en Tándem/efectos de los fármacos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Canales de Sodio/efectos de los fármacos , Canales de Sodio/metabolismo
12.
Am J Physiol Heart Circ Physiol ; 309(12): H2031-41, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26453324

RESUMEN

Cerebral parenchymal arterioles (PA) regulate blood flow between pial arteries on the surface of the brain and the deeper microcirculation. Regulation of PA contractility differs from that of pial arteries and is not completely understood. Here, we investigated the hypothesis that the Ca(2+) permeable vanilloid transient receptor potential (TRPV) channel TRPV3 can mediate endothelium-dependent dilation of cerebral PA. Using total internal reflection fluorescence microscopy (TIRFM), we found that carvacrol, a monoterpenoid compound derived from oregano, increased the frequency of unitary Ca(2+) influx events through TRPV3 channels (TRPV3 sparklets) in endothelial cells from pial arteries and PAs. Carvacrol-induced TRPV3 sparklets were inhibited by the selective TRPV3 blocker isopentenyl pyrophosphate (IPP). TRPV3 sparklets have a greater unitary amplitude (ΔF/F0 = 0.20) than previously characterized TRPV4 (ΔF/F0 = 0.06) or TRPA1 (ΔF/F0 = 0.13) sparklets, suggesting that TRPV3-mediated Ca(2+) influx could have a robust influence on cerebrovascular tone. In pressure myography experiments, carvacrol caused dilation of cerebral PA that was blocked by IPP. Carvacrol-induced dilation was nearly abolished by removal of the endothelium and block of intermediate (IK) and small-conductance Ca(2+)-activated K(+) (SK) channels. Together, these data suggest that TRPV3 sparklets cause dilation of cerebral parenchymal arterioles by activating IK and SK channels in the endothelium.


Asunto(s)
Arteriolas/fisiología , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Calcio/metabolismo , Circulación Cerebrovascular/genética , Circulación Cerebrovascular/fisiología , Endotelio Vascular/fisiología , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Cimenos , Electromiografía , Hemiterpenos/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Masculino , Monoterpenos/farmacología , Tono Muscular/efectos de los fármacos , Tono Muscular/genética , Tono Muscular/fisiología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Compuestos Organofosforados/farmacología , Ratas , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales Catiónicos TRPV/antagonistas & inhibidores , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vasodilatadores/farmacología
13.
J Neurosci ; 35(37): 12779-91, 2015 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-26377466

RESUMEN

Attention deficits in Alzheimer's disease can exacerbate its other cognitive symptoms, yet relevant disruptions of key prefrontal circuitry are not well understood. Here, in the TgCRND8 mouse model of this neurological disorder, we demonstrate and characterize a disruption of cholinergic excitation in the major corticothalamic layer of the prefrontal cortex, in which modulation by acetylcholine is essential for optimal attentional function. Using electrophysiology with concurrent multiphoton imaging, we show that layer 6 pyramidal cells are unable to sustain cholinergic excitation to the same extent as their nontransgenic littermate controls, as a result of the excessive activation of calcium-activated hyperpolarizing conductances. We report that cholinergic excitation can be improved in TgCRND8 cortex by pharmacological blockade of SK channels, suggesting a novel target for the treatment of cognitive dysfunction in Alzheimer's disease. SIGNIFICANCE STATEMENT: Alzheimer's disease is accompanied by attention deficits that exacerbate its other cognitive symptoms. In brain slices of a mouse model of this neurological disorder, we demonstrate, characterize, and rescue impaired cholinergic excitation of neurons essential for optimal attentional performance. In particular, we show that the excessive activation of a calcium-activated potassium conductance disrupts the acetylcholine excitation of prefrontal layer 6 pyramidal neurons and that its blockade normalizes responses. These findings point to a novel potential target for the treatment of cognitive dysfunction in Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Atención/fisiología , Señalización del Calcio/fisiología , Neuronas Colinérgicas/fisiología , Proteínas del Tejido Nervioso/fisiología , Corteza Prefrontal/fisiopatología , Células Piramidales/fisiología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/fisiología , Transmisión Sináptica/fisiología , Acetilcolina/farmacología , Acetilcolina/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Animales , Apamina/farmacología , Atropina/farmacología , Atención/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Genotipo , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Proteínas del Tejido Nervioso/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos
14.
Atherosclerosis ; 242(1): 191-8, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26204495

RESUMEN

OBJECTIVE: It remains incompletely understood how homocysteine impairs endothelial function. Whether mechanisms such as calcium-activated potassium (KCa) channels are involved is uncertain and the significance of endoplasmic reticulum (ER) stress in KCa channel-dependent endothelial function in hyperhomocysteinemia remains unexplored. We investigated the effect of homocysteine on endothelial KCa channels in coronary vasculature with further exploration of the role of ER stress. METHODS: Vasorelaxation mediated by intermediate- and small-conductance KCa (IKCa and SKCa) channels was studied in porcine coronary arteries in a myograph. IKCa and SKCa channel currents were recorded by whole-cell patch-clamp in coronary endothelial cells. Protein levels of endothelial IKCa and SKCa channels were determined for both whole-cell and surface expressions. RESULTS: Homocysteine impaired bradykinin-induced IKCa and SKCa-dependent EDHF-type relaxation and attenuated the vasorelaxant response to the channel activator. IKCa and SKCa currents were suppressed by homocysteine. Inhibition of ER stress during homocysteine exposure enhanced IKCa and SKCa currents, associated with improved EDHF-type response and channel activator-induced relaxation. Homocysteine did not alter whole-cell protein levels of IKCa and SKCa whereas lowered surface expressions of these channels, which were restored by ER stress inhibition. CONCLUSIONS: Homocysteine induces endothelial dysfunction through a mechanism involving ER stress-mediated suppression of IKCa and SKCa channels. Inhibition of cell surface expression of these channels by ER stress is, at least partially, responsible for the suppressive effect of homocysteine on the channel function. This study provides new mechanistic insights into homocysteine-induced endothelial dysfunction and advances our knowledge of the significance of ER stress in vascular disorders.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Homocisteína/farmacología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Animales , Vasos Coronarios/metabolismo , Vasos Coronarios/fisiopatología , Relación Dosis-Respuesta a Droga , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Técnicas In Vitro , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Potenciales de la Membrana , Transducción de Señal/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Porcinos , Vasodilatadores/farmacología
16.
Trends Cardiovasc Med ; 25(6): 508-14, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25743622

RESUMEN

Small-conductance Ca(2+)-activated K(+) (SK) currents are important in the repolarization of normal atrial (but not ventricular) cardiomyocytes. However, recent studies showed that the SK currents are upregulated in failing ventricular cardiomyocytes, along with increased SK channel protein expression and enhanced sensitivity to intracellular Ca(2+). The SK channel activation may be either anti-arrhythmic or pro-arrhythmic, depending on the underlying clinical situations. While the SK channel is a new target of anti-arrhythmic therapy, drug safety is still one of the major concerns.


Asunto(s)
Antiarrítmicos/farmacología , Insuficiencia Cardíaca/fisiopatología , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Taquicardia Ventricular/fisiopatología , Potenciales de Acción/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Electrocardiografía/métodos , Electrofisiología , Humanos , Activación del Canal Iónico/efectos de los fármacos , Activación del Canal Iónico/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Conejos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Taquicardia Ventricular/tratamiento farmacológico
17.
Physiol Res ; 64(1): 39-49, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25194131

RESUMEN

To investigate lisinopril effect on the contribution of nitric oxide (NO) and K(Ca) channels to acetylcholine (ACh)-induced relaxation in isolated mesenteric arteries of spontaneously hypertensive rats (SHRs). Third branch mesenteric arteries isolated from lisinopril treated SHR rats (20 mg/kg/day for ten weeks, SHR-T) or untreated (SHR-UT) or normotensive WKY rats were mounted on tension myograph and ACh concentration-response curves were obtained. Westernblotting of eNOS and K(Ca) channels was performed. ACh-induced relaxations were similar in all groups while L-NMMA and indomethacin caused significant rightward shift only in SHR-T group. Apamin and TRAM-34 (SK(Ca) and IK(Ca) channels blockers, respectively) significantly attenuated ACh-induced maximal relaxation by similar magnitude in vessels from all three groups. In the presence of L-NMMA, indomethacin, apamin and TRAM-34 further attenuated ACh-induced relaxation only in SHR-T. Furthermore, lisinopril treatment increased expression of eNOS, SK(Ca) and BK(Ca) proteins. Lisinopril treatment increased expression of eNOS, SK(Ca), BK(Ca) channel proteins and increased the contribution of NO to ACh-mediated relaxation. This increased role of NO was apparent only when EDHF component was blocked by inhibiting SK(Ca) and IK(Ca) channels. Such may suggest that in mesenteric arteries, non-EDHF component functions act as a reserve system to provide compensatory vasodilatation if (and when) hyperpolarization that is mediated by SK(Ca) and IK(Ca) channels is reduced.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antihipertensivos/farmacología , Hipertensión/tratamiento farmacológico , Lisinopril/farmacología , Arterias Mesentéricas/efectos de los fármacos , Óxido Nítrico/metabolismo , Canales de Potasio Calcio-Activados/efectos de los fármacos , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hipertensión/metabolismo , Hipertensión/fisiopatología , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/efectos de los fármacos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Masculino , Arterias Mesentéricas/metabolismo , Arterias Mesentéricas/fisiopatología , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Canales de Potasio Calcio-Activados/metabolismo , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Transducción de Señal/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo
19.
Reprod Sci ; 22(3): 278-84, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25194151

RESUMEN

Circulating inflammatory factors and endothelial dysfunction have been proposed to contribute to the pathophysiology of hemolysis, elevated liver enzymes, and low platelet count (HELLP) syndrome. To date, the occurrence of neurological complications in these women has been reported, but few studies have examined whether impairment in blood-brain barrier (BBB) permeability or cerebrovascular reactivity is present in women having HELLP syndrome. We hypothesized that plasma from women with HELLP syndrome causes increased BBB permeability and cerebrovascular dysfunction. Posterior cerebral arteries from female nonpregnant rats were perfused with 20% serum from women with normal pregnancies (n = 5) or women with HELLP syndrome (n = 5), and BBB permeability and vascular reactivity were compared. Plasma from women with HELLP syndrome increased BBB permeability while not changing myogenic tone and reactivity to pressure. Addition of the nitric oxide (NO) synthase inhibitor N(ω)-nitro-L-arginine methyl ester caused constriction of arteries that was not different with the different plasmas nor was dilation to the NO donor sodium nitroprusside different between the 2 groups. However, dilation to the small- and intermediate-conductance, calcium-activated potassium channel activator NS309 was decreased in vessels exposed to HELLP plasma. Thus, increased BBB permeability in response to HELLP plasma was associated with selective endothelial dysfunction.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Síndrome HELLP/sangre , Arteria Cerebral Posterior/metabolismo , Adolescente , Adulto , Animales , Estudios de Casos y Controles , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/farmacología , Femenino , Síndrome HELLP/fisiopatología , Humanos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Conductancia Intermedia Activados por el Calcio/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Arteria Cerebral Posterior/efectos de los fármacos , Arteria Cerebral Posterior/fisiopatología , Embarazo , Ratas Sprague-Dawley , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/efectos de los fármacos , Canales de Potasio de Pequeña Conductancia Activados por el Calcio/metabolismo , Factores de Tiempo , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA