Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(1): e0243992, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33428654

RESUMEN

Insecticide resistance is a worldwide threat for vector control around the world, and Aedes aegypti, the main vector of several arboviruses, is a particular concern. To better understand the mechanisms of resistance, four isofemale strains originally from French Guiana were isolated and analysed using combined approaches. The activity of detoxification enzymes involved in insecticide resistance was assayed, and mutations located at positions 1016 and 1534 of the sodium voltage-gated channel gene, which have been associated with pyrethroid resistance in Aedes aegypti populations in Latin America, were monitored. Resistance to other insecticide families (organophosphates and carbamates) was evaluated. A large-scale proteomic analysis was performed to identify proteins involved in insecticide resistance. Our results revealed a metabolic resistance and resistance associated with a mutation of the sodium voltage-gated channel gene at position 1016. Metabolic resistance was mediated through an increase of esterase activity in most strains but also through the shifts in the abundance of several cytochrome P450 (CYP450s). Overall, resistance to deltamethrin was linked in the isofemale strains to resistance to other class of insecticides, suggesting that cross- and multiple resistance occur through selection of mechanisms of metabolic resistance. These results give some insights into resistance to deltamethrin and into multiple resistance phenomena in populations of Ae. aegypti.


Asunto(s)
Aedes/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Canales de Sodio Activados por Voltaje/genética , Aedes/efectos de los fármacos , Aedes/genética , Animales , Esterasas/metabolismo , Femenino , Guyana Francesa , Técnicas de Silenciamiento del Gen , Genotipo , Inactivación Metabólica/genética , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/metabolismo , Insecticidas/farmacología , Mucosa Intestinal/metabolismo , Nitrilos/farmacología , Oligonucleótidos/metabolismo , Polimorfismo de Nucleótido Simple , Proteoma/análisis , Proteómica , Piretrinas/farmacología , Canales de Sodio Activados por Voltaje/química , Canales de Sodio Activados por Voltaje/metabolismo
2.
Molecules ; 25(15)2020 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-32756517

RESUMEN

(1) Background: voltage-gated sodium channels (Navs) are integral membrane proteins that allow the sodium ion flux into the excitable cells and initiate the action potential. They comprise an α (Navα) subunit that forms the channel pore and are coupled to one or more auxiliary ß (Navß) subunits that modulate the gating to a variable extent. (2) Methods: after performing homology in silico modeling for all nine isoforms (Nav1.1α to Nav1.9α), the Navα and Navß protein-protein interaction (PPI) was analyzed chemometrically based on the primary and secondary structures as well as topological or spatial mapping. (3) Results: our findings reveal a unique isoform-specific correspondence between certain segments of the extracellular loops of the Navα subunits. Precisely, loop S5 in domain I forms part of the PPI and assists Navß1 or Navß3 on all nine mammalian isoforms. The implied molecular movements resemble macroscopic springs, all of which explains published voltage sensor effects on sodium channel fast inactivation in gating. (4) Conclusions: currently, the specific functions exerted by the Navß1 or Navß3 subunits on the modulation of Navα gating remain unknown. Our work determined functional interaction in the extracellular domains on theoretical grounds and we propose a schematic model of the gating mechanism of fast channel sodium current inactivation by educated guessing.


Asunto(s)
Aminoácidos/química , Modelos Moleculares , Canales de Sodio Activados por Voltaje/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Sodio/metabolismo , Canales de Sodio Activados por Voltaje/química
3.
Biochimie ; 176: 138-149, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32717411

RESUMEN

Spider venoms, despite their toxicity, represent rich sources of pharmacologically active compounds with biotechnological potential. However, in view of the large diversity of the spider species, the full potential of their venom molecules is still far from being known. In this work, we report the purification and structural and functional characterization of GiTx1 (ß/κ-TRTX-Gi1a), the first toxin purified from the venom of the Brazilian tarantula spider Grammostola iheringi. GiTx1 was purified by chromatography, completely sequenced through automated Edman degradation and tandem mass spectrometry and its structure was predicted by molecular modeling. GiTx1 has a MW of 3.585 Da, with the following amino acid sequence: SCQKWMWTCDQKRPCCEDMVCKLWCKIIK. Pharmacological activity of GiTx1 was characterized by electrophysiology using whole-cell patch clamp on dorsal root ganglia neurons (DRG) and two-electrode voltage-clamp on voltage-gated sodium and potassium channels subtypes expressed in Xenopus laevis oocytes. GiTx1, at 2 µM, caused a partial block of inward (∼40%) and outward (∼20%) currents in DRG cells, blocked rNav1.2, rNav1.4 and mNav1.6 and had a significant effect on VdNav, an arachnid sodium channel isoform. IC50 values of 156.39 ± 14.90 nM for Nav1.6 and 124.05 ± 12.99 nM for VdNav, were obtained. In addition, this toxin was active on rKv4.3 and hERG potassium channels, but not Shaker IR or rKv2.1 potassium channels. In summary, GiTx1 is a promiscuous toxin with multiple effects on different types of ion channels.


Asunto(s)
Canales de Potasio con Entrada de Voltaje , Venenos de Araña , Arañas/química , Bloqueadores del Canal de Sodio Activado por Voltaje , Canales de Sodio Activados por Voltaje/metabolismo , Animales , Moscas Domésticas , Humanos , Ratones , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Canales de Potasio con Entrada de Voltaje/metabolismo , Dominios Proteicos , Ratas , Ratas Wistar , Venenos de Araña/química , Venenos de Araña/aislamiento & purificación , Venenos de Araña/toxicidad , Bloqueadores del Canal de Sodio Activado por Voltaje/química , Bloqueadores del Canal de Sodio Activado por Voltaje/aislamiento & purificación , Bloqueadores del Canal de Sodio Activado por Voltaje/toxicidad , Canales de Sodio Activados por Voltaje/química
4.
J Phys Chem B ; 117(14): 3782-9, 2013 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-23452067

RESUMEN

The crystal structure of NavAb, a bacterial voltage gated Na(+) channel, exhibits a selectivity filter (SF) wider than that of K(+) channels. This new structure provides the opportunity to explore the mechanism of conduction and help rationalize its selectivity for sodium. Recent molecular dynamics (MD) simulations of single- and two-ion permeation processes have revealed that a partially hydrated Na(+) permeates the channel by exploring three SF binding sites while being loosely coupled to other ions and/or water molecules; a finding that differs significantly from the behavior of K(+) selective channels. Herein, we present results derived from a combination of metadynamics and voltage-biased MD simulations that throws more light on the nature of the Na(+) conduction mechanism. Conduction under 0 mV bias explores several distinct pathways involving the binding of two ions to three possible SF sites. While these pathways are very similar to those observed in the presence of a negative potential (inward conduction), a completely different mechanism operates for outward conduction at positive potentials.


Asunto(s)
Proteínas Bacterianas/química , Simulación de Dinámica Molecular , Sodio/química , Canales de Sodio Activados por Voltaje/química , Agua/química , Sitios de Unión , Cationes Monovalentes , Activación del Canal Iónico , Transporte Iónico , Cinética , Unión Proteica , Conformación Proteica , Teoría Cuántica , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA