Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Chem Biol ; 19(9): 1063-1071, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37169959

RESUMEN

The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.


Asunto(s)
Retículo Endoplásmico , Proteínas de la Membrana , Humanos , Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo
2.
Eur J Pharmacol ; 914: 174665, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34861208

RESUMEN

INTRODUCTION: The function of endoplasmic reticulum (ER), a Ca2+ storage compartment and site of protein folding, is altered by disruption of intracellular homeostasis. Misfolded proteins accumulated in the ER lead to ER stress (ERS), unfolded protein response (UPR) activation and ER Ca2+ loss. Myocardial stunning is a temporary contractile dysfunction, which occurs after brief ischemic periods with minimal or no cell death, being oxidative stress and Ca2+ overload potential underlying mechanisms. Myocardial stunning induces ERS response with negatively impact on the post-ischemic mechanical performance through an unknown mechanism. AIMS: In this study, we explored whether ER Ca2+ efflux through the translocon, a major Ca2+ leak channel, contributes to Ca2+ mishandling and the consequent contractile abnormalities of the stunned myocardium. METHODS: Mechanical performance, cytosolic Ca2+, UPR markers and oxidative state were evaluated in perfused rat/mouse hearts subjected to a brief ischemia followed by reperfusion (I/R) in absence or presence of the translocon inhibitor, emetine (1 µM), comparing its effects with those of the chaperones TUDCA (30 µM) and 4-PBA (3 mM). RESULTS: Emetine treatment precluded the I/R-induced increase in UPR signaling markers and improved the contractile recovery together with a remarkable attenuation in myocardial stiffness when compared to I/R hearts with no drug. This alleviation of I/R-induced mechanical abnormalities was more effective than that obtained with the chemical chaperones, TUDCA and 4-PBA. Moreover, emetine treatment produced a striking improvement in diastolic Ca2+ handling with a partial recovery of the I/R-induced oxidative stress. CONCLUSION: Blocking ER Ca2+ store depletion via translocon suppressed ER stress and improved mechanical performance and diastolic Ca2+ handling of stunned myocardium. Modulation of translocon permeability emerges as a therapeutic approach to face dysfunctional consequences of the I/R injury.


Asunto(s)
Calcio/metabolismo , Emetina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Contracción Miocárdica , Aturdimiento Miocárdico , Canales de Translocación SEC/antagonistas & inhibidores , Respuesta de Proteína Desplegada , Animales , Señalización del Calcio , Ratones , Contracción Miocárdica/efectos de los fármacos , Contracción Miocárdica/fisiología , Aturdimiento Miocárdico/tratamiento farmacológico , Aturdimiento Miocárdico/metabolismo , Estrés Oxidativo/efectos de los fármacos , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/fisiología
3.
Int J Mol Sci ; 22(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34769437

RESUMEN

Proteins targeted to the secretory pathway start their intracellular journey by being transported across biological membranes such as the endoplasmic reticulum (ER). A central component in this protein translocation process across the ER is the Sec61 translocon complex, which is only intracellularly expressed and does not have any enzymatic activity. In addition, Sec61 translocon complexes are difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its function has thus been notoriously difficult. However, such translocation inhibitors may not only be valuable tools for cell biology, but may also represent novel anticancer drugs, given that cancer cells heavily depend on efficient protein translocation into the ER to support their fast growth. In this review, different inhibitors of protein translocation will be discussed, and their specific mode of action will be compared. In addition, recently published screening strategies for small molecule inhibitors targeting the whole SRP-Sec61 targeting/translocation pathway will be summarized. Of note, slightly modified assays may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex, in order to identify novel antibiotic drugs.


Asunto(s)
Antibacterianos/farmacología , Antineoplásicos/farmacología , Antivirales/farmacología , Retículo Endoplásmico/metabolismo , Canales de Translocación SEC/antagonistas & inhibidores , Animales , Retículo Endoplásmico/efectos de los fármacos , Ensayos Analíticos de Alto Rendimiento , Humanos , Transporte de Proteínas , Canales de Translocación SEC/metabolismo
4.
Biochem Pharmacol ; 183: 114317, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33152346

RESUMEN

Coibamide A is a potent cancer cell toxin and one of a select group of natural products that inhibit protein entry into the secretory pathway via a direct inhibition of the Sec61 protein translocon. Many Sec61 client proteins are clinically relevant drug targets once trafficked to their final destination in or outside the cell, however the use of Sec61 inhibitors to block early biosynthesis of specific proteins is at a pre-clinical stage. In the present study we evaluated the action of coibamide A against human epidermal growth factor receptor (HER, ErbB) proteins in representative breast and lung cancer cell types. HERs were selected for this study as they represent a family of Sec61 clients that is frequently dysregulated in human cancers, including coibamide-sensitive cell types. Although coibamide A inhibits biogenesis of a broad range of Sec61 substrate proteins in a presumed substrate-nonselective manner, endogenous HER3 (ErbB-3) and EGFR (ErbB-1) proteins were more sensitive to coibamide A, and the related Sec61 inhibitor apratoxin A, than HER2 (ErbB-2). Despite this rank order of sensitivity (HER3 > EGFR > HER2), Sec61-dependent inhibition by coibamide A was sufficient to decrease cell surface expression of HER2. We report that coibamide A- or apratoxin A-mediated block of HER3 entry into the secretory pathway is unlikely to be mediated by the HER3 signal peptide alone. HER3 (G11L/S15L), that is fully resistant to the highly substrate-selective cotransin analogue CT8, was more resistant than wild-type HER3 but only at low coibamide A (3 nM) concentrations; HER3 (G11L/S15L) expression was inhibited by higher concentrations of either natural product. Time- and concentration-dependent decreases in HER protein expression induced a commensurate reduction in AKT/MAPK signaling in breast and lung cancer cell types and loss in cell viability. Coibamide A potentiated the cytotoxic efficacy of small molecule kinase inhibitors lapatinib and erlotinib in breast and lung cancer cell types, respectively. These data indicate that natural product modulators of Sec61 function have value as chemical probes to interrogate HER/ErbB signaling in treatment-resistant human cancers.


Asunto(s)
Depsipéptidos/administración & dosificación , Sistemas de Liberación de Medicamentos/métodos , Canales de Translocación SEC/antagonistas & inhibidores , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Células MCF-7 , Canales de Translocación SEC/metabolismo
5.
Mol Cell ; 79(3): 406-415.e7, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32692975

RESUMEN

Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics.


Asunto(s)
Macrólidos/farmacología , Microsomas/química , Ribosomas/química , Canales de Translocación SEC/química , Animales , Sitios de Unión , Sistema Libre de Células/metabolismo , Perros , Expresión Génica , Células HCT116 , Células HEK293 , Humanos , Macrólidos/química , Macrólidos/aislamiento & purificación , Microsomas/metabolismo , Simulación de Dinámica Molecular , Mutación , Mycobacterium ulcerans/química , Mycobacterium ulcerans/patogenicidad , Páncreas/química , Páncreas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Ribosomas/metabolismo , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Homología Estructural de Proteína , Especificidad por Sustrato
6.
J Am Chem Soc ; 141(21): 8450-8461, 2019 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-31059257

RESUMEN

Ipomoeassin F is a potent natural cytotoxin that inhibits growth of many tumor cell lines with single-digit nanomolar potency. However, its biological and pharmacological properties have remained largely unexplored. Building upon our earlier achievements in total synthesis and medicinal chemistry, we used chemical proteomics to identify Sec61α (protein transport protein Sec61 subunit alpha isoform 1), the pore-forming subunit of the Sec61 protein translocon, as a direct binding partner of ipomoeassin F in living cells. The interaction is specific and strong enough to survive lysis conditions, enabling a biotin analogue of ipomoeassin F to pull down Sec61α from live cells, yet it is also reversible, as judged by several experiments including fluorescent streptavidin staining, delayed competition in affinity pulldown, and inhibition of TNF biogenesis after washout. Sec61α forms the central subunit of the ER protein translocation complex, and the binding of ipomoeassin F results in a substantial, yet selective, inhibition of protein translocation in vitro and a broad ranging inhibition of protein secretion in live cells. Lastly, the unique resistance profile demonstrated by specific amino acid single-point mutations in Sec61α provides compelling evidence that Sec61α is the primary molecular target of ipomoeassin F and strongly suggests that the binding of this natural product to Sec61α is distinctive. Therefore, ipomoeassin F represents the first plant-derived, carbohydrate-based member of a novel structural class that offers new opportunities to explore Sec61α function and to further investigate its potential as a therapeutic target for drug discovery.


Asunto(s)
Glicoconjugados/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Glicoconjugados/química , Humanos , Estructura Molecular , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo
7.
Mol Microbiol ; 112(1): 81-98, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30983025

RESUMEN

Disarming pathogens by targeting virulence factors is a promising alternative to classic antibiotics. Many virulence factors in Gram-negative bacteria are secreted via the autotransporter (AT) pathway, also known as Type 5 secretion. These factors are secreted with the assistance of two membrane-based protein complexes: Sec and Bam. To identify inhibitors of the AT pathway, we used transcriptomics analysis to develop a fluorescence-based high-throughput assay that reports on the stress induced by the model AT hemoglobin protease (Hbp) when its secretion across the outer membrane is inhibited. Screening a library of 1600 fragments yielded the compound VUF15259 that provokes cell envelope stress and secretion inhibition of the ATs Hbp and Antigen-43. VUF15259 also impairs ß-barrel folding activity of various outer membrane proteins. Furthermore, we found that mutants that are compromised in outer membrane protein biogenesis are more susceptible to VUF15259. Finally, VUF15259 induces the release of vesicles that appear to assemble in short chains. Taken together, VUF15259 is the first reported compound that inhibits AT secretion and our data are mostly consistent with VUF15259 interfering with the Bam-complex as potential mode of action. The validation of the presented assay incites its use to screen larger compound libraries with drug-like compounds.


Asunto(s)
Sistemas de Secreción Tipo V/antagonistas & inhibidores , Sistemas de Secreción Tipo V/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Endopeptidasas/metabolismo , Bacterias Gramnegativas , Proteínas de Transporte de Membrana/metabolismo , Modelos Moleculares , Pliegue de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas/fisiología , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/metabolismo , Factores de Virulencia/metabolismo
8.
PLoS One ; 13(12): e0208641, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30543669

RESUMEN

The SRP-Sec61 targeting/translocation pathway of eukaryotic cells targets nascent protein chains to the membrane of the endoplasmic reticulum. Using this machinery, secretory proteins are translocated across this membrane whereas membrane proteins are integrated into the lipid bilayer. One of the key players of the pathway is the protein-conducting Sec61 (translocon) complex of the endoplasmic reticulum. The Sec61 complex has no enzymatic activity, is expressed only intracellularly and is difficult to purify and to reconstitute. Screening for small molecule inhibitors impairing its functions is thus notoriously difficult. Such inhibitors may not only be valuable tools for cell biology, they may also represent novel anti-tumor drugs. Here we have developed a two-step, sequential screening assay for inhibitors of the whole SRP-Sec61 targeting/translocation pathway which might include molecules affecting Sec61 complex functions. The resulting hit compounds were analyzed using a whole cell biosynthesis assay and a cell free transcription/translation/translocation assay. Using this methodology, we identified novel compounds inhibiting this pathway. Following structure-based back screening, one of these substances was analyzed in more detail and we could show that it indeed impairs translocation at the level of the Sec61 complex. A slightly modified methodology may be used in the future to screen for substances affecting SecYEG, the bacterial ortholog of the Sec61 complex in order to derive novel antibiotic drugs.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Canales de Translocación SEC/metabolismo , Sistema Libre de Células , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Concentración 50 Inhibidora , Pirazoles/química , Pirazoles/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/genética
9.
Biol Cell ; 110(11): 237-248, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30055020

RESUMEN

Infection with Mycobacterium ulcerans results in a necrotising skin disease known as a Buruli ulcer, the pathology of which is directly linked to the bacterial production of the toxin mycolactone. Recent studies have identified the protein translocation machinery of the endoplasmic reticulum (ER) membrane as the primary cellular target of mycolactone, and shown that the toxin binds to the core subunit of the Sec61 complex. Mycolactone binding strongly inhibits the capacity of the Sec61 translocon to transport newly synthesised membrane and secretory proteins into and across the ER membrane. Since the ER acts as the entry point for the mammalian secretory pathway, and hence regulates initial access to the entire endomembrane system, mycolactone-treated cells have a reduced ability to produce a range of proteins including secretory cytokines and plasma membrane receptors. The global effect of this molecular blockade of protein translocation at the ER is that the host is unable to mount an effective immune response to the underlying mycobacterial infection. Prolonged exposure to mycolactone is normally cytotoxic, since it triggers stress responses activating the transcription factor ATF4 and ultimately inducing apoptosis.


Asunto(s)
Úlcera de Buruli/etiología , Úlcera de Buruli/microbiología , Macrólidos/toxicidad , Mycobacterium ulcerans/patogenicidad , Canales de Translocación SEC/antagonistas & inhibidores , Animales , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Humanos , Macrólidos/efectos adversos , Macrólidos/química , Modelos Biológicos , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo
10.
FEMS Microbiol Lett ; 365(15)2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30007321

RESUMEN

Sec-dependent protein translocation is an essential process in bacteria. SecA is a key component of the translocation machinery and has multiple domains that interact with various ligands. SecA acts as an ATPase motor to drive the precursor protein/peptide through the SecYEG protein translocation channels. As SecA is unique to bacteria and there is no mammalian counterpart, it is an ideal target for the development of new antimicrobials. Several reviews detail the assays for ATPase and protein translocation, as well as the search for SecA inhibitors. Recent studies have shown that, in addition to the SecA-SecYEG translocation channels, there are SecA-only channels in the lipid bilayers, which function independently from the SecYEG machinery. This mini-review focuses on recent advances on the newly developed SecA inhibitors that allow the evaluation of their potential as antimicrobial agents, as well as a fundamental understanding of mechanisms of SecA function(s). These SecA inhibitors abrogate the effects of efflux pumps in both Gram-positive and Gram-negative bacteria. We also discuss recent findings that SecA binds to ribosomes and nascent peptides, which suggest other roles of SecA. A model for the multiple roles of SecA is presented.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Canales de Translocación SEC/antagonistas & inhibidores , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Antibacterianos/química , Bacterias/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Canales de Translocación SEC/genética , Canales de Translocación SEC/metabolismo , Proteína SecA
11.
Proc Natl Acad Sci U S A ; 114(29): E5910-E5919, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28679634

RESUMEN

Although antigen cross-presentation in dendritic cells (DCs) is critical to the initiation of most cytotoxic immune responses, the intracellular mechanisms and traffic pathways involved are still unclear. One of the most critical steps in this process, the export of internalized antigen to the cytosol, has been suggested to be mediated by Sec61. Sec61 is the channel that translocates signal peptide-bearing nascent polypeptides into the endoplasmic reticulum (ER), and it was also proposed to mediate protein retrotranslocation during ER-associated degradation (a process called ERAD). Here, we used a newly identified Sec61 blocker, mycolactone, to analyze Sec61's contribution to antigen cross-presentation, ERAD, and transport of internalized antigens into the cytosol. As shown previously in other cell types, mycolactone prevented protein import into the ER of DCs. Mycolactone-mediated Sec61 blockade also potently suppressed both antigen cross-presentation and direct presentation of synthetic peptides to CD8+ T cells. In contrast, it did not affect protein export from the ER lumen or from endosomes into the cytosol, suggesting that the inhibition of cross-presentation was not related to either of these trafficking pathways. Proteomic profiling of mycolactone-exposed DCs showed that expression of mediators of antigen presentation, including MHC class I and ß2 microglobulin, were highly susceptible to mycolactone treatment, indicating that Sec61 blockade affects antigen cross-presentation indirectly. Together, our data suggest that the defective translocation and subsequent degradation of Sec61 substrates is the cause of altered antigen cross-presentation in Sec61-blocked DCs.


Asunto(s)
Presentación de Antígeno/fisiología , Endosomas/metabolismo , Macrólidos/farmacología , Canales de Translocación SEC/metabolismo , Animales , Presentación de Antígeno/efectos de los fármacos , Línea Celular , Citosol/efectos de los fármacos , Citosol/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Endosomas/efectos de los fármacos , Células HEK293 , Humanos , Ratones , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/antagonistas & inhibidores
12.
Eur J Med Chem ; 127: 159-165, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-28039774

RESUMEN

A series of novel thiouracil derivatives containing a triazolo-thiadiazole moiety (7a-7l) have been synthesized by structural modifications on a lead SecA inhibitor, 2. All the compounds have been evaluated for their antibacterial activities against Bacillus amyloliquefaciens, Staphylococcus aureus, and Bacillus subtilis. Compounds 7d and 7g were also tested for their inhibitory activities against SecA ATPase due to their promising antimicrobial activities. The inhibitory activity of compound 7d was found to be higher than that of 2. Molecular docking work suggests that compound 7d might bind at a pocket close to the ATPase ATP-binding domain.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Canales de Translocación SEC/antagonistas & inhibidores , Tiadiazoles/química , Tiouracilo/síntesis química , Tiouracilo/farmacología , Triazoles/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Antibacterianos/síntesis química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Técnicas de Química Sintética , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Simulación del Acoplamiento Molecular , Conformación Proteica , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Proteína SecA , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología , Tiouracilo/química , Tiouracilo/metabolismo
13.
Bioorg Med Chem Lett ; 27(10): 2234-2237, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28041832

RESUMEN

A series of novel thiouracil derivatives containing an acyl thiourea moiety (7a-7x) have been synthesized by structural modification of a lead SecA inhibitor, 2. All the compounds have been evaluated for their antibacterial activities against Bacillus amyloliquefaciens, Staphylococcus aureus, and Bacillus subtilis. Compounds 7c, 7m, 7u, 7v exhibited promising activities against above bacteria. Such four compounds were further tested for their inhibitory activity against SecA ATPase, and the results showed that compounds 7c and 7u had higher inhibitory activities than that of compound 2. Molecular docking work suggests that compound 7u might bind at a pocket close to the ATPase ATP-binding domain.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/síntesis química , Proteínas Bacterianas/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/síntesis química , Canales de Translocación SEC/antagonistas & inhibidores , Tiouracilo/análogos & derivados , Adenosina Trifosfatasas/metabolismo , Antibacterianos/química , Antibacterianos/farmacología , Bacillus amyloliquefaciens/efectos de los fármacos , Bacillus subtilis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Estructura Terciaria de Proteína , Canales de Translocación SEC/metabolismo , Proteína SecA , Staphylococcus aureus/efectos de los fármacos , Tiouracilo/síntesis química , Tiouracilo/farmacología
14.
Biochem Biophys Res Commun ; 482(2): 296-300, 2017 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-27856243

RESUMEN

SecA is an essential component in the bacterial Sec-dependent protein translocation process. We previously showed that in addition to the ubiquitous, high-affinity SecYEG-SecDF·YajC protein translocation channel, there is a low-affinity SecA-only channel that elicits ion channel activity and promotes protein translocation. The SecA-only channels are less efficient, and like Prl suppressors, lack signal peptide specificity; they function in the absence of signal peptides. The presence of SecYEG-SecDF·YajC alters the sensitivity of ATPase inhibitor Rose Bengal. In this study, we found that the suppressor membranes are much more resistant to inhibition by Rose Bengal. Similar results have been found for a SecA-specific inhibitor. Moreover, biphasic responses of inhibition of ion current and protein translocation activities were observed for many PrlA/SecY and PrlG/SecE suppressor membranes, with a low IC50 value similar to that of the SecA-only channels and a very high IC50. However, the suppressor strains are as sensitive to the inhibitor as the parental strain, suggesting that SecA-only channels have some essential physiological function(s) in the cells that are inhibited by the specific SecA inhibitor.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Transporte de Proteínas/fisiología , Rosa Bengala/administración & dosificación , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/metabolismo , Escherichia coli/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteína SecA
15.
J Exp Med ; 213(13): 2885-2896, 2016 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-27821549

RESUMEN

Mycolactone, an immunosuppressive macrolide released by the human pathogen Mycobacterium ulcerans, was previously shown to impair Sec61-dependent protein translocation, but the underlying molecular mechanism was not identified. In this study, we show that mycolactone directly targets the α subunit of the Sec61 translocon to block the production of secreted and integral membrane proteins with high potency. We identify a single-amino acid mutation conferring resistance to mycolactone, which localizes its interaction site near the lumenal plug of Sec61α. Quantitative proteomics reveals that during T cell activation, mycolactone-mediated Sec61 blockade affects a selective subset of secretory proteins including key signal-transmitting receptors and adhesion molecules. Expression of mutant Sec61α in mycolactone-treated T cells rescued their homing potential and effector functions. Furthermore, when expressed in macrophages, the mycolactone-resistant mutant restored IFN-γ receptor-mediated antimicrobial responses. Thus, our data provide definitive genetic evidence that Sec61 is the host receptor mediating the diverse immunomodulatory effects of mycolactone and identify Sec61 as a novel regulator of immune cell functions.


Asunto(s)
Macrólidos/farmacología , Receptores de Interferón/inmunología , Canales de Translocación SEC/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Linfocitos T/inmunología , Adhesión Celular/efectos de los fármacos , Adhesión Celular/genética , Adhesión Celular/inmunología , Humanos , Células Jurkat , Receptores de Interferón/genética , Canales de Translocación SEC/genética , Canales de Translocación SEC/inmunología , Transducción de Señal/genética , Transducción de Señal/inmunología , Receptor de Interferón gamma
16.
ChemMedChem ; 11(22): 2511-2521, 2016 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-27753464

RESUMEN

With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.


Asunto(s)
Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Canales de Translocación SEC/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Bacterias Gramnegativas/enzimología , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Canales de Translocación SEC/metabolismo , Proteína SecA , Relación Estructura-Actividad
17.
J Antimicrob Chemother ; 71(12): 3441-3448, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27543656

RESUMEN

OBJECTIVES: According to our previous study, OXA-58 translocates to the periplasm via the Sec pathway in carbapenem-resistant Acinetobacter baumannii (CRAb). In the present study, carbapenem-hydrolysing class D ß-lactamases (CHDLs) belonging to the OXA-23, OXA-40 and OXA-51 families were examined to determine whether they are also Sec-dependent. Additionally, the effects of SecA inhibitors combined with carbapenems against CHDL-producing CRAb were examined. METHODS: Cell fractionation and western blot analyses were performed to detect periplasmic His-tagged CHDLs. A chequerboard analysis with pairwise combinations of carbapenems (imipenem or meropenem) and SecA inhibitors (rose bengal, sodium azide or erythrosin B) was performed using six clinical CRAb isolates harbouring different CHDL genes. The fractional inhibitory concentration (FIC) index was determined. The combination with the lowest FIC index was subjected to a time-kill analysis to examine synergistic effects. RESULTS: In an in silico analysis, the CHDLs OXA-23, OXA-40 and OXA-51 were preferentially translocated via the Sec system. The SecA inhibitor rose bengal decreased periplasmic translocation of His-tagged OXA-23 and OXA-83 (belonging to the OXA-51 family), but not OXA-72 (belonging to the OXA-40 family) from ATCC 15151 transformants. Imipenem or meropenem with rose bengal showed synergistic effects (FIC index, ≤0.5) for six and four clinical isolates, respectively. Imipenem or meropenem with sodium azide showed no interactions (FIC index, 0.5-4) against all clinical isolates. Imipenem and rose bengal had the lowest FIC index and showed synergy at 24 h in the time-kill assay. CONCLUSIONS: Combinations of SecA inhibitors and carbapenems have synergistic effects against CHDL-producing CRAb.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Adenosina Trifosfatasas/antagonistas & inhibidores , Antibacterianos/farmacología , Proteínas Bacterianas/antagonistas & inhibidores , Carbapenémicos/farmacología , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , beta-Lactamasas/metabolismo , Humanos , Pruebas de Sensibilidad Microbiana , Transporte de Proteínas/efectos de los fármacos , Proteína SecA
18.
Cell Chem Biol ; 23(5): 561-566, 2016 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-27203376

RESUMEN

Apratoxin A is a cytotoxic natural product that prevents the biogenesis of secretory and membrane proteins. Biochemically, apratoxin A inhibits cotranslational translocation into the ER, but its cellular target and mechanism of action have remained controversial. Here, we demonstrate that apratoxin A prevents protein translocation by directly targeting Sec61α, the central subunit of the protein translocation channel. Mutagenesis and competitive photo-crosslinking studies indicate that apratoxin A binds to the Sec61 lateral gate in a manner that differs from cotransin, a substrate-selective Sec61 inhibitor. In contrast to cotransin, apratoxin A does not exhibit a substrate-selective inhibitory mechanism, but blocks ER translocation of all tested Sec61 clients with similar potency. Our results suggest that multiple structurally unrelated natural products have evolved to target overlapping but non-identical binding sites on Sec61, thereby producing distinct biological outcomes.


Asunto(s)
Depsipéptidos/farmacología , Canales de Translocación SEC/antagonistas & inhibidores , Muerte Celular/efectos de los fármacos , Depsipéptidos/química , Relación Dosis-Respuesta a Droga , Células HCT116 , Humanos , Estructura Molecular , Transporte de Proteínas/efectos de los fármacos , Canales de Translocación SEC/metabolismo , Relación Estructura-Actividad
19.
J Cell Sci ; 129(7): 1404-15, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26869228

RESUMEN

The virulence factor mycolactone is responsible for the immunosuppression and tissue necrosis that characterise Buruli ulcer, a disease caused by infection with Mycobacterium ulcerans In this study, we confirm that Sec61, the protein-conducting channel that coordinates entry of secretory proteins into the endoplasmic reticulum, is a primary target of mycolactone, and characterise the nature of its inhibitory effect. We conclude that mycolactone constrains the ribosome-nascent-chain-Sec61 complex, consistent with its broad-ranging perturbation of the co-translational translocation of classical secretory proteins. In contrast, the effect of mycolactone on the post-translational ribosome-independent translocation of short secretory proteins through the Sec61 complex is dependent on both signal sequence hydrophobicity and the translocation competence of the mature domain. Changes to protease sensitivity strongly suggest that mycolactone acts by inducing a conformational change in the pore-forming Sec61α subunit. These findings establish that mycolactone inhibits Sec61-mediated protein translocation and highlight differences between the co- and post-translational routes that the Sec61 complex mediates. We propose that mycolactone also provides a useful tool for further delineating the molecular mechanisms of Sec61-dependent protein translocation.


Asunto(s)
Úlcera de Buruli/patología , Macrólidos/metabolismo , Mycobacterium ulcerans/patogenicidad , Canales de Translocación SEC/antagonistas & inhibidores , Canales de Translocación SEC/metabolismo , Animales , Retículo Endoplásmico/metabolismo , Humanos , Transporte de Proteínas/fisiología , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...